用户名: 密码: 验证码:
有机玻璃方管内瓦斯爆燃火焰传播特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前煤炭在我国能源结构中占主导地位,近年来我国煤矿瓦斯爆炸灾害经常发生,尽管很多矿井采取了主动式的瓦斯抽排放技术,但这并不意味着不需要对瓦斯爆炸现象进行研究,主动措施一旦失效后,被动的预防和控制措施显得尤为重要。一些国有大中型煤矿尽管在矿井巷道中布设了隔爆棚、隔爆水袋,瓦斯爆炸发生后这些阻隔爆装置往往达不到应有的效果,甚至失效,从某种程度上说明,人们对瓦斯爆炸机理、火焰加速传播机制以及火焰传播特性等方面存在认识上不足。对瓦斯爆炸现象的研究通常采用大尺寸模拟巷道或小型实验管道,大型模拟巷道比较接近真实矿井,但由于其成本较高、场地限制、现场测试困难等因素,很多学者更倾向于在实验室里搭建实验管道以研究瓦斯爆炸火焰传播规律。小型管道和大型巷道内瓦斯火焰加速机制、爆燃波的传播特性是一致的,它们之间存在一定“尺寸效应”。
     为了揭示管内瓦斯火焰传播机制及障碍物诱导瓦斯火焰加速机制,本文采用高速摄像、光电传感器、压力传感器、微细热电偶等实验手段测试了长1.5m、截面100×100mm2有机玻璃方管内瓦斯爆燃火焰传播图像、传播速度、爆燃压力、瞬态温度等传播特性参数。分析了无障碍物、重复障碍物、立体障碍物以及典型非金属粉末等条件下管内瓦斯爆燃火焰运动特征和传播特性。采用实验研究结合数值模拟和理论分析的研究方法,较为详细地研究管内瓦斯爆燃火焰传播特征和传播规律。本文主要研究内容和结论体现在以下方面:
     首先采用爆炸理论、动力学系数法、第一强度理论等对有机玻璃管道强度进行了校核,证实管道抗爆性能满足要求;通过ANSYS软件对典型爆炸载荷下管壁动态响应进行模拟研究,发现方形有机玻璃管破坏主要表现在纵向中心线位置的拉-剪破坏,以及内壁面棱边位置的剪切破坏作用。
     采用高速摄像、光电传感器和压力传感器等实验手段研究了典型浓度下无障碍物、重复障碍片、立体障碍物情形下管内瓦斯火焰阵面位置、火焰传播速度和燃烧压力变化规律。分析了无障碍物下管内火焰光信号-压力信号关系,推导了无障碍物下化学当量的瓦斯火焰传播速度和燃烧压力耦合式,认为火焰阵面位置-时间关系吻合GaussAmp拟合曲线较好。通过4种重复障碍片和5种立体障碍物下管内瓦斯火焰传播参数测试,认为重复障碍片的阻塞比对火焰传播参数增加贡献相对于障碍片个数和间距要大;对于单个立体障碍物,平板、三棱柱加速火焰程度较大,长方体、四棱柱次之,而圆柱体增加程度最小;分析认为立体障碍物表面有突变棱边或表面的不规整性,是激励火焰加速的重要原因,同时认为火焰传播初期前置障碍物对其有一定阻碍作用。
     文中从不同浓度、不同类型障碍物、不同开口约束材料等条件下研究了半开口管道内瓦斯爆燃压力分布规律,认为管内爆燃压力从点火端开始增加,传播到管子中部附近有脉动现象,靠近开口处压力迅速下降;实验表明,泄压面积一定条件下,管内瓦斯爆燃压力大小与封口材料的厚度和抗拉强度均有关,材料越厚、抗拉强度越大,其管内瓦斯爆燃压力值也越大,而封口材料破裂常数Kb是衡量其破裂难易程度的重要参数。
     采用光电传感器、压力传感器和微细热电偶等测试手段探讨了内铺煤粉和石粉两种典型非金属粉末影响管内瓦斯火焰传播机制,认为活性的煤粉与瓦斯火焰形成瓦斯-煤粉复合火焰,使得化学反应区宽度增加,在测点处瞬时温度曲线呈现出较为明显的“双峰结构”;有无煤粉时管内燃烧压力峰值差别不大,但有煤粉时压力脉冲宽度增加;内铺石粉时燃烧压力峰值、压力脉冲宽度相对无粉末情况会减小,说明石粉有效抑制瓦斯火焰传播过程。
     采用Fluent软件模拟9.5%浓度、放置40%阻塞比的五种立体障碍物情形管内瓦斯爆燃火焰传播特性参数,定性分析了不同形态立体障碍物加速火焰程度和加速机制。采用Matlab软件等瓦斯火焰图像进行去噪和增强处理,使得火焰特征和细节部分凸显出来,同时采用该软件提取火焰轮廓,进而较为精确计算出火焰阵面位置和火焰传播速度,并基于RGB三色模型初步分析了火焰图像RGB值与热电偶温度之间关系。
     本文研究对揭示管内瓦斯爆炸波传播规律、障碍物激励瓦斯火焰传播机制等,具有重要的科学意义;对减轻、控制矿井瓦斯爆炸灾害的发生和发展,以及优化现有阻隔爆技术,具有重要的应用价值。同时对设计较为合理的工业可燃气体输运管道结构、提出较为合理的阻火抑爆措施等方面具有重要的理论指导意义。
Currently, coal energy plays an important role in the energy structure in our country. In recent years, China's coal mines gas explosion disasters occurred frequently. We should still study the phenomena of fire damp explosions, though some active gas drainage technologies were successfully used in coal mines. The active measures once failure, the passive prevention and control measures became particularly important. Some gas explosions suppression devices like the flameproof devices or water bags had fixed in the roadway in some large or medium-sized state-owned coal mines, however, the gas explosions occurred, these devices often fail to reach the desired effects, or they didn't play the role. This fact showed that there are insufficient understanding the mechanism of gas explosion, and the flame propagation mechanism and flame propagation characteristics, etc. for many peoples to some extent. The simulation roadways or small-scale experiment tubes were often used for the investigation into the phenomena of gas explosion. The large-scale simulation laneways were closed to the real coal mine roadways, but, due to its high cost, space requirement, and difficult to test parameters, etc., many scholars preferred to set up the small-scale experiment tubes to study the flame propagation process of gas explosion. The methane-air flame acceleration mechanism and the deflagration wave propagation characteristics under the two conditions are the same and they have the 'size effect' relations.
