用户名: 密码: 验证码:
籽鹅卵巢组织基因差异表达及产蛋相关基因定量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹅产蛋性能较低是制约我国鹅产业发展的重要因素之一,鹅产蛋性能的改善和提高一直以来都是鹅遗传育种工作的重点。卵巢是雌性鹅的重要生殖器官,鹅产蛋前后卵巢组织中某些基因是否表达(或者表达量的差异)均可能影响鹅的产蛋性能。分子生物学技术的发展为提高鹅产蛋性能的研究提供了新的途径。抑制性消减杂交技术对于基因组信息较少的鹅来说,无疑是一种较好的筛选差异表达基因的技术。目前,已有报道应用抑制性消减杂交技术成功地筛选获得了产蛋前期和产蛋期鹅腺垂体、肝脏组织的差异表达基因。因此,本研究以黑龙江省籽鹅卵巢组织作为研究对象,利用抑制消减杂交技术构建产蛋前期和产蛋期籽鹅卵巢组织消减cDNA文库,采用反向斑点杂交技术对该文库进行了差异表达基因的筛选和鉴定,同时利用实时定量PCR技术检测了部分差异表达基因在产蛋前期和产蛋期卵巢组织中表达量的变化,另外,还对与生殖相关的激素受体ESR1、ESR2、FSHR和PRLR进行了表达模式的研究。从而获得了产蛋前期与产蛋期籽鹅卵巢组织基因表达变化的信息,为从分子水平上探讨鹅产蛋分子调控机理的研究以及今后采用遗传手段改良和选育高产蛋性能籽鹅的研究奠定基础。
The improvement of the laying performance in the poultry is always one of the important duties for the heredity and breeding workers, especially in the geese with the poor laying performance. The ovary is the key reproductive organ, where a lot of hormone receptors are expressed, and it is the target organ for the reproductive hormones. The changes of the expressed levels in the certain of genes from ovary may effect on the laying performance in the geese. So, it is an important meaning to identify the change of differentially expressed genes for elucidating the molecular mechanism of the laying process. The further functional research of the differentially expressed genes could provide a way for the study on the geese laying performance.
     Suppression subtractive hybridization (SSH) needs no genomes information, specific, few false positive and simple. So, it has been ubiquitous employed to identify the differentially expressed genes in the life science fields. Furthermore SSH should be a very good technique to identify the differentially expressed genes in the geese which genome project has been not achieved. To date, the differentially expressed genes have been obtained in the anterior pituitary and liver from the laying geese compared with the prelaying geese using SSH.
     Therefore, in the present study, the subtracted cDNA library of the geese ovary was conducted by the SSH. The reverse dot-blot hybridization was employed to screen the library, and the relative expression levels of the differentially expressed genes were measured using the real-time quantitative PCR (RTQ-PCR). Furthermore, the amount of the relative expression for estrogen receptor 1 (ESR1), estrogen receptor 2 (ESR2), follicle-stimulating hormone receptor (FSHR) and prolactin receptor (PRLR) were also determined. The results were showed as following:
     1 Construction of subtracted cDNA library
     In the present study, the subtracted cDNA library of the geese ovary was constructed for the first time using SSH. The subtraction efficiency was estimated by a housekeeping gene named GAPDH. The results showed that GAPDH was subtracted efficiently at 20 folds for the subtracted cDNA library which demonstrated that differentially expressed genes were also enriched at the same folds. The cDNA fragments from the library were mainly ranged from 300 bp to 750 bp, and it suggests that the library was constructed successfully.
     2 Screening the library by reverse dot-blot hybridization
     568 clones were identified by PCR, and 465 positive clones were selected and further identified by reverse dot-blot hybridization. Ninety-seven clones that were identified positive fragments were subjected to sequencing. Of which the 97 clones, 26 generated adequate sequencing results. Among 26 genes, 2 genes belonged to known gene of the geese, 16 genes were unknown genes of the geese, and 8 genes were novel. All the genes, except 2 known genes, were submitted to the dbEST database at NCBI.
     3 Functional analysis of 18 known genes
     To gain insight into the function of these ESTs, the functional categorizations were predicted by the gene ontology tree machine in search of the gene ontology database. Eighteen ESTs were categorized into 7 molecular function groups involving in binding, catalytic activity, enzyme regulator activity, signal transducer activity, structural molecule activity, transporter activity and other function.
     4 Determining the expressed levels of FTH
     The relative expressed levels of FTH in the prelaying and laying Zi geese ovary were measured using RTQ-PCR. The results showed that the amount of FTH relative expression in the laying Zi geese ovary was significantly higher 13.25 folds than the prelaying Zi geese ovary. It suggests that FTH should play an important role in the molecular mediation function of the laying process in the poultry.
     5 Determining the expressed levels of 8 novel genes
     The relative expressed levels of 8 novel genes (Accession No. GE616653~GE616660) in the prelaying and laying Zi geese ovary were measured using RTQ-PCR. The results showed that the amount of 8 novel genes (Accession No. GE616653~GE616660) relative expression in the laying Zi geese ovary was significantly higher 7.68, 11.82, 14.23, 8.25, 15.14, 9.78, 6.48 and 14.21 folds than the prelaying Zi geese ovary, respectively. It suggests that these genes should play an important role in the geese ovary function. It is significant for elucidating the molecular mechanism of the laying process to study on the sequence and the function of these genes.
     6 Expression profiling of ESR (ESR1 and ESR2) in the ovary
     The dynamic regulation of ESR1 and ESR2 mRNA expression in the ovary of geese during the developmental and egg laying stage were determined using RTQ-PCR with SYBRⅠdye. Relative quantitation of gene expression was normalized to GAPDH. The results showed that ESR1 mRNA expression levels increased since the geese was aged 1 day (P<0.05), and decreased from 2 month. The amount of ESR1 mRNA was lowest in the ovary of the geese aged 3 month, and it is increased from 4 month. The levels of ESR1 mRNA in the ovary among the geese on 1, 2, 3 and 4 month were not significant difference (P>0.05). ESR1 mRNA expression were significantly greater at the age of 5 and 8 month compared with at 1 day (P<0.05), and the amount of ESR1 mRNA expression in the ovary of geese aged 8 month was the highest during the development and laying performance.
     ESR2 mRNA expression levels increased since the geese was aged 1 day (P<0.05), and decreased from 4 month. The levels of ESR2 mRNA in the ovary among the geese on 4 month were not significant difference compared with the levels of 1, 2 and 3 month (P>0.05). It is increased when geese were 5 month. ESR2 mRNA expression were significantly greater at the age of 5 and 8 month compared with at 1 day (P<0.05), and the amount of the ESR2 mRNA expression in the ovary of geese aged 8 month was the highest during the development and laying performance. These suggest that ESR1 and ESR2 interact to mediate the ovarian function and the process of egg laying in the geese, and ESR2 may play a more important role in mediating the response of the ovary to estrogen during the developmental and egg laying stage.
     7 Expression profiling of FSHR in the ovary The change of the FSHR mRNA expression level was similar to ESR1. FSHR mRNA expression levels increased since the geese was aged 1 day (P<0.05), and decreased from 2 month. The amount of FSHR mRNA was lowest in the ovary of the geese aged 3 month, and it is increased from 4 month. FSHR mRNA expression were significantly greater at the age of 5 and 8 month compared with at 1 day (P<0.05), and the amount of the FSHR mRNA expression was the highest during the development and laying performance and was higher 5.11 folds than the geese aged 1 day.
     8 Expression profiling of PRLR in the ovary
     The change of the mRNA expression level was significantly difference between PRLR and ESR. PRLR mRNA expression levels decreased since the geese was aged 1 day (P<0.05), and increased from 5 month. PRLR mRNA expression was not significantly difference between 1 and 8 month geese ovary, and it was also not significantly difference among the 2, 3, 4 and 5 month geese ovary. They were significantly lower than the PRLR mRNA expression level of the ovary in the 1 day geese.
     In conclusion, in the paper, the differentially expressed genes between laying and prelaying geese ovary were identified, and the expression profiling was also determined. The information suggests that this work will be helpful for facilitating future study of the reproductive biology of the geese, acquiring new insights into the molecular mechanism involved, and improving the egg production of the geese.
引文
[1]周瑞进,康波,姜冬梅,等.东北白鹅和籽鹅体尺指标的测定及相关性分析[J].黑龙江畜牧兽医. 2008, 2:43-44.
    [2]陈国宏,王克华,王金玉.中国禽类遗传资源[M].上海:上海科学技术出版社, 2004.
    [3]刘伟信,王继文.鹅遗传育种研究进展[J].中国畜牧杂志. 1999, 35:60-61.
    [4]杨光荣,张德玉,黄志秋,等.鹅产蛋量及产蛋规律的研究[J].中国家禽. 1997, 10:18.
    [5]左瑞华,刘建国,阂长莉.杂交对皖西白鹅繁殖性能的影响[J].畜牧业. 2003, 11:16-17.
    [6]张廷荣,宋玉芹,王宝维,等.豁眼鹅产蛋性能的遗传趋势研究[J].莱阳农学院学报. 2003, 20:214-216.
    [7]司徒玉,何连琦,顾万茂.朗德鹅与太湖鹅杂交一代生产性能观察[J].中国畜牧杂志. 1992, 28:32-33.
