用户名: 密码: 验证码:
跨海大桥下部结构地震效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人们对江海资源利用的增加,桥梁的跨度和深度都在不断的增加。尤其是跨海大桥,与陆地结构相比,它所处的环境十分复杂和恶劣,承受着多种随时问和空间变化的随机荷载,包括风、波浪、水流等作用于结构,同时还受着地震作用的威胁,因此其动力性能分析就显得尤为重要。但鉴于大跨度、复杂结构的跨海大桥在我国出现得较晚,在理论和经验上都显得比较缺乏,尤其在动力性能分析这一方面。
     本文在国内外关于桩-土相互作用、墩水耦合和桥梁下部结构动力分析研究现状的基础上,以某桥梁为工程背景,对桥的下部结构动力特性及地震时程分析展开研究。
     讨论了桩-土及流固耦合的发展概况、计算模拟方法和存在的问题。探讨了利用有限元分析软件ANSYS进行流固耦合分析的可行性和有效性。
     对三种不同的墩-水耦合分析方法进行了研究,通过实例分析,对这三种不同的计算方法进行对比,分析了这三种方法分别的适用范围。并利用解析法和数值分析法分别计算了在不同水深时桥墩的自振频率,发现随着水深的增加,桥墩的自振频率值在不断的减小。
     利用有限元分析软件ANSYS对桥梁桩-土相互作用模型进行了自振特性计算,通过对不同模型进行对比分析,发现弹簧等效刚度K对考虑桩-土相互作用的结构的自振特性结果有着较大的影响。
     考虑墩-水耦合和桩-土相互作用,分析了深水桥梁下部结构的动力特性及地震响应。发现在考虑水作用下,桥墩的自振频率值相对于无水的情况下会有一定程度的减小;而在对桥墩进行地震时程分析时,水的作用使得桥梁的内力、位移均有大幅度的增加,说明在对桥墩进行地震时程分析时,水对结构的动力响应起着不良的作用。
     通过研究,给出了可供工程设计借鉴的一些结论,同时对研究中有待解决的问题进行了讨论。
In recent years, the bridge especially the cross-ocean bridge span and depth are growing constantly with the increase of river-sea resource utilization. its dynamic performance analysis is particularly important because of the environment where the cross-ocean bridge work is very awful and complex, bearing a variety of changes over time and space including wind, waves, water currents acting on the structure, while also being affected by earthquake threat. both in theory and experience seemed relatively scarce in view of the large span,complex structural bridge in China came relatively late,particularly in dynamic performance analysis.
     On the basis of the present research status at home and abroad about pile-soil interaction, fluid-solid coupling and dynamic analysis of substructure of bridge, the paper carries out research on earthquake effect analyse with the a certain bridge as the engineering background. It mainly includes the following contents.
     The first part is exordium, which generally summarizes the development, calculation method and the existing problems of pile-soil interaction and fluid-solid coupling. The calculation is basically realized by finite analysis softwear ANSYS, therefore, the application of ANSYS in these aspects is introduced at the second chapter.
     Subsequently, three different methods of pier-water coupling analysis were described in detail, the application scope of those three methods were obtained by comparative analysis by example analysis .The natural frequency at a water depth 5.9m, 13.8m and 21.7m was calculated respectively and the result show that with the water depth increasing, the natural frequency of pier is incessant decreasing.
     Then, the natural frequency of bridge considering pile-soil interaction which simulated by spring element was calculated by finite analysis softwear ANSYS. Through comparative analysis of different models, it is found that the equivalent spring stiffness K have significant influence on the natural frequency of bridge considering pile-soil interaction.
     Finally, based on a certain bridge, using the analogy method of pier-water coupling and pile-soil interaction which we have given preceding, the dynamic characteristics and earthquake response of bridge substructure were analyzed. Considering the influence of the water, the natural frequency of the bridge can be decreased to a certain extent compared with the anhydrous. By using Kinetic Finite Element Method, the seismic time history analysis of the bridge pier is conducted ,and the results showed that the internal force and displacement of bridge have a significant increase because of the action of water, which draws a conclusion that the fluid-solid coupling has played an adverse role in dynamic response of bridge.