     In order to reveal the methane-air flames propagation mechanism and its acceleration mechanism induced by obstacles, high-speed color video camera, photoelectric sensors, pressure sensors, and fine thermocouples were adopted to test the flame images, flame propagation velocities, deflagration pressures, transient temperatures, and other related flame propagation parameters in an square plexiglass tube with1.5meters long and its cross section is100×100mm2. The deflagration flame propagation characteristics were analyzed with no obstacles, repeated obstacles, solid structure obstacles in tube, respectively. Via the application of various research methods including experimental investigation, theoretical analysis and numerical modeling, the methane-air deflagration flames propagation characteristics and acceleration regulations in tube were studied comprehensively. In the paper, the main research contents and its conclusions are shown in the following aspects:
     Firstly, the explosion theory, the dynamic coefficient method and the first strength theory were adopted to check the closed tube's strength loaded by detonation wave under the equivalence ratio of methane-air mixture. The results showed that the tube's wall thickness fully met with the requirements of explosion flames experiments. Considering the given typical explosion loads, the tube's wall dynamic response was simulated by ANSYS software. The results revealed that the location at the tube's axial center mainly showed the pull-shear failure, while the location at the inner wall edge mainly showed the shear failure.
     The methane-air deflagration flames propagation parameters including flame front locations, flame propagation velocities, and deflagration pressures were investigated by the high-speed video camera, photoelectric sensors, and pressure sensors under the typical methane concentrations with no obstacles, repeat baffles or solid structure obstacles in tube, respectively. The relationship of flame-pressure signal at the same testing point was analyzed and the coupling formula about methane-air flame propagation velocity and its deflagration pressure was deduced and given, also the relationship for the flame front location and time after ignition was consistent with the fitting curve of GaussAmp. The methane-air flames propagation parameters were investigated under the condition of4types of repeat baffles and5forms of solid structure obstacles in tube, and, the results showed that the blockage ratios of repeat baffles had greater contribution to flame acceleration than the numbers and distances of baffles did. And, the plates and triple prisms increased flame speed and overpressure much larger, and cuboids were intermediate, while effects of cylinders were comparatively limited. The irregularities of solid obstacles surface were the main factor contributing to the turbulence degree and flame acceleration. Also, the fixed obstacles in front of the flame had the blocking effect to flame propagation in the initial process of flame propagation, and the flame speed and overpressure was increased obviously when the flame came across the obstacles.