    [8]耿拓宇,赵万里.隆昌鹅和以其为母本的杂交后代的产肉及产肝性能[J].中国家禽. 1994, 5:21-23.
    [9]丁涛,邵科明,段宝法,等.隆昌鹅引进开发利用研究[J].中国畜牧杂志. 1994, 30:32-34.
    [10]周孝峰,樊永青,王来友.提高豁鹅综合效益配套生产技术的研究--Ⅱ杂交鹅肥育性能的研究[J].辽宁畜牧兽医. 1996, 2:6.
    [11]王亚琴,朱红霞,陈维虎.提高浙东白鹅繁殖性能研究[J].浙江畜牧兽医. 1999, 4:18-19.
    [12]谢庄,杨茂成,陈韬,等.杂交鹅经济效益的综合分析[J].畜牧与兽医. 1993, 25:266-267.
    [13]王宝维,潘庆杰,朱新产,等.“五龙鹅”品种选育与研究进展[J].中国家禽. 2002, 24:28-32.
    [14] CHEN K F, HUANG L S, LI N, et al. [The genetic effect of estrogen receptor(ESR) on litter size traits in pig] [J]. Yi Chuan Xue Bao. 2000, 27:853-857.
    [15] ISLER B J, IRVIN K M, NEAL S M, et al. Examination of the relationship between the estrogen receptor gene and reproductive traits in swine [J]. J Anim Sci. 2002, 80:2334-2339.
    [16] GIBSON J P, JIANG Z H, ROBINSON J A, et al. No detectable association of the ESR PvuII mutation with sow productivity in a Meishan x Large White F2 population [J]. AnimGenet. 2002, 33:448-450.
    [17] LINVILLE R C, POMP D, JOHNSON R K, et al. Candidate gene analysis for loci affecting litter size and ovulation rate in swine [J]. J Anim Sci. 2001, 79:60-67.
    [18] MUNOZ G, OVILO C, AMILLS M, et al. Mapping of the porcine oestrogen receptor 2 gene and association study with litter size in Iberian pigs [J]. Anim Genet. 2004, 35:242-244.
    [19] DROGEMULLER C, HAMANN H, DISTL O. Candidate gene markers for litter size in different German pig lines [J]. J Anim Sci. 2001, 79:2565-2570.
    [20] SPOTTER A, DROGEMULLER C, HAMANN H, et al. Evidence of a new leukemia inhibitory factor-associated genetic marker for litter size in a synthetic pig line [J]. J Anim Sci. 2005, 83:2264-2270.
    [21] ROTHSCHILD M F, MESSER L, DAY A, et al. Investigation of the retinol-binding protein 4 (RBP4) gene as a candidate gene for increased litter size in pigs [J]. Mamm Genome. 2000, 11:75-77.
    [22] STEINHEUER R, DROGEMULLER C, HAMANN H, et al. [Possible uses of genetic markers for improving fertility and health in swine production] [J]. Dtsch Tierarztl Wochenschr. 2003, 110:255-265.
    [23] VALLET J L, FREKING B A, LEYMASTER K A, et al. Allelic variation in the erythropoietin receptor gene is associated with uterine capacity and litter size in swine [J]. Anim Genet. 2005, 36:97-103.
    [24] WATERHOUSE P, PARHAR R S, GUO X, et al. Regulated temporal and spatial expression of the calcium-binding proteins calcyclin and OPN (osteopontin) in mouse tissues during pregnancy [J]. Mol Reprod Dev. 1992, 32:315-323.
    [25] CRAIG A M, DENHARDT D T. The murine gene encoding secreted phosphoprotein 1 (osteopontin): promoter structure, activity, and induction in vivo by estrogen and progesterone [J]. Gene. 1991, 100:163-171.
    [26] SHORT T H, SOUTHWOOD O I, DEVRIES A G, et al. Evidence of a new genetic marker for litter size in pigs [J]. J Anim Sci. 1997, 75:29.
    [27] WANG X N, GREENWALD G S. Hypophysectomy of the cyclic mouse. II. Effects of follicle-stimulating hormone (FSH) and luteinizing hormone on folliculogenesis, FSH and human chorionic gonadotropin receptors, and steroidogenesis [J]. Biol Reprod. 1993, 48:595-605.
    [28] MANNAERTS B, UILENBROEK J, SCHOT P, et al. Folliculogenesis in hypophysectomized rats after treatment with recombinant human follicle-stimulating hormone [J]. Biol Reprod. 1994, 51:72-81.
    [29] LI N, ZHOA Y F, XIAO L, et al. Candidate gene analysis for identification of genetic loci controlling litter size in swine [C]. Proceedings of the Sixth World Congress on Genetics Applied to Livestock Production.Armidale. 1998
    [30]赵要风,李宁,肖璐,等.猪FSHβ亚基基因结构区逆转座子插入突变及其与猪产仔数关系的研究[J].中国科学C辑. 1992, 29:81-86.
    [31]杜立新,柳淑芳,闫艳春,等.猪FSHβ亚基基因结构区Alu序列插入突变的研究[J].遗传学报. 2002, 29:977-982.
    [32]张冬杰,杨国伟,刘娣.猪FSHβ亚基基因结构区插入突变的研究[J].河北农业大学学报. 2006, 29:92-95.
    [33]周敏,张细权,施振旦,等.三个品种家鸡催乳素基因cDNA的克隆及序列分析[J].遗传学报. 2001, 28:614-620.
    [34] JIANG R S, XU G Y, ZHANG X Q, et al. Association of polymorphisms for prolactin and prolactin receptor genes with broody traits in chickens [J]. Poultry Science. 2005, 84:839-845.
    [35]洪坤月,汪峰,虞德兵,等.太湖鸡PRL、PRLR和FSHβ基因多态与前期产蛋性状关系研究[J].西北农业学报. 2007, 16:11-14.
    [36] ZHOU M, LEI M, RAO Y, et al. Polymorphisms of vasoactive intestinal peptide receptor-1 gene and their genetic effects on broodiness in chickens [J]. Poult Sci. 2008, 87:893-903.
    [37]陈兴勇.皖西白鹅催乳素基因(PRL)多态性及其与产蛋量关系的研究[D].安徽农业大学, 2005.
    [38] ZELEZNIK A J, IHRIG L L, BASSETT S G. Developmental expression of Ca++/Mg++-dependent endonuclease activity in rat granulosa and luteal cells [J]. Endocrinology. 1989, 125:2218-2220.
    [39] TILLY J L, KOWALSKI K I, JOHNSON A L, et al. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression [J]. Endocrinology. 1991, 129:2799-2801.
    [40] HSU S Y, LAI R J, FINEGOLD M, et al. Targeted overexpression of Bcl-2 in ovaries of transgenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis, and increased germ cell tumorigenesis [J]. Endocrinology. 1996, 137:4837-4843.
    [41] EGUCHI Y, EWERT D L, TSUJIMOTO Y. Isolation and characterization of the chicken bcl-2 gene: expression in a variety of tissues including lymphoid and neuronal organs in adult and embryo [J]. Nucleic Acids Res. 1992, 20:4187-4192.
    [42] TOMICIC M T, CHRISTMANN M, KAINA B. Cloning and functional analysis of cDNA encoding the hamster Bcl-2 protein [J]. Biochem Biophys Res Commun. 2000, 275:899-903.
    [43]陈秀萍,姜勋平,丁家桐.鹅bcl-2基因部分cDNA的克隆与序列分析[J].畜牧兽医学报. 2005, 36:1228-1231.
    [44] LOVELL T M, GLADWELL R T, CUNNINGHAM F J, et al. Differential changes in inhibin A, activin A, and total alpha-subunit levels in granulosa and thecal layers of developing preovulatory follicles in the chicken [J]. Endocrinology. 1998, 139:1164-1171.
    [45] SALOMON L J, BENATTAR C, AUDIBERT F, et al. Severe preeclampsia is associated with high inhibin A levels and normal leptin levels at 7 to 13 weeks into pregnancy [J]. Am J Obstet Gynecol. 2003, 189:1517-1522.
    [46] LING N, YING S Y, UENO N, et al. Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin [J]. Nature. 1986, 321:779-782.
    [47] MATHEWS L S, VALE W W. Expression cloning of an activin receptor, a predicted transmembrane serine kinase [J]. Cell. 1991, 65:973-982.
    [48] JOHNSON P A, BROOKS C F, DAVIS A J. Pattern of secretion of immunoreactive inhibin/activin subunits by avian granulosa cells [J]. Gen Comp Endocrinol. 2005, 141:233-239.
    [49] HECHT D J, DAVIS A J, BROOKS C F, et al. Molecular cloning and expression analysis of the complementary deoxyribonucleic acid for chicken inhibin/activin beta(B) subunit [J]. Biol Reprod. 2000, 62:1128-1134.
    [50] JOHNSON P A, WOODCOCK J R, KENT T R. Effect of activin A and inhibin A on expression of the inhibin/activin beta-B-subunit and gonadotropin receptors in granulosa cells of the hen [J]. Gen Comp Endocrinol. 2006, 147:102-107.
    [51] DAVIS A J, BROOKS C F, JOHNSON P A. Follicle-stimulating hormone regulation of inhibin alpha- and beta(B)-subunit and follistatin messenger ribonucleic acid in cultured avian granulosa cells [J]. Biol Reprod. 2001, 64:100-106.