     At last gives the summarization of the work, it makes a conclusion about the study work, presents some summing-ups from the study work, and points out some unresolved questions for the further study.
引文
[1]王宏志.冲击荷载作用下桩的纵向和横向动力响应[D].杭州:浙江大学岩土工程系,2001.
    [2]肖晓春,迟世春,等.地震荷载下桩土相互简化计算方法及参数分析[J].大连理工大学学报,2002,42(6):729-733.
    [3]杨小卫.桩-土-结构动力相互作用的数值分析[D].武汉:武汉理工大学土木工程与建筑学院岩土工程系,2006.
    [4]陈波,吕西林等.均匀土-桩基-结构相互作用体系的计算分析[J].地震工程与工程振动.2002,22(3):91-99.
    [5]李辉.土-结构动力相互作用[D].重庆:重庆建筑大学.1999.
    [6]Xiong Zhang,J.L.Wegner,And J.B.Haddow.Three-dimensional Dynamic Soil-structural Interaction Analysis in The Time Domain.Earthquake Engineering and Structural Dynamics.1999,28:1501-1524.
    [7]Dermudez R Rodriuez.Finite element computation of the vibration modes of a fluid-solid system[J].Computer Methods in Applied Mechanics and Engineering 1994,119:355-370.
    [8]刘云贺.流体-固体动力耦合理论及水利工程应用[D].西安:西安交通大学.2001.
    [9]张敏.桥墩与河水流固耦合振动分析[D].大连:大连交通大学,2006.
    [10]高学奎,朱晞.地震动水压力对深水桥梁的影响[J].北京交通大学学报,2006,30(1):55-58.
    [11]李彤.地震作用下土-群桩-结构-水相互作用体系的动力反应分析[D].上海:同济大学,1999.
    [12]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002.
    [13]王先军,周文宇,蒋鑫.ANSYS在模拟桩土接触中的应用[J].森林工程,2006,22(2):49-51.
    [14]龚曙光.ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003.
    [15]ANSYS公司北京办事处.动力学分析指南[M].2000.
    [16]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2004.
    [17]朱镜清.结构抗震分析原理[M].北京:地震出版社,2002.
    [18]梁青槐.土-结构动力相互作用数值分析方法的评述[J].北方交通大学学报.1997,21(6):690-694.
    [19]居荣初,曾心传.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983.
    [20]丁思远.粘性流体对结构固有频率及阻尼的影响[J].郑州轻工业学院学报,1994, 9(4):50-53.
    [21]Higuchi Tsuyoshi,Nunala Sakutaro,Ando Masahiro,On the Design of High Efficiency Linear Induction Motors for Linear Metro J.Electrical Engineering in Japan,2001,137(2):36-43.
    [22]苏铭德.黄素逸.计算流体力学基础[M].北京:清华大学出版社.1997.
    [23]Clayton R and Engquist B.Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations.Bulletin of the Seismological Society of America.1977,67:1529-1540.
    [24]盛建龙,刘新波,欧阳治华.固液相耦合的有限元及其应用[J].地下空间.1999,19(10):323-327.
    [25]Smith W D.A Nonreflecting Plane Boundary for Wave Propagation Problems.J.Computational Physics.1974,15:492-503.
    [26]戴大农,流固耦合系统动力分析的若干基本问题与数值分析方法[D].北京:清华大学土木工程学院,1988
    [27]Nitikitpaiboon C,bath K J,An Arbitrary Lagarangian-Eulerian velocity potential formulation for Fluid-structure interaction.Comput.&.Struct.,1993,47(4/5):871-891
    [28]陈华明,李杰,范民权,彭春强.蛋形消化与流体相互作用动力分析[J].工程力学,2006,23(10):49-54.