     The laws of deflagration pressure distribution were investigated experimentally under the condition of different methane concentrations, different repeat baffles, and different sealing materials at open end, respectively. The results showed that the peak-pressure at testing points increased firstly, then decreased, and the pressure pulsation showed at the middle section of the tube, and the pressure decreased sharply near the open end. Also, at the same venting area, the value of deflagration pressure was linked with the thickness and tensile strength of sealing materials, and the bigger thickness or tensile strength was, the greater deflagration pressure was. And the sealing materials constant Kb is an important parameter for representing the materials rupture.
     The flame photoelectric sensors, the pressure sensors and the fine thermocouples were adopted to obtain the premixed methane-air flame parameters of flame front position and flame propagating velocity along the tube, the transient pressure and temperatures at testing points, respectively. The experiment showed that the transient temperature values of premixed methane-air flame at testing points in coal dust condition obviously revealed the wave of "twin peaks structure", and there was not obvious difference with or without coal dust in tube, but the pressure wave was broadened in coal condition. The values of transient pressure and temperature at testing points became overall decline under the condition of rock dust, and the half-peak width of the temperature was narrowed, the fact showed that the rock dust suppressed the process of flame propagation.
     The flame propagation parameters were simulated by Fluent software under the condition of the experiment given obstacles of40%blockage ratio fixing in the tube with the concentration of9.5%-methane by volume. The simulation results given the qualitative analysis of the flame acceleration mechanism induced by different forms of solid structure obstacles. The denoising and enhancement treatment for methane-air flame images by Matlab software highlighted the flame features and flame detail parts. At the same time, the flame contours and flame tips were found by the software, then the flame front locations and flame propagation velocities were calculated accurately. And the relationship between the RGB values of flame images with their thermocouples temperatures based on RGB model was preliminarily discussed in the paper.
     The study has important scientific significance for explaining the propagation mechanism of the methane-air deflagration flames and the mechanism of flame acceleration mechanism induced by obstacles. It has some application value for preventing or controlling the occurrence and development of gas explosion disasters. Also, it has important application significance for optimizing the gas explosion preventing and controlling technologies in mines and the design of the fire resistance performances for the industrial gas pipelines.
引文
[1]袁亮.煤与瓦斯共采领跑煤炭科学开采[J].能源与节能,2011,4:1-4,11.
    [2]孙继平.瓦斯综合防治方法研究[J].工矿自动化,2011,2:1-5.
    [3]吴红波.甲烷火焰及其诱导的煤尘燃烧、爆炸机理的实验研究[D].淮南:安徽理工大学硕士学位论文,2002.
    [4]周宁.有沉积煤尘的管道内瓦斯爆炸特性的实验研究[D].淮南:安徽理工大学硕士学位论文,2004.
    [5]汪泉.管道中甲烷-空气预混气爆炸火焰传播的研究[D].淮南:安徽理工大学硕士学位论文,2006.
    [6]徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研究[J].中国安全科学报,2001(6):36-40.
    [7]国家安全生产监督管理总局网站,http://www.chinasafety.gov.cn.
    [8]陆守香,何杰,于春红,等.水抑制瓦斯爆炸的机理研究[J].煤炭学报,1998,23(4):417-421.
    [9]Shou-Xiang Lu, Zi-Ru Guo, Yuan-Long Li, et al. Experimental and theoretical analysis of acceleration of a gas flame propagating over a dust deposit[J]. Proceedings of Combustion Institute,2002,29(2):2839-2846.
    [10]汪泉,郭子如,沈兆武,等.有机玻璃方管内可燃气体爆燃压力分布研究[J].火工品,2012,5:18-21.
    [11]Mallard E, Le Chatelier H L. Thermal model for flame propagation[J]. Ann. Mines,1883,4(18):379-568.
    [12]Markstein G H. Nonsteady flame propagation[M]. Pergamon,1964.
    [13]Zel'Dovich A B, Istratov A G, Kidin N I, et al. Flame propagation in tubes:hydrodynamics and stability[J]. Combustion Science and Technology,1980,24(1-2):1-13.
    [14]Frankel M L, Sivashinsky G I. The effect of viscosity on hydrodynamic stability of a plane flame front[J]. Combustion Science and Technology,1982,29(3-6):207-224.
    [15]Strehlow R A, Noe K A, Wherley B L. The effect of gravity on premixed flame propagation and extinction in a vertical standard flammability tube[C]. Twenty-First Symposium (International) on Combustion. Elsevier,1988,21(1):1899-1908.
    [16]Hassan M I, Aung K T, Faeth G M. Measured and predicted properties of laminar premixed methane/air flames at various pressures[J]. Combustion and Flame,1998,115(4):539-550.