    [52] TANNETTA D S, FEIST S A, BLEACH E C, et al. Effects of active immunization of sheep against an amino terminal peptide of the inhibin alpha C subunit on intrafollicular levels ofactivin A, inhibin A and follistatin [J]. J Endocrinol. 1998, 157:157-168.
    [53] SHI F, MOCHIDA K, SUZUKI O, et al. Development of embryos in superovulated guinea pigs following active immunization against the inhibin alpha-subunit [J]. Endocr J. 2000, 47:451-459.
    [54] LOVELL T M, KNIGHT P G, GROOME N P, et al. Changes in plasma inhibin A levels during sexual maturation in the female chicken and the effects of active immunization against inhibin alpha-subunit on reproductive hormone profiles and ovarian function [J]. Biol Reprod. 2001, 64:188-196.
    [55]姜勋平,杨利国,刘桂琼,等.抑制素基因免疫对小鼠生殖的影响[J].中国兽医学报. 2002, 22:368-370.
    [56] MEDAN M S, TAKEDOM T, AOYAGI Y, et al. The effect of active immunization against inhibin on gonadotropin secretions and follicular dynamics during the estrous cycle in cows [J]. J Reprod Dev. 2006, 52:107-113.
    [57] CHEN F, JIANG X, CHEN X, et al. Effects of downregulation of inhibin alpha gene expression on apoptosis and proliferation of goose granulosa cells [J]. J Genet Genomics. 2007, 34:1106-1113.
    [58]吕文发,赵静,单雪松,等.溆浦鹅卵泡抑制素α亚基编码区cDNA克隆及其原核表达[J].畜牧兽医学报. 2005, 36:536-539.
    [59]赵悦,杨焕民,王琳琳,等.东北白鹅抑制素/活化素β_B亚基成熟区cDNA的克隆[J].黑龙江八一农垦大学学报. 2007, 19:59-62.
    [60] HUANG Y M, LI M Y, SHI Z D, et al. Effects of Immunization Against Inhibin on Egg-Laying Performance in Magang and Landaise Geese [J]. Agricultural Sciences in China. 2007, 6:355-360.
    [61] FREEMAN M E, KANYICSKA B, LERANT A, et al. Prolactin: structure, function, and regulation of secretion [J]. Physiol Rev. 2000, 80:1523-1631.
    [62]孙庆林,王和平,德伟.化学发光自显影免疫印迹法(Western Blotting)检测绒山羊皮肤组织中催乳素受体蛋白[J].科学技术与工程. 2003, 3:55-57.
    [63] PORTER T E, SILSBY J L, BEHNKE E J, et al. Ovarian steroid production in vitro during gonadal regression in the turkey. I. Changes associated with incubation behavior [J]. Biol Reprod. 1991, 45:581-586.
    [64] TABIBZADEH C, ROZENBOIM I, SILSBY J L, et al. Modulation of ovarian cytochromeP450 17 alpha-hydroxylase and cytochrome aromatase messenger ribonucleic acid by prolactin in the domestic turkey [J]. Biol Reprod. 1995, 52:600-608.
    [65] ZADWORNY D, SHIMADA K, ISHIDA H, et al. Gonadotropin-stimulated estradiol production in small ovarian follicles of the hen is suppressed by physiological concentrations of prolactin in vitro [J]. Gen Comp Endocrinol. 1989, 74:468-473.
    [66] EL HALAWANI M E, SILSBY J L, FOSTER L K, et al. Ovarian involvement in the suppression of luteinizing hormone in the incubating turkey (Meleagris gallopavo) [J]. Neuroendocrinology. 1993, 58:35-41.
    [67] RAMESH R, PROUDMAN J A, KUENZEL W J. Changes in pituitary somatotroph and lactotroph distribution in laying and incubating turkey hens [J]. Gen Comp Endocrinol. 1996, 104:67-75.
    [68] PROUDMAN J A. Circulating prolactin levels at the end of the photophase and the end of the scotophase throughout the reproductive cycle of the turkey hen [J]. Poult Sci. 1998, 77:303-308.
    [69] ZHOU J F, ZADWORNY D, GUEMENE D, et al. Molecular cloning, tissue distribution, and expression of the prolactin receptor during various reproductive states in Meleagris gallopavo [J]. Biol Reprod. 1996, 55:1081-1090.
    [70] CHAISEHA Y, YOUNGREN O M, EL HALAWANI M E. Expression of vasoactive intestinal peptide receptor messenger RNA in the hypothalamus and pituitary throughout the turkey reproductive cycle [J]. Biol Reprod. 2004, 70:593-599.
    [71] KANG S W, YOUNGREN O M, EL HALAWANI M E. Influence of VIP on prolactinemia in turkey anterior pituitary cells: role of cAMP second messenger in VIP-induced prolactin gene expression [J]. Regul Pept. 2002, 109:39-44.
    [72]施振旦,梁少东,毕英佐.下丘脑5-羟色胺和多巴胺调控鸡就巢机理的研究[J].畜牧兽医学报. 2001, 31:487-492.
    [73]陈伟华,李定健,陈杰. 5-羟色胺在四季鹅抱窝中的作用[J].南京农业大学学报. 1994, 17:75-78.
    [74] MARCH J B, SHARP P J, WILSON P W, et al. Effect of active immunization against recombinant-derived chicken prolactin fusion protein on the onset of broodiness and photoinduced egg laying in bantam hens [J]. J Reprod Fertil. 1994, 101:227-233.
    [75]易正戟.禽类就巢发生和调控研究进展[J].北京农业科学. 2002, 3:14-17.
    [76] WATAHIKI M, TANAKA M, MASUDA N, et al. Primary structure of chicken pituitary prolactin deduced from the cDNA sequence. Conserved and specific amino acid residues in the domains of the prolactins [J]. J Biol Chem. 1989, 264:5535-5539.
    [77] KURIMA K, PROUDMAN J A, EL HALAWANI M E, et al. The turkey prolactin-encoding gene and its regulatory region [J]. Gene. 1995, 156:309-310.
    [78] KANSAKU N, OHKUBO T, OKABAYASHI H, et al. Cloning of duck PRL cDNA and genomic DNA [J]. Gen Comp Endocrinol. 2005, 141:39-47.
    [79] LIU Z, SHI Z D, LIU Y, et al. Molecular cloning and characterisation of the Magang goose prolactin gene [J]. Gen Comp Endocrinol. 2008, 155:208-216.
    [80]耿照玉,陈兴勇,姜润深,等.皖西白鹅催乳素基因Exon2克隆及多态性研究[J].畜牧兽医学报. 2007, 38:533-536.
    [81]陈峰,施振旦,毕英佐,等.主动免疫血管活性肠肽对泰和鸡繁殖性能的影响[J].华南农业大学学报. 1997, 18:45-50.
    [82] BOUTIN J M, JOLICOEUR C, OKAMURA H, et al. Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family [J]. Cell. 1988, 53:69-77.
    [83] SHIU R P, KELLY P A, FRIESEN H G. Radioreceptor assay for prolactin and other lactogenic hormones [J]. Science. 1973, 180:968-971.
    [84]傅泽红,邢光东,刘铁铮,等.鹅催乳素受体基因cDNA5′端序列克隆[J].江苏农业学报. 2007, 23:213-217.
    [85] KATO Y. Cloning and DNA sequence analysis of the cDNA for the precursor of porcine follicle stimulating hormone (FSH) beta subunit [J]. Mol Cell Endocrinol. 1988, 55:107-112.
    [86]靳双星,张桂枝,李跃民.不同浓度的FSH对猪腔前卵泡体外培养的影响[J].西北农业学报. 2007, 16:226-228.
    [87] ORISAKA M, ORISAKA S, JIANG J Y, et al. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage [J]. Mol Endocrinol. 2006, 20:2456-2468.
    [88] YANG P, ROY S K. A novel mechanism of FSH regulation of DNA synthesis in the granulosa cells of hamster preantral follicles: involvement of a protein kinase C-mediated MAP kinase 3/1 self-activation loop [J]. Biol Reprod. 2006, 75:149-157.
    [89] SU Y Q, XIA G L, BYSKOV A G, et al. Protein kinase C and intracellular calcium areinvolved in follicle-stimulating hormone-mediated meiotic resumption of cumulus cell-enclosed porcine oocytes in hypoxanthine-supplemented medium [J]. Mol Reprod Dev. 1999, 53:51-58.
    [90] DENG M Q, HUANG X Y, TANG T S, et al. Spontaneous and fertilization-induced Ca2+ oscillations in mouse immature germinal vesicle-stage oocytes [J]. Biol Reprod. 1998, 58:807-813.
    [91] DOWNS S M, HUNZICKER-DUNN M. Differential regulation of oocyte maturation and cumulus expansion in the mouse oocyte-cumulus cell complex by site-selective analogs of cyclic adenosine monophosphate [J]. Dev Biol. 1995, 172:72-85.
    [92] O'SHAUGHNESSY P J, MCLELLAND D, MCBRIDE M W. Regulation of luteinizing hormone-receptor and follicle-stimulating hormone-receptor messenger ribonucleic acid levels during development in the neonatal mouse ovary [J]. Biol Reprod. 1997, 57:602-608.