    [29]傅作新,结构与水体的相互作用问题[J].水利水运科学研究,2(1982):105-119.
    [30]Loh C.H,Lin S.G.Directionality and Simulation in Spatial Variation of Seismic Waves[J].ASCE,Engineering Structures,1990,12:1-27.
    [31]T.Belytschko,T.J.R.Hughes(Eds.).Computational Methods for Transient Analysis.North Holland.Dordrecht,1983.
    [32]赖伟,王君杰,胡世德.地震下桥墩动水压力分析[J].同济大学学报,2004,32(1):1-5.
    [33]钟明全,潘亦苏.考虑流体-结构交互作用的桥梁地震反应分析方法的研究进展.第一届全国公路科技创新高层论坛论文集[C].公路设计与施工卷,2001,671-675.
    [34]中华人民共和国铁道部.GB50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [35]杨吉新,张可,党慧慧.基于ANSYS的流同耦合动力分析方法[J].船海工程.2008,37(6):86-90.
    [36]吴体.地基土-上部结构共同作用体系自振频率计算模型研究[D].成都:四川大学建筑与土木工程系,2006
    [37]林皋.结构和地基相互作用体系的地震反应及抗震设计[J].中国地震工程程序进展.北京:地震出版社,1992
    [38]陈清军,赵云峰.不同基础形式下的结构地震动输入研究[J].工程力学.2001,增刊:219-223
    [39]胡汉兵,茜平一等.桩-承台-土共同作用的三维有限元分析[J].工程勘察.1999(6):1-4.
    [40]铁道部第三勘察设计院.TB10002.5-2005铁路桥涵地基和基础设计规范[S].天津:中华人民共和国铁道部,2006-06-14.
    [41]熊仲明,赵鸿铁.地震作用下桩-土共同作用对下部结构的影响分析[J].西安建筑科技大学学报.1999,31(1)44-47.
    [42]申爱国.土-结构相互作用体系自振特性的计算[J].西南交通大学学报.2000,35(1)7-10.
    [43]Wolf J P.Dynamic Soil-Structure Interaction.Englewood Cliffs.Prentice Hall.1985.
    [44]W.J.podolny.Static Analysis of Cable-stayed Bridges.Ph.D thesis,University of Pittsburgh,1997.
    [45]陈从春.矮塔斜拉桥设计理论核心问题研究[D].上海:同济大学土木工程学院,2005.
    [46]L.C.Fan.Seismic Design of Highway Bridge.Huajie International Publishing Co.Limited,1998.
    [47]李国豪主编.工程结构抗震力学[M].上海:上海科学技术出版社,1980.
    [48]Clough.R.W,Joseph.Penzien.J.Dynamics of Structures,Second Edition,Mc Graw-Hill,Inc,NewYork,1993.
    [49]J.L.Meek,S.Longanathan.Geometric and Material Nonlinear Behavior of Beam-Columns.Computer&Structure.1990,34(1 ).
    [50]S.L Chan,S.Kitiporchai.Inelastic Post-Buckling Bechvior of Tubular Struts.ASCE.J.Struct.Engng.1988,115(5).
    [51]陶姣姣,马桑溪桥动力特性及地震响应分析[D].成都:西南交通大学土木工程学院,2006.
    [52]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].人民交通出版社,2001
    [53]Lysmer J.and Kulemeyer R L.Finite Dynamic Model for Infinite Media.J.Eng.Mech.Div.ASCE.1969:759-877.
    [54]金伟良,郑忠双,李海波.地震荷载作用下海洋平台结构物动力可靠度分析[J].浙江大学学报,2002,36(3):233-238.
    [55]张佳春.采用深水基础的大跨连续刚构桥地震反应分析[D].成都:桥梁与隧道工程系,2004.
    [56]朱保华.矮塔斜拉桥的动力特性及地震响应分析[D].成都:西南交通大学桥梁与隧道工程系,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700