    [17]Kuznetsov M, Ciccarelli G, Dorofeev S, et al. DDT in methane-air mixtures[J], Shock Waves, 2002,12(3):215-220.
    [18]Kuznetsov M, Alekseev V, Matsukov I, et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture[J]. Shock Waves,2005,14(3):205-215.
    [19]Kurdyumov V N, Matalon M. Flame acceleration in long narrow open channels [C], Proceedings of the Combustion Institute,2012,34(1):865-872.
    [20]林柏泉,菅从光,张辉.管道壁面散热对瓦斯爆炸传播特性影响的研究[J].中国矿业大学学报,2009,38(1):1-4.
    [21]翟成,林柏泉,菅从光,等.壁面粗糙度对瓦斯爆炸火焰波传播的影响[J].中国矿业大学学报,2006,35(1):39-43.
    [22]叶青,林柏泉,菅从光,等.磁场对瓦斯爆炸及其传播的影响[J].爆炸与冲击,2011,31(2):153-157.
    [23]徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研究[J].中国安全科学学报,2001(6):36-40.
    [24]杨志,周凯元,谢立军,等.Z型管道中气体火焰传播规律的实验研究[J].火灾科学,2006,15(3):111-114.
    [25]林柏泉,叶青,翟成,等.瓦斯爆炸在分岔管道中的传播规律及分析[J].煤炭学报,2008,33(2):136-139.
    [26]朱传杰,林柏泉,江丙友,等.瓦斯爆炸火焰和冲击波在并联巷网的传播特征[J].中国矿业大学学报,2011,40(3):385-389.
    [27]顾金龙,翟成.爆炸性气体在连续拐弯管道中传播特性的实验研究[J].火灾科学,2011,20(1):16-20.
    [28]高玉刚.管道中可燃气体燃爆特性研究[D].淮南:安徽理工大学硕士学位论文,2011.
    [29]黎体发,张莉聪,徐景德.瓦斯爆炸火焰波与冲击波伴生关系的实验研究[J].矿业安全与环保,2005,32(2):4-6.
    [30]Chapman W R, Wheeler R V. The propagation of flame in mixtures of methane and air, Part Ⅳ:The effect of restrictions in the path of the flame[J]. J Chem Soc,1926,21:39-47.
    [31]Moen I O, Donato M, Knystautas R, et al. Flame acceleration due to turbulence produced by obstacles[J]. Combustion and Flame,1980,39(1):21-32.
    [32]Moen I O, Lee J H S, Hjertager B H, et al. Pressure development due to turbulent flame propagation in large-scale methane-air explosions[J]. Combustion and Flame,1982,47: 31-52.
    [33]Chan C, Moen I O, Lee J H S. Influence of confinement on flame acceleration due to repeated obstacles [J]. Combustion and flame,1983,49(1):27-39.
    [34]Ibrahim S S, Masri A R. The effects of obstructions on overpressure resulting from premixed flame deflagration[J]. Journal of Loss Prevention in the Process Industries,2001,14(3); 213-221.
    [35]Kent J E, Masri A R, Starner S H, et al. Anew chamber to study premixed flame propagation past repeated obstacles[C].5th Asia-Pacific Conference on Combustion, The University of Adelaide, Adelaide, Australia.2005:173-176.
    [36]Ciccarelli G, Fowler C J, Bardon M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube[J]. Shock Waves,2005,14(3):161-166.
    [37]林柏泉,周世宁,张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2):104-107.
    [38]周凯元,李宗芬.丙烷—空气爆燃波的火焰面在直管道中的加速运动[J].爆炸与冲击,2000,20(2):137-142.
    [39]余立新,孙文超,吴承康.障碍物结构对管道中预混火焰加速的影响[J].燃烧科学与技术,2002,8(6):483-486.
    [40]叶经方,陈志华,范宝春.楔形障碍物与火焰的作用[J].火灾科学,2005,14(4):246-250.
    [41]吴红波,陆守香,张立.障碍物对瓦斯煤尘火焰传播过程影响的实验研究[J].矿业安全与环保,2004,31(3):6-8.
    [42]周宁,郭子如,徐旻.有沉积煤尘的管道内瓦斯火焰传播特性[J].煤矿爆破,2003,4:17-19.
    [43]Guo Ziru, Shen Zhaowu, Lu Shouxiang, et al. The experimental of methane-air flame propagation in the tube with quadrate cross section[J].Journal of Coal Science & Engineering,2005,11(2):60-63.