    [93] GINTHER O J, WILTBANK M C, FRICKE P M, et al. Selection of the dominant follicle in cattle [J]. Biol Reprod. 1996, 55:1187-1194.
    [94] CAMPBELL B K, DOBSON H, BAIRD D T, et al. Examination of the relative role of FSH and LH in the mechanism of ovulatory follicle selection in sheep [J]. J Reprod Fertil. 1999, 117:355-367.
    [95] JOHNSON A L, BRIDGHAM J T, WAGNER B. Characterization of a chicken luteinizing hormone receptor (cLH-R) complementary deoxyribonucleic acid, and expression of cLH-R messenger ribonucleic acid in the ovary [J]. Biol Reprod. 1996, 55:304-309.
    [96] SANCHEZ-BRINGAS G, SALAZAR O, PEDERNERA E, et al. Follicle-stimulating hormone treatment reverses the effect of hypophysectomy on cell proliferation in the chicken embryo ovary [J]. Gen Comp Endocrinol. 2006, 149:134-140.
    [97] AKAZOME Y, ABE T, MORI T. Differentiation of chicken gonad as an endocrine organ: expression of LH receptor, FSH receptor, cytochrome P450c17 and aromatase genes [J]. Reproduction. 2002, 123:721-728.
    [98] ZHANG C, SHIMADA K, SAITO N, et al. Expression of messenger ribonucleic acids of luteinizing hormone and follicle-stimulating hormone receptors in granulosa and theca layers of chicken preovulatory follicles [J]. Gen Comp Endocrinol. 1997, 105:402-409.
    [99] CHUN S Y, EISENHAUER K M, MINAMI S, et al. Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor [J].Endocrinology. 1996, 137:1447-1456.
    [100]倪迎冬,赵茹茜,王亚菊,等.出雏至性成熟绍鸭卵巢FSH-R与LH-R mRNA表达的变化[J].南京农业大学学报. 2004, 27:64-67.
    [101]王慧,张沅,孙东晓,等.蛋鸡与肉鸡卵巢组织基因差异表达与产蛋数杂种优势的相关性研究[J].畜牧兽医学报. 2005, 36:111-115.
    [102] DIATCHENKO L, LAU Y F, CAMPBELL A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proc Natl Acad Sci U S A. 1996, 93:6025-6030.
    [103] STOUT T, MCFARLAND T, APPUKUTTAN B. Suppression subtractive hybridization identifies novel transcripts in regenerating Hydra littoralis [J]. J Biochem Mol Biol. 2007, 40:286-289.
    [104] QIU J, NI Y H, GONG H X, et al. Identification of differentially expressed genes in omental adipose tissues of obese patients by suppression subtractive hybridization [J]. Biochem Biophys Res Commun. 2007, 352:469-478.
    [105] WANG Y, CHEN W, LI X. [Screening of differentially expressed genes in human renal cell carcinoma using suppression subtractive hybridization] [J]. Nan Fang Yi Ke Da Xue Xue Bao. 2008, 28:89-93.
    [106] SOUSA J F, ESPREAFICO E M. Suppression subtractive hybridization profiles of radial growth phase and metastatic melanoma cell lines reveal novel potential targets [J]. BMC Cancer. 2008, 8:19.
    [107] QI M, NELSON K E, DAUGHERTY S C, et al. Genomic differences between Fibrobacter succinogenes S85 and Fibrobacter intestinalis DR7, identified by suppression subtractive hybridization [J]. Appl Environ Microbiol. 2008, 74:987-993.
    [108] FRIESEN J, FLEIGE T, GROSS U, et al. Identification of novel bradyzoite-specific Toxoplasma gondii genes with domains for protein-protein interactions by suppression subtractive hybridization [J]. Mol Biochem Parasitol. 2008, 157:228-232.
    [109] VON STEIN O D, THIES W G, HOFMANN M. A high throughput screening for rarely transcribed differentially expressed genes [J]. Nucleic Acids Res. 1997, 25:2598-2602.
    [110] CHEN L R, CHAO C H, CHEN C F, et al. Expression of 25 high egg production related transcripts that identified from hypothalamus and pituitary gland in red-feather Taiwan country chickens [J]. Anim Reprod Sci. 2007, 100:172-185.
    [111] YEN C F, LIN H W, HSU J C, et al. The expression of pituitary gland genes in laying geese [J]. Poult Sci. 2006, 85:2265-2269.
    [112] DING S T, YEN C F, WANG P H, et al. The differential expression of hepatic genes between prelaying and laying geese [J]. Poult Sci. 2007, 86:1206-1212.
    [113]朱基美,卢光喜,钟家齐.控制短光照时数改变广东种鹅繁殖季节性的研究[J].广东农业科学. 1989, 3:39-42.
    [114]黄运茂,施振旦,李孝伟.光周期对马岗鹅产蛋、PRL和LH分泌季节性变化的影响[J].华南农业大学学报. 2007, 28:94-96.
    [115]于建玲,黄群山.鹅的繁殖特点和提高鹅产蛋率的方法[J].畜禽业. 2002, 10:10-11.
    [116] WANG C M, KAO J Y, LEE S R, et al. Effects of artificial supplemental light on the reproductive season of geese kept in open houses [J]. Br Poult Sci. 2005, 46:728-732.
    [117] LEWIS P D, GOUS R M. Constant and changing photoperiods in the laying period for broiler breeders allowed [corrected] normal or accelerated growth during the rearing period [J]. Poult Sci. 2006, 85:321-325.
    [118] LEWIS P D, CASTON L, LEESON S. Green light during rearing does not significantly affect the performance of egg-type pullets in the laying phase [J]. Poult Sci. 2007, 86:739-743.
    [119]施振旦.鹅季节性繁殖调控技术的研究开发和展望[J].养禽与禽病防治. 2005, 11: 14-16.
    [120] SHARP P J. Photoperiodic control of reproduction in the domestic hen [J]. Poult Sci. 1993, 72:897-905.
    [121]施振旦,黄运茂,孙爱东,等.光照对广东灰鹅繁殖季节性的影响研究[J].广东农业科学. 2005, 3:72-75.
    [122]苏伟岳,杨承忠,唐受辛.光照对马岗鹅繁殖特性的调控作用[J].中国畜牧杂志. 2006, 42:24-25.
    [123]蔡来长,陈志华,陈晓生.日粮蛋白质水平对种鹅产蛋效果的影响[J].粮食与饲料工业. 2002, 2:36-37.
    [124]刘香萍,李国良,崔国文.籽粒苋的青贮效果及对产蛋鹅生产性能的影响[J].中国草食动物. 2003, 23:24-25.
    [125]张守全,陈文忠,陈文广. LHRH-A3对粤黄麻种鸡产蛋率的影响[J].中国家禽. 1994, 4:39.
    [126]方弟安,耿照玉,陶勇,等.外源性激素LHRH-A_3对皖西白鹅繁殖性能和生殖激素变化的影响[J].安徽农业科学. 2005, 33:92-93.
    [127]和希顺,李翔,高敏,等. LHRH-A3对溆浦鹅种鹅产蛋性能和生殖内分泌的影响[J].华中农业大学学报. 2007, 26:813-816.
    [128]高敏,和希顺,李翔,等.注射不同剂量促排3号对淑浦鹅种鹅产蛋性能的影响[J].中国畜牧杂志. 2008, 44:16-19.
    [129] BOLL W, FUJISAWA J, NIEMI J, et al. A new approach to high sensitivity differential hybridization [J]. Gene. 1986, 50:41-53.
    [130] LAMAR E E, PALMER E. Y-encoded, species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains [J]. Cell. 1984, 37:171-177.
    [131] KUNKEL L M, LALANDE M, MONACO A P, et al. Construction of a human X-chromosome-enriched phage library which facilitates analysis of specific loci [J]. Gene. 1985, 33:251-258.
    [132] LIANG P, PARDEE A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [J]. Science. 1992, 257:967-971.
    [133] BAUER D, MULLER H, REICH J, et al. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR) [J]. Nucleic Acids Res. 1993, 21:4272-4280.
    [134] RENNER C, TRUMPER L, PFITZENMEIER J P, et al. Differential mRNA display at the single-cell level [J]. Biotechniques. 1998, 24:720-722, 724.
    [135] WEAVER K R, CAETANO-ANOLLES G, GRESSHOFF P M, et al. Isolation and cloning of DNA amplification products from silver-stained polyacrylamide gels [J]. Biotechniques. 1994, 16:226-227.
    [136] LIANG P, ZHU W, ZHANG X, et al. Differential display using one-base anchored oligo-dT primers [J]. Nucleic Acids Res. 1994, 22:5763-5764.
    [137] AVERBOUKH L, DOUGLAS S A, ZHAO S, et al. Better gel resolution and longer cDNAs increase the precision of differential display [J]. Biotechniques. 1996, 20:918-921.
    [138]李文雍,陈清轩. mRNA差异显示技术研究进展[J].农业生物技术学报. 2004, 12:597-601.
    [139] LISITSYN N, WIGLER M. Cloning the differences between two complex genomes [J]. Science. 1993, 259:946-951.
    [140] HUBANK M, SCHATZ D G. Identifying differences in mRNA expression by representational difference analysis of cDNA [J]. Nucleic Acids Res. 1994, 22:5640-5648.
    [141] HUBANK M, SCHATZ D G. cDNA representational difference analysis: a sensitive and flexible method for identification of differentially expressed genes [J]. Methods Enzymol. 1999, 303:325-349.
    [142] BOWLER L D. Representational difference analysis of cDNA [J]. Methods Mol Med. 2004, 94:49-66.
    [143] VELCULESCU V E, ZHANG L, VOGELSTEIN B, et al. Serial analysis of gene expression [J]. Science. 1995, 270:484-487.
    [144] JI W, WRIGHT M B, CAI L, et al. Efficacy of SSH PCR in isolating differentially expressed genes [J]. BMC Genomics. 2002, 3:12.
    [145] POWELL J. Enhanced concatemer cloning-a modification to the SAGE (Serial Analysis of Gene Expression) technique [J]. Nucleic Acids Res. 1998, 26:3445-3446.
    [146] POWELL J. SAGE. The serial analysis of gene expression [J]. Methods Mol Biol. 2000, 99:297-319.
    [147] QIN L, RUEDA L, ALI A, et al. Spot detection and image segmentation in DNA microarray data [J]. Appl Bioinformatics. 2005, 4:1-11.
    [148] MAURER M, MOLIDOR R, STURN A, et al. MARS: microarray analysis, retrieval, and storage system [J]. BMC Bioinformatics. 2005, 6:101.
    [149] KURIAN K M, WATSON C J, WYLLIE A H. DNA chip technology [J]. J Pathol. 1999, 187:267-271.
    [150] SEKI M, NARUSAKA M, ABE H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray [J]. Plant Cell. 2001, 13:61-72.
    [151] FUJINO M, KITAZAWA Y, KAWASAKI M, et al. Differences in lymphocyte gene expression between tolerant and syngeneic liver grafted rats [J]. Liver Transpl. 2004, 10:379-391.
    [152] TAGHON T, THYS K, DE SMEDT M, et al. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development [J]. Leukemia. 2003, 17:1157-1163.
    [153] PEETERS J K, VAN DER SPEK P J. Growing applications and advancements inmicroarray technology and analysis tools [J]. Cell Biochem Biophys. 2005, 43:149-166.
    [154] KANG D C, LAFRANCE R, SU Z Z, et al. Reciprocal subtraction differential RNA display: an efficient and rapid procedure for isolating differentially expressed gene sequences [J]. Proc Natl Acad Sci U S A. 1998, 95:13788-13793.
    [155] PARDINAS J R, COMBATES N J, PROUTY S M, et al. Differential subtraction display: a unified approach for isolation of cDNAs from differentially expressed genes [J]. Anal Biochem. 1998, 257:161-168.
    [156] SPINELLA D G, BERNARDINO A K, REDDING A C, et al. Tandem arrayed ligation of expressed sequence tags (TALEST): a new method for generating global gene expression profiles [J]. Nucleic Acids Res. 1999, 27:e22.
    [157] SHIMKETS R A, LOWE D G, TAI J T, et al. Gene expression analysis by transcript profiling coupled to a gene database query [J]. Nat Biotechnol. 1999, 17:798-803.
    [158] SHIMKETS R A. GeneCalling: transcript profiling coupled to a gene database query [J]. Methods Mol Biol. 2006, 317:75-83.
    [159] SHIMKETS R A. GeneCalling: transcript profiling coupled to a gene database query [J]. Methods Mol Biol. 2004, 258:43-51.
    [160] GARDNER H, STREHLOW D, BRADLEY L, et al. Global expression analysis of the fibroblast transcriptional response to TGFbeta [J]. Clin Exp Rheumatol. 2004, 22:S47-57.
    [161] WANG S M, ROWLEY J D. A strategy for genome-wide gene analysis: integrated procedure for gene identification [J]. Proc Natl Acad Sci U S A. 1998, 95:11909-11914.
    [162] BRENNER S, WILLIAMS S R, VERMAAS E H, et al. In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs [J]. Proc Natl Acad Sci U S A. 2000, 97:1665-1670.
    [163] BRENNER S, JOHNSON M, BRIDGHAM J, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays [J]. Nat Biotechnol. 2000, 18:630-634.
    [164] HOTH S, IKEDA Y, MORGANTE M, et al. Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana [J]. FEBS Lett. 2003, 554:373-380.
    [165] LIANG P, AVERBOUKH L, KEYOMARSI K, et al. Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells [J]. Cancer Res.1992, 52:6966-6968.
    [166] LISITSYN N A. Representational difference analysis: finding the differences between genomes [J]. Trends Genet. 1995, 11:303-307.
    [167] DIATCHENKO L, LUKYANOV S, LAU Y F, et al. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes [J]. Methods Enzymol. 1999, 303:349-380.
    [168] WENTZENSEN N, WILZ B, FINDEISEN P, et al. Identification of differentially expressed genes in colorectal adenoma compared to normal tissue by suppression subtractive hybridization [J]. Int J Oncol. 2004, 24:987-994.
    [169] REBRIKOV D V, BRITANOVA O V, GURSKAYA N G, et al. Mirror orientation selection (MOS): a method for eliminating false positive clones from libraries generated by suppression subtractive hybridization [J]. Nucleic Acids Res. 2000, 28:E90.
    [170] YANG G P, ROSS D T, KUANG W W, et al. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes [J]. Nucleic Acids Res. 1999, 27:1517-1523.
    [171] RHO J, ALTMANN C R, SOCCI N D, et al. Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis [J]. DNA Cell Biol. 2002, 21:541-549.
    [172] MUNIR S, SINGH S, KAUR K, et al. Suppression subtractive hybridization coupled with microarray analysis to examine differential expression of genes in virus infected cells [J]. Biol Proced Online. 2004, 6:94-104.
    [173] OUYANG B, YANG T, LI H, et al. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis [J]. J Exp Bot. 2007, 58:507-520.
    [174] LEVESQUE V, FAYAD T, NDIAYE K, et al. Size-selection of cDNA libraries for the cloning of cDNAs after suppression subtractive hybridization [J]. Biotechniques. 2003, 35:72-78.
    [175] SIEBERT P D, CHENCHIK A, KELLOGG D E, et al. An improved PCR method for walking in uncloned genomic DNA [J]. Nucleic Acids Res. 1995, 23:1087-1088.
    [176] MATZ M, SHAGIN D, BOGDANOVA E, et al. Amplification of cDNA ends based on template-switching effect and step-out PCR [J]. Nucleic Acids Res. 1999, 27:1558-1560.
    [177] JIN H, CHENG X, DIATCHENKO L, et al. Differential screening of a subtracted cDNA library: a method to search for genes preferentially expressed in multiple tissues [J]. Biotechniques. 1997, 23:1084-1086.
    [178]李学礼,吕立夏,杨翠香,等.新生大鼠小脑内发育相关基因的筛选[J].中国神经科学杂志. 2002, 18:507-510.
    [179] HENNEBOLD J D, TANAKA M, SAITO J, et al. Ovary-selective genes I: the generation and characterization of an ovary-selective complementary deoxyribonucleic acid library [J]. Endocrinology. 2000, 141:2725-2734.
    [180] YAO Y Q, XU J S, LEE W M, et al. Identification of mRNAs that are up-regulated after fertilization in the murine zygote by suppression subtractive hybridization [J]. Biochem Biophys Res Commun. 2003, 304:60-66.
    [181] FAYAD T, LEVESQUE V, SIROIS J, et al. Gene expression profiling of differentially expressed genes in granulosa cells of bovine dominant follicles using suppression subtractive hybridization [J]. Biol Reprod. 2004, 70:523-533.
    [182] EL-HALAWANY N, PONSUKSILI S, WIMMERS K, et al. Quantitative expression analysis of blastocyst-derived gene transcripts in preimplantation developmental stages of in vitro-produced bovine embryos using real-time polymerase chain reaction technology [J]. Reprod Fertil Dev. 2004, 16:753-762.
    [183]郁卫东,梁蓉,杨丽君, et al. SSH法分离早期发育相关基因片段[J].中国生物工程杂志. 2005, 25:35-39.
    [184]梁刚.应用激光捕获显微切割技术进行人和大鼠不同阶段生精细胞差异表达基因的研究[D].北京:中国协和医科大学, 2003.
    [185]曹随忠,李宏滨,王爱华,等.抑制性消减杂交构建乳房炎奶牛外周血白细胞差异表达cDNA文库[J].畜牧兽医学报. 2005, 36:526-530.
    [186]陈忠斌,杨静,王华,等.应用抑制消减杂交和cDNA芯片技术筛选流行性感冒病毒感染相关基因[J].病毒学报. 2003, 19:21-26.
    [187]贝祝春,王京燕.伯氏疟原虫青蒿素抗性相关的消减cDNA文库构建[J].中国寄生虫学与寄生虫病杂志. 2004, 22:139-143.
    [188] ZHANG J, UNDERWOOD L E. Molecular cloning and characterization of a new fasting-inducible short-chain dehydrogenase/reductase from rat liver(1) [J]. Biochim Biophys Acta. 1999, 1435:184-190.
    [189] CHRISTENSEN M J, OLSEN C A, HANSEN D V, et al. Selenium regulates expression in rat liver of genes for proteins involved in iron metabolism [J]. Biol Trace Elem Res. 2000, 74:55-70.
    [190] KAST H R, NGUYEN C M, SINAL C J, et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids [J]. Mol Endocrinol. 2001, 15:1720-1728.