    [44]汪泉,郭子如,李志敏,等.甲烷与空气预混管内爆炸火焰传播特性试验[J].煤炭科学技术,2007,35(11):95-97.
    [45]丁以斌,郭子如,汪泉,等.立体结构障碍物对甲烷预混火焰传播影响的研究[J].中国安全科学学报,2011,20(12):52-56.
    [46]Dery R J. Development of a combustion wave in a flowing gas[C].Symposium on Combustion and Flame, and Explosion Phenomena. Elsevier,1949,3(1):235-245.
    [47]Wohl K, Kapp N M, Gazley C. The stability of open flames[C]. Symposium on Combustion and Flame, and Explosion Phenomena. Elsevier,1949,3(1):3-21.
    [48]Elicer-Cortes J C, Ruz C, Hernandez R H, et al. Observation of preferred instability modes in a mechanically excited thermal plume using Schlieren visualizations [J]. International communications in heat and mass transfer,2005,32(3):360-370.
    [49]Parsinejad F, Arcari C, METGHALCHI H. Flame structure and burning speed of JP-10 air mixtures[J]. Combustion science and technology,2006,178(5):975-1000.
    [50]Shoshin Y, Gorecki G, Jarosinski J, et al. Experimental study of limit lean methane/air flame in a standard flammability tube using particle image velocimetry method[J]. Combustion and Flame,2010,157(5):884-892.
    [51]A. Hariharan, I. S. Wichman, N. Mueller. Experimental Study of Premixed Methane-Air Flame Propagagation in a Rectangular Constant Volume Combustion Chamber[C]. Spring Technical Meeting of the Central States Section of the Combustion Institute, April 22-24, 2012.
    [52]AlHarbi A, Juddoo M, Masri A R. High-Speed LIF-OH Imaging in Premixed Flames Propagating Past Repeated Solid Obstacles[C].18th Australasian Fluid Mechanics Conference,Launceston, Australia,2012.
    [53]Patel S, Jarvis S, Ibrahim S S, et al. An experimental and numerical investigation of premixed flame deflagration in a semiconfined explosion chamber[J]. Proceedings of the Combustion Institute,2002,29(2):1849-1854.
    [54]Hartung G, Hult J, Balachandran R, et al. Flame front tracking in turbulent lean premixed flames using stereo PIV and time-sequenced planar LIF of OH[J]. Applied Physics B: Lasers and Optics,2009,96(4):843-862.
    [55]王从银,何学秋.瓦斯爆炸传播火焰高内聚力特性的试验研究[J].中国矿业大学学报,2001,30(3):217-220.
    [56]Yang Yi, Luo Geng, Guo Jing. Experimental study on the fractal characteristic of methane explosion flame[J]. Safety Science,2012,50:679-683.
    [57]陈东梁,孙金华,刘义,等.甲烷/空气预混气体火焰的传播特征[J].爆炸与冲击,2008,28(5):385-390.
    [58]陈先锋,孙金华,姚礼殷,等.Tulip火焰形成过程中的细微结构特性[J].燃烧科学与技术,2008,14(4):350-354.
    [59]何学超,孙金华,丁以斌,等.90°弯曲管道对丙烷-空气预混火焰传播的影响[J].燃烧科学与技术,2012,16(3):241-245.
    [60]解北京.管道内瓦斯传播火焰阵面的若干问题研究[D].淮南:安徽理工大学硕士学位论文,2010.
    [61]Catlin C. Explosion mitigation in offshore modules by general area deluge[J]. Process Safety and Environmental Protection,1993,71:101-11.
    [62]Kees van Wingerden, Brian Wilkins. The influence of water sprays on gas explosions. Part 1: water-spray-generated turbulence[J]. Journal of loss prevention in the process industries, 1995,8(2):53-59.
    [63]Kees van Wingerden, Brian Wilkins, J(?)rn Bakken, et al. The influence of water sprays on gas explosions. Part 2:mitigation[J]. Journal of loss prevention in the process industries,1995, 8(2):61-70.
    [64]Thomas G O. On the conditions required for explosion mitigation by water sprays[J]. Trans IChemE,2000,78(Part B):339-354.
    [65]Fuss S P, Chen E F, Yang W, et al. Inhibition of premixed methane/air flames by water mist[J]. Proceedings of the Combustion Institute,2002,29(1):361-368.
    [66]陆守香,秦俊,张立,等.水雾抑制气体爆炸火焰传播的实验研究[J].中国安全科学学报,2004,13(8):71-77.