    [191] TARTARE-DECKERT S, CHAVEY C, MONTHOUEL M N, et al. The matricellular protein SPARC/osteonectin as a newly identified factor up-regulated in obesity [J]. J Biol Chem. 2001, 276:22231-22237.
    [192] CHEN J, MALTBY K M, MIANO J M. A novel retinoid-response gene set in vascular smooth muscle cells [J]. Biochem Biophys Res Commun. 2001, 281:475-482.
    [193] TANG S J, SUN K H, SUN G H, et al. Cold-induced ependymin expression in zebrafish and carp brain: implications for cold acclimation [J]. FEBS Lett. 1999, 459:95-99.
    [194]铁轶,罗瑛,隋建丽,等.运用抑制消减杂交构建辐射诱导EST库[J].中华放射医学与防护杂志. 2001, 21:9-11.
    [195] SANGRADOR-VEGAS A, LENNINGTON J B, SMITH T J. Molecular cloning of an IL-8-like CXC chemokine and tissue factor in rainbow trout (Oncorhynchus mykiss) by use of suppression subtractive hybridization [J]. Cytokine. 2002, 17:66-70.
    [196] WANG J H, SHAN Y J, CONG Y W, et al. [Identification of differentially expressed genes of acute hypoxia-treated HepG2 cells and hypoxia-acclimatized HepG2 cells] [J]. Sheng Li Xue Bao. 2003, 55:324-330.
    [197]周利梅,郭俊生,李敏.抑制消减杂交技术克隆晕船易感大鼠脑干差异表达基因[J].中国职业医学. 2005, 32:25-28.
    [198]徐德全,张义兵,熊远著,等.梅山猪与长白猪肌肉组织间正反向消减cDNA文库的构建[J].遗传学报. 2003, 30:668-672.
    [199]黄涛,熊远著,徐德全,等.大梅与梅山猪背最长肌正反消减文库的构建及序列分析[J].农业生物技术学报. 2006, 14:456-461.
    [200]李文海,邓学梅,李宁,等. SSH法结合定量PCR技术研究双肌臀猪肌肉组织的差异表达基因[J].生物化学与生物物理进展. 2005, 32:353-358.
    [201]毕延震,熊远著,徐德全,等.猪杂种一代与亲本肌肉组织间正反向消减cDNA文库的构建[J].畜牧兽医学报. 2005, 36:417-421.
    [202] MULLIS K B. Target amplification for DNA analysis by the polymerase chain reaction [J]. Ann Biol Clin (Paris). 1990, 48:579-582.
    [203] KUBISTA M, ANDRADE J M, BENGTSSON M, et al. The real-time polymerase chain reaction [J]. Mol Aspects Med. 2006, 27:95-125.
    [204] YOON S Y, CHUNG G T, KANG D H, et al. Application of real-time PCR for quantitative detection of Clostridium botulinum type A toxin gene in food [J]. Microbiol Immunol. 2005, 49:505-511.
    [205] HOLLAND P M, ABRAMSON R D, WATSON R, et al. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase [J]. Proc Natl Acad Sci U S A. 1991, 88:7276-7280.
    [206] HIGUCHI R, DOLLINGER G, WALSH P S, et al. Simultaneous amplification and detection of specific DNA sequences [J]. Biotechnology (N Y). 1992, 10:413-417.
    [207] HIGUCHI R, FOCKLER C, DOLLINGER G, et al. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions [J]. Biotechnology (N Y). 1993, 11:1026-1030.
    [208] LEE L G, CONNELL C R, BLOCH W. Allelic discrimination by nick-translation PCR with fluorogenic probes [J]. Nucleic Acids Res. 1993, 21:3761-3766.
    [209] LIVAK K J, FLOOD S J, MARMARO J, et al. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization [J]. PCR Methods Appl. 1995, 4:357-362.
    [210] GIBSON U E, HEID C A, WILLIAMS P M. A novel method for real time quantitative RT-PCR [J]. Genome Res. 1996, 6:995-1001.
    [211] HEID C A, STEVENS J, LIVAK K J, et al. Real time quantitative PCR [J]. Genome Res. 1996, 6:986-994.
    [212] TYAGI S, KRAMER F R. Molecular beacons: probes that fluoresce upon hybridization [J]. Nat Biotechnol. 1996, 14:303-308.
    [213] WITTWER C T, HERRMANN M G, MOSS A A, et al. Continuous fluorescence monitoring of rapid cycle DNA amplification [J]. Biotechniques. 1997, 22:130-131, 134-138.
    [214] WITTWER C T, RIRIE K M, ANDREW R V, et al. The LightCycler: a microvolume multisample fluorimeter with rapid temperature control [J]. Biotechniques. 1997, 22:176-181.
    [215] KUTYAVIN I V, AFONINA I A, MILLS A, et al. 3'-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures [J]. Nucleic Acids Res. 2000,28:655-661.
    [216] WALBURGER D K, AFONINA I A, WYDRO R. An improved real time PCR method for simultaneous detection of C282Y and H63D mutations in the HFE gene associated with hereditary hemochromatosis [J]. Mutat Res. 2001, 432:69-78.
    [217] TYAGI S, BRATU D P, KRAMER F R. Multicolor molecular beacons for allele discrimination [J]. Nat Biotechnol. 1998, 16:49-53.
    [218] SCHWEITZER B, KINGSMORE S. Combining nucleic acid amplification and detection [J]. Curr Opin Biotechnol. 2001, 12:21-27.
    [219] BROUDE N E. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology [J]. Trends Biotechnol. 2002, 20:249-256.
    [220] SAHA B K, TIAN B, BUCY R P. Quantitation of HIV-1 by real-time PCR with a unique fluorogenic probe [J]. J Virol Methods. 2001, 93:33-42.
    [221] WALL S J, EDWARDS D R. Quantitative reverse transcription-polymerase chain reaction (RT-PCR): a comparison of primer-dropping, competitive, and real-time RT-PCRs [J]. Anal Biochem. 2002, 300:269-273.
    [222] STEFFENSEN R, HOFFMANN K, VARMING K. Rapid genotyping of MBL2 gene mutations using real-time PCR with fluorescent hybridisation probes [J]. J Immunol Methods. 2003, 278:191-199.
    [223] LI Q, LUAN G, GUO Q, et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization [J]. Nucleic Acids Res. 2002, 30:E5.
    [224]陈苏红,王小红,张敏丽,等.复合探针荧光定量PCR方法的建立[J].生物技术通讯. 2003, 14:127-130.
    [225] HEIN I, LEHNER A, RIECK P,等. Comparison of different approaches to quantify Staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese [J]. Appl Environ Microbiol. 2001, 67:3122-3126.
    [226]陈苏红,张敏丽,牟航,等.荧光定量PCR法检测炭疽杆菌[J].解放军医学杂志. 2003, 28:268-270.
    [227]李光伟,邱杨,肖性龙,等.沙门氏菌荧光实时定量PCR检测试剂的研制及应用[J].微生物学通报. 2007, 34:496-499.
    [228]蒋鲁岩,蔡谭溪,陈国强.猪链球菌2型的Real-time PCR定量检测[J].中国人兽共患病学报. 2006, 22:843-846.
    [229]拜廷阳,杨增岐,吴志明,等.猪链球菌9型荧光定量PCR检测方法的建立及应用[J].西北农林科技大学学报(自然科学版). 2008, 36:7-12.
    [230]闫若潜,赵明军,张志凌,等.猪附红细胞体荧光定量PCR检测方法的建立及应用[J].农业生物技术学报. 2008, 16:55-60.
    [231]陈玉栋,张楚瑜,邹俊煊,等.建立快速定量检测猪瘟兔化弱毒苗的荧光定量PCR技术[J].中国病毒学. 2003, 18:124-128.
    [232]陈压西,黄爱龙,齐珍元,等.鸭乙型肝炎病毒核酸荧光定量PCR方法的建立及应用[J].重庆医科大学学报. 2003, 28:36-38.
    [233] RASMUSSEN T B, UTTENTHAL A, DE STRICKER K, et al. Development of a novel quantitative real-time RT-PCR assay for the simultaneous detection of all serotypes of foot-and-mouth disease virus [J]. Arch Virol. 2003, 148:2005-2021.
    [234]张春明,乔传玲,陈艳,等.猪流感病毒M基因实时荧光定量PCR诊断方法的建立[J].中国预防兽医学报. 2008, 30:805-810.
    [235]陈琼,邵四海,孔繁德,等.荧光定量RT-PCR检测犬瘟热方法的建立和应用[J].经济动物学报. 2008, 12:24-29.
    [236]毕建敏,田夫林,李延鹏,等.荧光定量PCR检测雏鹅人工感染鹅细小病毒后病毒在体内分布规律[J].中国预防兽医学报. 2008, 30:65-67.
    [237]王永强,祁小乐,高宏雷,等.鸡传染性法氏囊病病毒实时荧光定量RT-P CR检测方法的建立[J].中国预防兽医学报. 2009, 31:65-68.
    [238] TAJIMA K, AMINOV R I, NAGAMINE T, et al. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR [J]. Appl Environ Microbiol. 2001, 67:2766-2774.
    [239] EINSPANIER R, LUTZ B, RIEF S, et al. Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize [J]. European Food Research and Technology. 2004, 218:269-273.
    [240] SKILLMAN L C, TOOVEY A F, WILLIAMS A J, et al. Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between entodinium populations in sheep offered a hay-based diet [J]. Appl Environ Microbiol. 2006, 72:200-206.
    [241]呼和,嘎尔迪,贾仙宝,等.用实时荧光定量PCR技术检测奶牛瘤胃纤维降解菌相对定量方法的研究[J].中国奶牛. 2008, 2:10-14.
    [242]苏胜彦,李齐发,刘振山,等.朗德鹅肝脏和脂肪组织LXRα基因表达水平的比较[J].农业生物技术学报. 2008, 16:421-425.
    [243]李慧锋.鸡脂肪代谢相关基因的表达与网络分析[D].北京:中国农业大学, 2005.
    [244]朱燕,罗欣,徐幸莲,等.中国黄牛背最长肌中capnl mRNA表达与嫩度的关系[J].南京农业大学学报. 2006, 29:89-93.
    [245]张才牛,淑玲,夏成乳,等.牛瘦蛋白基因荧光定量RT-PCR检测方法的建立[J].中国兽医科学. 2006, 36:393-395.
    [246]唐中林,邓宏,李勇,等.应用荧光定量PCR方法研究RPL29基因在通城猪和长白猪不同时期胚胎骨骼肌中的表达[J].畜牧兽医学报. 2008, 39:1007-1012.
    [247]唐中林,李勇,邓宏,等. IGF2荧光定量PCR方法建立及其在中外猪胚胎骨骼肌中的表达[J].农业生物技术学报. 2008, 16:202-207.
    [248]褚晓红,胡锦平,卢立志,等.浙东白鹅催乳素受体基因的克隆及其表达特点的研究[J].畜牧兽医学报. 2008, 39:823-826.
    [249] WILFINGER W W, MACKEY K, CHOMCZYNSKI P. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity [J]. Biotechniques. 1997, 22:474-476, 478-481.
    [250]黑龙江省家畜家禽品种志编委会.黑龙江省家畜家禽品种志[M].哈尔滨:黑龙江人民出版社, 1985.
    [251] FIELDS C. Analysis of gene expression by tissue and developmental stage [J]. Curr Opin Biotechnol. 1994, 5:595-598.
    [252] LEWIN B. Chromatin and gene expression: constant questions, but changing answers [J]. Cell. 1994, 79:397-406.
    [253]冯晨,付伟,赵咏梅. PKC-a和PKC-6在不同发育阶段小鼠皋丸中的差异性表达[J].中国生物化学与分子生物学报. 2002, 18:780-782.
    [254]陈忠斌,杨静,王华.应用抑制性消减杂交技术筛选流感病毒感染宿主应答基因[J].中国生物化学与分子生物学报. 2003, 19:156-161.
    [255] LI L, TECHEL D, GRETZ N, et al. A novel transcriptome subtraction method for the detection of differentially expressed genes in highly complex eukaryotes [J]. Nucleic Acids Res. 2005, 33:e136.
    [256] BENSON D A, KARSCH-MIZRACHI I, LIPMAN D J, et al. GenBank [J]. Nucleic Acids Res. 2000, 28:15-18.
    [257] MAKABE K W, KAWASHIMA T, KAWASHIMA S, et al. Large-scale cDNA analysis of the maternal genetic information in the egg of Halocynthia roretzi for a gene expression catalog of ascidian development [J]. Development. 2001, 128:2555-2567.
    [258] CIMERMAN A, ARNAUD G, FOISSAC X. Stolbur phytoplasma genome survey achieved using a suppression subtractive hybridization approach with high specificity [J]. Appl Environ Microbiol. 2006, 72:3274-3283.
    [259] XING X, DENG Z, YANG F, et al. Determination of genes involved in the early process of molar root development initiation in rat by modified subtractive hybridization [J]. Biochem Biophys Res Commun. 2007, 363:994-1000.
    [260] SUN X Y, LI F X, LI J, et al. Determination of genes involved in the early process of embryonic implantation in rhesus monkey (Macaca mulatta) by suppression subtractive hybridization [J]. Biol Reprod. 2004, 70:1365-1373.
    [261] TOUTENHOOFD S L, FOLETTI D, WICKI R, et al. Characterization of the human CALM2 calmodulin gene and comparison of the transcriptional activity of CALM1, CALM2 and CALM3 [J]. Cell Calcium. 1998, 23:323-338.
    [262] LEVORSE J M, TILLY J L, JOHNSON A L. Role of calcium in the regulation of theca cell androstenedione production in the domestic hen [J]. J Reprod Fertil. 1991, 92:159-167.
    [263] MILLER W L. Minireview: regulation of steroidogenesis by electron transfer [J]. Endocrinology. 2005, 146:2544-2550.
    [264] TSAI-TURTON M, LUDERER U. Opposing effects of glutathione depletion and follicle-stimulating hormone on reactive oxygen species and apoptosis in cultured preovulatory rat follicles [J]. Endocrinology. 2006, 147:1224-1236.
    [265] JENKINS Y, MARKOVTSOV V, LANG W, et al. Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth [J]. Mol Biol Cell. 2005, 16:5621-5629.
    [266] WANG Y, LI J, YING WANG C, et al. Epidermal growth factor (EGF) receptor ligands in the chicken ovary: I. Evidence for heparin-binding EGF-like growth factor (HB-EGF) as a potential oocyte-derived signal to control granulosa cell proliferation and HB-EGF and kit ligand expression [J]. Endocrinology. 2007, 148:3426-3440.
    [267] HIRVONEN-SANTTI S J, SRIRAMAN V, ANTTONEN M, et al. Small nuclear RING finger protein expression during gonad development: regulation by gonadotropins andestrogen in the postnatal ovary [J]. Endocrinology. 2004, 145:2433-2444.
    [268] BAYIR H, FADEEL B, PALLADINO M J, et al. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria [J]. Biochim Biophys Acta. 2006, 1757:648-659.
    [269] LIU Z, LIN H, YE S, et al. Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis [J]. Proc Natl Acad Sci U S A. 2006, 103:8965-8970.
    [270] LIAO M, BOLDBAATAR D, GONG H, et al. Functional analysis of protein disulfide isomerases in blood feeding, viability and oocyte development in Haemaphysalis longicornis ticks [J]. Insect Biochem Mol Biol. 2008, 38:285-295.
    [271] SCHNAUFER A, CLARK-WALKER G D, STEINBERG A G, et al. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function [J]. EMBO J. 2005, 24:4029-4040.
    [272] BARAN A A, SILVERMAN K A, ZESKAND J, et al. The modifier of Min 2 (Mom2) locus: embryonic lethality of a mutation in the Atp5a1 gene suggests a novel mechanism of polyp suppression [J]. Genome Res. 2007, 17:566-576.
    [273] ADAMS D S, ROBINSON K R, FUKUMOTO T, et al. Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates [J]. Development. 2006, 133:1657-1671.
    [274] BUSTIN S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems [J]. J Mol Endocrinol. 2002, 29:23-39.
    [275] WATZINGER F, EBNER K, LION T. Detection and monitoring of virus infections by real-time PCR [J]. Mol Aspects Med. 2006, 27:254-298.
    [276] JANOVICK-GURETZKY N A, DANN H M, CARLSON D B, et al. Housekeeping gene expression in bovine liver is affected by physiological state, feed intake, and dietary treatment [J]. J Dairy Sci. 2007, 90:2246-2252.
    [277] WANG D, KIM B Y, LEE K S, et al. Molecular characterization of iron binding proteins, transferrin and ferritin heavy chain subunit, from the bumblebee Bombus ignitus [J]. Comp Biochem Physiol B Biochem Mol Biol. 2009, 152:20-27.
    [278] HARRISON P M, AROSIO P. The ferritins: molecular properties, iron storage function and cellular regulation [J]. Biochim Biophys Acta. 1996, 1275:161-203.
    [279] ORINO K, LEHMAN L, TSUJI Y, et al. Ferritin and the response to oxidative stress [J]. Biochem J. 2001, 357:241-247.
    [280] ORINO K, WATANABE K. Molecular, physiological and clinical aspects of the iron storage protein ferritin [J]. Vet J. 2008, 178:191-201.
    [281] FORD G C, HARRISON P M, RICE D W, et al. Ferritin: design and formation of an iron-storage molecule [J]. Philos Trans R Soc Lond B Biol Sci. 1984, 304:551-565.
    [282] DRYSDALE J, AROSIO P, INVERNIZZI R, et al. Mitochondrial ferritin: a new player in iron metabolism [J]. Blood Cells Mol Dis. 2002, 29:376-383.
    [283] TAKAESU A, WATANABE K, TAKAI S, et al. Sequence analysis of dolphin ferritin H and L subunits and possible iron-dependent translational control of dolphin ferritin gene [J]. Acta Vet Scand. 2008, 50:42.
    [284] ORINO K, HARADA S, NATSUHORI M, et al. Kinetic analysis of bovine spleen apoferritin and recombinant H and L chain homopolymers: iron uptake suggests early stage H chain ferroxidase activity and second stage L chain cooperation [J]. Biometals. 2004, 17:129-134.
    [285] LEVI S, SALFELD J, FRANCESCHINELLI F, et al. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli [J]. Biochemistry (Mosc). 1989, 28:5179-5184.