    [67]刘晅亚,陆守香,朱迎春.水雾作用下甲烷/空气预混火焰的光谱特性[J].燃烧科学与技术,2008,1:011.
    [68]陈晓坤,林滢,罗振敏,等.水系抑制剂控制瓦斯爆炸的实验研究[J].煤炭学报,2006,31(5):603-606.
    [69]余明高,安安,游浩.细水雾抑制管道瓦斯爆炸的实验研究[J].煤炭学报,2011,36(3):417-422.
    [70]毕明树,李铮,张鹏鹏.细水雾抑制瓦斯爆炸的实验研究[J].采矿与安全工程学报,2012,29(3):440-443.
    [71]Payman W, Wheeler R V. LVI.-The propagation of flame through tubes of small diameter[J]. Journal of the Chemical Society, Transactions,1918,113:656-666.
    [72]Jarosinski J. Flame quenching by a cold wall[J]. Combustion and Flame,1983,50:167-175.
    [73]Song Z B, Wei L J, Wu Z Z. Effects of heat losses on flame shape and quenching of premixed flames in narrow channels[J]. Combustion Science and Technology,2007,180(2):264-278.
    [74]Fan Y, Suzuki Y, Kasagi N. Quenching mechanism study of oscillating flame in micro channels using phase-locked OH-PLIF[J]. Proceedings of the Combustion Institute,2011, 33(2):3267-3273.
    [75]周凯元,李宗芬.波纹板阻火器对爆燃火焰淬熄作用的实验研究[J].中国科学技术大学学报,1997,27(4):449-454.
    [76]周凯元.气体爆燃火焰在狭缝中的淬熄[J].火灾科学,1999,8(1):22-33.
    [77]喻健良,胡春明,李江涛,等.平板阻火单元温度变化对火焰淬熄的影响[J].燃烧科学与技术,2007,13(1):1-4.
    [78]喻健良,蔡涛,李岳,等.丝网结构对爆炸气体淬熄的试验研究[J].燃烧科学与技术,2008,14(2).
    [79]Mikhail Krasnyansky. Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor [J]. Journal of Loss Prevention in the Process Industries,2006,19(6):729-735.
    [80]范宝春,谢波.惰性粉尘和抑爆过程的实验研究[J].流体力学实验与测量,2001,15(4):20-25.
    [81]Zhihua Chen, Baochun Fan, Xiaohai Jiang. Suppression effects of powder suppressants on the explosions of oxyhydrogen gas[J]. Journal of Loss Prevention in the Process Industries, 2006,19(6):648-655.
    [82]Xianfeng Chen, Yin Zhang, Qingming Zhang, et al. Experimental investigation on micro-dynamic behavior of gas explosion suppression with SiO2 powders[J]. Theoretical & Applied Mechanics Letters,2011,032004,1-4.
    [83]程方明,邓军,罗振敏,等.硅藻土粉体抑制瓦斯爆炸的实验研究[J].采矿与安全工程学报,2010,27(4):605-607.
    [84]文虎,王秋红,罗振敏,等.超细Al(OH)3粉体抑制甲烷爆炸的实验研究[J].西安科技大学学报,2009,29(4):388-390.
    [85]文虎,曹玮,程方明,等.超细磷酸铵盐干粉抑制瓦斯爆炸的实验研究[J].煤矿安全,2011,42(7):1-3.
    [86]汪泉,沈兆武,郭子如,马宏昊.内铺煤粉方管内瓦斯预混火焰传播特性[J].煤炭学报,2012,37(10):1693-1697.
    [87]Baisheng Nie, Xueqiu He, Ruming Zhang, et al. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation[J] Journal of Hazardous Materials,2011,192(2):741-747.
    [88]聂百胜,何学秋,张金锋,等.泡沫陶瓷对瓦斯爆炸过程的实验及机理[J].煤炭学报,2008,33(8):903-907.
    [89]魏春荣,徐敏强,孙建华,等.多孔材料抑制瓦斯爆炸传播的实验及机理[J].功能材料,2012,43(16):2247-2250.
    [90]年伟民,周凯元,王汉良,等.气体爆轰波在声学吸收壁下游的再加强过程[J].实验力学,2005,20(1):37-43.
    [91]Kuzuu K, Ishii K, Kuwahara K. Numerical simulation of premixed flame propagation in a closed tube[J]. Fluid dynamics research,1996,18(3):165-182.
    [92]Kirkpatrick M P, Armfield S W, Masri A R, et al. Large eddy simulation of a propagating turbulent premixed flame[J]. Flow, turbulence and combustion,2003,70(1):1-19.
    [93]Gubba S R, Ibrahim S S, Malalasekera W, et al. LES modeling of premixed deflagrating flames in a small-scale vented explosion chamber with a series of solid obstructions[J]. Combustion Science and Technology,2008,180(10-11):1936-1955.
    [94]Di Sarli V, Di Benedetto A, Russo G. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles[J]. Journal of hazardous materials,2010,180(1):71-78.
    [95]Johansen C T, Ciccarelli G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame,2009,156(2): 405-416.
    [96]Maremonti M, Russo G, Salzano E, et al. Numerical simulation of gas explosions in linked vessels[J]. Journal of loss prevention in the process industries,1999,12(3):189-194.
    [97]Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes [J]. Journal of hazardous materials,2002,95(3):233-247.
    [98]Rohitashwa Kiran, Indrek Wichman, Norbert Muller. Numerical investigation of premixed flame propagation in a closed channel with a fluctuating pressure and velocity field[C], Spring Techincal Meeting of the Central States Section of the Combustion Institute, April 22-24,2012.
    [99]范宝春,姜孝海.障碍物导致甲烷—氧气爆炸的三维数值模拟[J].煤炭学报,2002,27(4):371-373.
    [100]陈志华,范宝春,李鸿志.管内均相湍流燃烧加速的数值模拟[J].爆炸与冲击,2003,23(004):337-342.
    [101]王志荣.受限空间气体爆炸传播及其动力学过程研究[D].南京:南京工业大学博士学位论文,2005.
    [102]梁春利.内置障碍物受限空间内可燃气体爆炸数值模拟[D].大连:大连理工大学硕士学位论文,2005.
    [103]Huahua Xiao, Dmitriy Makarov, Jinhua Sun, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct[J]. Combustion and Flame,2012,59:1523-1538.
    [104]朱建华.管道内可燃气体爆炸过程研究及危险性评价[D].北京:北京理工大学博士学位论文,2003.
    [105]Bingyou Jiang, Baiquan Lin, Shi Shulei, et al. A numerical simulation of the influence initial temperature has on the propagation characteristics of, and safe distance from, a gas explosion[J]. International Journal of Mining Science and Technology,2012,22(3): 307-310.
    [106]桂晓宏.瓦斯爆炸过程中动态非稳定火焰和爆炸波传播规律的研究[D].徐州:中国矿业大学博士学位论文,2001.
    [107]余立新,孙文超,吴承康.半开口管道中的氢/空气火焰加速和压力发展过程[J].工程热物理学报,2001,22(5):637-640.
    [108]赵衡阳,编著.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996.
    [109]Stephen R. Turns,著.姚强,李水清,王宇.译.燃烧学导论:概念与原理(第二版)[M].清华大学出版社,2009.
    [110]公安部消防局编.可燃气体、蒸气、粉尘火灾危险性参数手册[M].哈尔滨:黑龙江科学技术出版社,1990.
    [111]王丽琼,编.防火防爆技术基础[M].北京理工大学出版社,2009.
    [112]Markstein G H. Experimental and theoretical studies of flame front stability[J]. J. Aero. Sci, 1951,18:199-209.
    [113]Joulin G, Clavin P. Linear stability analysis of nonadiabatic flames:diffusional-thermal model[J]. Combustion and Flame,1979,35:139-153.
    [114]Geoff Searby. Acoustic instability in premixed flames[J]. Combustion Science and Technology,1992,81:221-231.
    [115]Lee S T, Tsai C H. Numerical investigation of steady laminar flame propagation in a circular tube[J]. Combustion and flame,1994,99(3):484-490.
    [116]J.F Yu, R. Yu, X.Q. Fan, et al. Onset of cellular flame instability in adiabatic CH4/O2/CO2 and CH4/air laminar premixed flames stabilized on a flat-flame burner[J]. Combustion and Flame, article in press,2013.
    [117]Artur Gutkowski. Numerical analysis of effect of ignition methods on flame behavior during passing through a sudden contraction near the quenching conditions[J]. Applied Thermal Engineering,2013,54:202-211.
    [118]V'yacheslav Akkerman, Chung K. Law, Vitaly Bychkov, et al. Analysis of flame acceleration induced by wall friction in open tubes[J]. Phys. Fluids 22,2010,053606:1-14.
    [119]Pizza G, Frouzakis C E, Mantzaras J, et al. Dynamics of premixed hydrogen/air flames in microchannels[J]. Combustion and Flame,2008,152(3):433-450.