    [286] LEVI Y, MARAN R. [Should we use steroids in the treatment of chronic obstructive pulmonary diseases?] [J]. Harefuah. 1992, 123:487-489.
    [287] HENTZE M W, CAUGHMAN S W, ROUAULT T A, et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA [J]. Science. 1987, 238:1570-1573.
    [288] WASSERMAN W W, FAHL W E. Functional antioxidant responsive elements [J]. Proc Natl Acad Sci U S A. 1997, 94:5361-5366.
    [289] TSUJI Y, AYAKI H, WHITMAN S P, et al. Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress [J]. Mol Cell Biol. 2000, 20:5818-5827.
    [290] OMIYA S, HIKOSO S, IMANISHI Y, et al. Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes [J]. J Mol Cell Cardiol. 2009, 46:59-66.
    [291] GIORDANO F J. Oxygen, oxidative stress, hypoxia, and heart failure [J]. J Clin Invest.2005, 115:500-508.
    [292] YANG K T, LIN C Y, HUANG H L, et al. Expressed transcripts associated with high rates of egg production in chicken ovarian follicles [J]. Mol Cell Probes. 2008, 22:47-54.
    [293] CAMP T A, RAHAL J O, MAYO K E. Cellular localization and hormonal regulation of follicle-stimulating hormone and luteinizing hormone receptor messenger RNAs in the rat ovary [J]. Mol Endocrinol. 1991, 5:1405-1417.
    [294] HOUDE A, LAMBERT A, SAUMANDE J, et al. Structure of the bovine follicle-stimulating hormone receptor complementary DNA and expression in bovine tissues [J]. Mol Reprod Dev. 1994, 39:127-135.
    [295] SITES C K, PATTERSON K, JAMISON C S, et al. Follicle-stimulating hormone (FSH) increases FSH receptor messenger ribonucleic acid while decreasing FSH binding in cultured porcine granulosa cells [J]. Endocrinology. 1994, 134:411-417.
    [296] MURIACH B, CARRILLO M, ZANUY S, et al. Distribution of estrogen receptor 2 mRNAs (Esr2a and Esr2b) in the brain and pituitary of the sea bass (Dicentrarchus labrax) [J]. Brain Res. 2008, 1210:126-141.
    [297] HELDRING N, PIKE A, ANDERSSON S, et al. Estrogen receptors: how do they signal and what are their targets [J]. Physiol Rev. 2007, 87:905-931.
    [398] NI Y, ZHOU Y, LU L, et al. Developmental changes of FSH-R, LH-R, ER-beta and GnRH-I expression in the ovary of prepubertal ducks (Anas platyrhynchos) [J]. Anim Reprod Sci. 2007, 100:318-328.
    [399] KRUST A, GREEN S, ARGOS P, et al. The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors [J]. EMBO J. 1986, 5:891-897.
    [300] FOIDART A, LAKAYE B, GRISAR T, et al. Estrogen receptor-beta in quail: cloning, tissue expression and neuroanatomical distribution [J]. J Neurobiol. 1999, 40:327-342.
    [301] ICHIKAWA K, YAMAMOTO I, TSUKADA A, et al. cDNA Cloning and mRNA Expression of Estrogen Receptor a in Japanese Quail [J]. Journal of Poultry Science. 2003, 40:121-129.
    [302] HRABIA A, WILK M, RZASA J. Expression of alpha and beta estrogen receptors in the chicken ovary [J]. Folia Biol (Krakow). 2008, 56:187-191.
    [303] ONG Y L, IRVINE A. Quantitative real-time PCR: a critique of method and practicalconsiderations [J]. Hematology. 2002, 7:59-67.
    [304] DRUMMOND A E, BAILLIE A J, FINDLAY J K. Ovarian estrogen receptor alpha and beta mRNA expression: impact of development and estrogen [J]. Mol Cell Endocrinol. 1999, 149:153-161.
    [305] MUNOZ G, OVILO C, ESTELLE J, et al. Association with litter size of new polymorphisms on ESR1 and ESR2 genes in a Chinese-European pig line [J]. Genet Sel Evol. 2007, 39:195-206.
    [306] JEFFERSON W N, COUSE J F, PADILLA-BANKS E, et al. Neonatal exposure to genistein induces estrogen receptor (ER)alpha expression and multioocyte follicles in the maturing mouse ovary: evidence for ERbeta-mediated and nonestrogenic actions [J]. Biol Reprod. 2002, 67:1285-1296.
    [307] COUSE J F, KORACH K S. Estrogen receptor-alpha mediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract [J]. Toxicology. 2004, 205:55-63.
    [308] COUSE J F, YATES M M, DEROO B J, et al. Estrogen receptor-beta is critical to granulosa cell differentiation and the ovulatory response to gonadotropins [J]. Endocrinology. 2005, 146:3247-3262.
    [309] COUSE J F, LINDZEY J, GRANDIEN K, et al. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse [J]. Endocrinology. 1997, 138:4613-4621.
    [310] YING C, HSU W L, HONG W F, et al. Estrogen receptor is expressed in pig embryos during preimplantation development [J]. Mol Reprod Dev. 2000, 55:83-88.
    [311] KOWALSKI A A, GRADDY L G, VALE-CRUZ D S, et al. Molecular cloning of porcine estrogen receptor-beta complementary DNAs and developmental expression in periimplantation embryos [J]. Biol Reprod. 2002, 66:760-769.
    [312] NILSSON S, MAKELA S, TREUTER E, et al. Mechanisms of estrogen action [J]. Physiol Rev. 2001, 81:1535-1565.
    [313] DRUMMOND A E, BRITT K L, DYSON M, et al. Ovarian steroid receptors and their role in ovarian function [J]. Mol Cell Endocrinol. 2002, 191:27-33.
    [314] KNAPCZYK K, DUDA M, DURLEJ M, et al. Expression of estrogen receptor alpha(ERalpha) and estrogen receptor beta (ERbeta) in the ovarian follicles and corpora lutea of pregnant swine [J]. Domest Anim Endocrinol. 2008, 35:170-179.
    [315] HERMANN B P, HECKERT L L. Transcriptional regulation of the FSH receptor: new perspectives [J]. Mol Cell Endocrinol. 2007, 260-262:100-108.
    [316] MINJ A, MONDAL S, TIWARI A K, et al. Molecular characterization of follicle stimulating hormone receptor (FSHR) gene in the Indian river buffalo (Bubalus bubalis) [J]. Gen Comp Endocrinol. 2008, 158:147-153.
    [317] MCFARLAND K C, SPRENGEL R, PHILLIPS H S, et al. Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family [J]. Science. 1989, 245:494-499.
    [318] KOBAYASHI T, ANDERSEN O. The gonadotropin receptors FSH-R and LH-R of Atlantic halibut (Hippoglossus hippoglossus), 1: isolation of multiple transcripts encoding full-length and truncated variants of FSH-R [J]. Gen Comp Endocrinol. 2008, 156:584-594.
    [319] SIMONI M, GROMOLL J, NIESCHLAG E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology [J]. Endocr Rev. 1997, 18:739-773.
    [320] MEDURI G, BACHELOT A, COCCA M P, et al. Molecular pathology of the FSH receptor: new insights into FSH physiology [J]. Mol Cell Endocrinol. 2008, 282:130-142.
    [321] WAKABAYASHI N, SUZUKI A, HOSHINO H, et al. The cDNA cloning and transient expression of a chicken gene encoding a follicle-stimulating hormone receptor [J]. Gene. 1997, 197:121-127.
    [322] LIU H Y, ZHANG C Q. Effects of daidzein on messenger ribonucleic Acid expression of gonadotropin receptors in chicken ovarian follicles [J]. Poult Sci. 2008, 87:541-545.
    [323] ZHOU Y C, FU Q G, ZHAO R Q, et al. Expression of mRNAs for GHR, IGF-IR, FSHR and LHR in granulosa and theca layers of ovarian follicles of Shaoxing ducks [J]. Yi Chuan Xue Bao. 2003, 30:840-846.
    [324] AKAZOME Y, SHIMIZU F, PARK M K, et al. Molecular characteristics of the N-terminal region of the quail follitropin receptor [J]. In Vivo. 1996, 10:345-349.
    [325] YOU S, BRIDGHAM J T, FOSTER D N, et al. Characterization of the chicken follicle-stimulating hormone receptor (cFSH-R) complementary deoxyribonucleic acid, and expression of cFSH-R messenger ribonucleic acid in the ovary [J]. Biol Reprod. 1996,55:1055-1062.
    [326] MAO X, ZHANG C, SAITO N, et al. Expression of messenger ribonucleic acids of luteinizing hormone and follicle-stimulating hormone receptors in the embryonic and posthatch gonads of the chicken [J]. J Poult Sci. 2000, 37:212-220.
    [327] YAMAMURA N, TAKEISHI M, GOTO H, et al. Expression of messenger RNA for gonadotropin receptor in the granulosa layer during the ovulatory cycle of hens [J]. Comp Biochem Physiol A Mol Integr Physiol. 2001, 129:327-337.
    [328] WOODS D C, JOHNSON A L. Regulation of follicle-stimulating hormone-receptor messenger RNA in hen granulosa cells relative to follicle selection [J]. Biol Reprod. 2005, 72:643-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700