    [120]刘晓利,李鸿志,叶经方,等.障碍物对铝粉火焰加速作用的研究[J].爆炸与冲击,1995,15(1):11-19.
    [121]Arkady Petchenko, Vitaly Bychkov, V'yacheslav Akkerman. Flame-sound interaction in tubes with nonslip walls [J]. Combustion and Flame,2007,149:418-434.
    [122]Fernando F. Fachini, Luc Bauwens. Oscillatory flame propagation:Coupling with the acoustic field[C]. Proceedings of the Combustion Institute,2013,34:2043-2048.
    [123]朱传杰,林柏泉,江丙友,等.瓦斯爆炸在封闭管道内冲击振荡特征的数值模拟[J].振动与冲击,2012,31(16):8-12.
    [124]曹红加.预混火焰燃烧不稳定性及其主动控制[D].北京:中国科学院研究生院博士论文,2004.
    [125]惠君明,陈天云,编著.炸药爆炸理论[M].江苏:江苏科技出版社,1995.
    [126]刘暄亚.水雾抑制气体爆炸火焰传播的实验研究[D].淮南:安徽理工大学硕士学位论文,2003.
    [127]胡八一,柏劲松,刘大敏,等.爆炸容器的工程设计方法及其应用[J].压力容器,2000,17(2):39-41.
    [128]刘鸿文.材料力学(第4版)[M].北京:高等教育出版社,2004.
    [129]张立,编著.爆破器材性能与爆炸效应测试[M].合肥:中国科学技术大学出版社,2006.
    [130]周崇.管道内预混可燃气体爆炸与抑爆的研究[D].大连:大连理工大学硕士学位论文,2004.
    [131]丁以斌,肖福全,宣晓燕,等.5种结构障碍物对火焰传播影响的试验研究[J].中国安全科学学报,2011,21(2):63-67.
    [132]范维澄,万跃鹏.流动及燃烧的模型与计算[M].中国科学技术大学出版社,1992.
    [133]Zimont V, Polifke W, Bettelini M, et al. An efficient computational model for premixed turbulent combustion at high Reynolds numbers based on a turbulent flame speed closure[J]. Journal of engineering for gas turbines and power,1998,120(3):526-532.
    [134]Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer methods in applied mechanics and engineering,1974,3(2):269-289.
    [135]温正,石良辰,任毅如.编著FLUENT流体计算应用教程[M],清华大学出版社,2009.
    [136]陈先锋,孙金华,陆守香,等.稀疏波对预混火焰影响规律的试验研究[J].自然科学进展,2007,17(5):692-696.
    [137]Niansheng Kuai, Jianming Li, Zhi Chen, et al. Experiment-based investigations of magnesium dust explosion characteristics [J]. Journal of Loss Prevention in the Process Industries,2011,24(4):302-313.
    [138]Paul R.Amyotte, Faisal I.Khan, Atreyee Basu, et al. Explosibility parameters for mixtures of pulverized fuel and ash[J]. Journal of Loss Prevention in the Process Industries,2006,19: 142-148.
    [139]谭迎新,王志杰,高云,等.固体惰性介质对煤粉爆炸压力的影响研究[J].中国安全科学学报,2007,17(12):76-79.
    [140]陈先锋.丙烷空气预混火焰微观结构及加速传播过程中的动力学研究[D].安徽合肥:中国科学技术大学博士学位论文,2007.
    [141]成新法,编著.矿用炸药[M].北京:煤炭工业出版社,1995.
    [142]张德丰,编著MATLAB数字图像处理[M].北京:机械工业出版社,2012.
    [143]张德丰,编著MATLAB小波分析[M].北京:机械工业出版社,2012.
    [144]秦襄培,郑贤中,编著MATLAB图像处理宝典[M].北京:电子工业出版社,2011.
    [145]苏影妹.基于小波变换的炉膛火焰图像处理技术研究[D].华北电力大学硕士学位论文,2011.
    [146]聂百胜,何学秋,杨春丽,等.瓦斯爆炸火焰图像增强及传播特征研究[C].第四届全国计算爆炸力学会议论文集,2008.8:622-627.
    [147]金美善.火焰图像特征提取与描述方法研究[D].长春:长春工业大学硕士学位论文,2007.
    [148]何晓燕.基于数字图像处理的炉膛火焰检测算法研究[D].华北电力大学硕士学位论文,2002.
    [149]李孝斌.矿井瓦斯爆炸感应期内反应动力学分析及光学特征研究[D].西安:西安科技大学博士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700