用户名: 密码: 验证码:
基于聚集诱导荧光的肼二腙类荧光探针和刺激响应材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚集诱导荧光是一种独特的发光现象,即分子在分散态时具有弱荧光,而在聚集态时则表现出强荧光。与传统荧光染料相比,聚集诱导荧光分子可以有效避免由聚集所引起的荧光淬灭作用。经由水杨醛衍生物和水合肼之间的简单缩合反应得到的二水杨醛缩肼衍生物,正是一类拥有此种独特发光性质的分子。在二水杨醛缩肼结构中,西弗碱与邻位羟基通过分子内氢键形成了稳定的六元环,该结构使整个分子可围绕氮-氮单键自由旋转,由此带来了聚集诱导荧光的发光特征。因此,二水杨醛缩肼衍生物的独特发光行为赋予它在开发新型荧光探针和固体发光材料领域中广阔的应用前景。
     鉴于其具有合成简易和发光性能卓越等优势,本文设计了一系列新型具有聚集诱导荧光性质的缩肼类荧光探针和刺激响应材料。首先,本文建立了一种基于聚集诱导荧光机理检测焦磷酸根的分析方法。该方法以二-5-氯水杨醛缩肼为荧光探针,借助铜离子与探针的选择性结合作用构建了一个荧光淬灭的络合体系,该络合体系可用于焦磷酸根的荧光增强型检测,检测限为0.064μM。其次,本文将自由旋转的苯环作为柔性构象因子引入到了二水杨醛缩肼结构中,得到了一种具有聚集诱导荧光和热致荧光变色性质的新型分子-二苯甲酮缩肼。热刺激导致的苯环扭转构象变化是产生热致荧光变色的主要原因:在热退火处理下,苯环发生了较大的扭转构象改变使得分子在晶体中产生更强的分子间相互作用并以更紧密的模式堆积,从而导致其荧光波长变长;在熔融热处理下,分子间的强相互作用被破坏,使得分子在晶体中以较为疏松的模式堆积,从而导致其荧光波长变短。第三,本文将柔性烷基链引入到二苯甲酮缩肼结构中,得到了另外一种基于聚集诱导荧光性质的新型材料-辛烷氧基二苯甲酮缩肼,该材料具有可逆的热致荧光变色以及有机蒸汽致荧光变色功能。研究显示柔性链构象的变化可促使分子在晶体中形成如下三种密堆积模式:近似单体的堆积模式、J-聚集体堆积模式和以二聚体为单元的交叉堆积模式,其在这三种晶体中的荧光波长从534nm到543nm再到558nm,依次发生红移。在热刺激下,晶体由亚稳态的平行堆积模式转为热稳态的交叉堆积模式,导致其荧光波长红移;在有机蒸汽的熏蒸下,二聚体中的π-π相互作用则由于烷基链构象和局部偶极作用的共同变化而被破坏,导致其荧光波长蓝移。
Aggregation-induced emission (AIE) is a unique phenomenon thatAIE-active compounds exhibit weaker fluorescence in solution but strongerfluorescence in the aggregated state. Unlike traditional fluorescent dyes,AIE-active compounds effectively avoid the self-quenching of fluorescenceinduced by aggregation. Salicylaldehyde azine derivatives, facilely prepared bythe condensation between the corresponding salicylaldehydes and hydrazine,displayed such unique AIE property. Induced by the intrameocular hydrogenbond between the Schiff base’s nitrogen and ortho-hydroxyl group, the rigidsix-membered ring in salicylaldehyde azines allowed free rotation of themolecules around N-N single bond, thus leading to their fascinatingaggregation-induced emission property. Therefore, the aforesaid uniqueemission behavior endowed salicylaldehyde azine derivatives with greatpotential in developing new fluorescent probes and solid fluorescent materials.
     Given the convenience of preparation and the unique emission behavior,this dissertation was aimed at developing new fluorescent probes and solidfluorescent materials of azines based on the aggregation-induced emission.Firstly, an analytical approach based on AIE mechanism to detectpyrophosphate (PPi) was established with5-chlorosalicylaldehyde azine as theturn-on fluorescent probe. With the aid of selective binding between copper(II)cation and5-chlorosalicylaldehyde azine, a complex system based on AIE wasconstructed and applied in the detection of PPi with the detection limit at0.064μM. Secondly, novel benzophenone azine, exhibiting AIE and thermochromismproperties, was designed and generated by the incorporation of free-rotatingphenyl ring with the conformational flexibility into the scaffold ofsalicylaldehyde azine. Conformational changes of phenyl ring induced bythermal stimuli accounted for the thermochromism. Upon thermal annealingtreatment, the larger conformational rotary of phenyl ring promoted strongerintermolecular interaction and tighter packing mode, and consequently theemission was shifted to longer wavelength. Upon melting treatment, the aforesaid stronger intermolecular interaction was destroyed to release themolecules in the loose packing mode in the crystal structure, and consequentlythe emission was shifted back to shorter wavelength. Thirdly, novel AIEmaterial octanoxyl-substituted benzophenone azine, displaying reversiblethermochromism and vapochromism properties, was designed and produced bythe combination of long alkyl chains with the scaffold of benzophenone azine.Accompanied with the conformational change of the flexible alkyl chain, threedifferent types of packing model, including monomer-like aggregate packingmode, J-aggregate packing mode and the special herringbone packing mode thatcomposed by dimer units, were observed in the crystal structure with theemission red-shifted from534nm to543nm further to558nm. Upon thethermal stimulation, the metastable packing modes of monomer-like aggregateand J-aggregate in the crystal both can be converted to the thermal stableherringbone packing mode, and consequently the emission was red-shifted.Upon exposure to organic vapor, π-π stacking interaction in the dimer units wasdiminished due to the change of alkyl’s conformation and local dipoleinteraction, and thus the emission was blue-shifted.
引文
[1] Birks J B. Photophysics of Aromatic Molecules. London: Wiley,1970.
    [2] Lakowicz J R. Principles of Fluorescence Spectroscopy. New York: Springer,2006.
    [3] Hong Y, Lam J W Y, Tang B Z. Aggregation-Induced Emission. Chem. Soc. Rev.2011,40(11):5361-5388.
    [4] Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D,Tang B Z. Aggregation-Induced Emission of1-Methyl-1,2,3,4,5-Pentaphenylsilole.Chem. Commun.2001,18:1740-1741.
    [5] An B K, Kwon S K, Jung S D, Park S Y. Enhanced Emission and Its Switching inFluorescent Organic Nanoparticles. J. Am. Chem. Soc.2002,124(48):14410-14415.
    [6] Li Z, Dong Y Q, Lam J W Y, Sun J, Qin A, Hau ler M, Dong Y P, Sung H H Y,Williams I D, Kwok H S, Tang B Z. Functionalized Siloles: Versatile Synthesis,Aggregation-Induced Emission, and Sensory and Device Applications. Adv. Funct.Mater.2009,19(6):905-917.
    [7] Liu J Z, Zhong Y C, Lam J W Y, Lu P, Hong Y N, Yu Y, Yue Y N, Faisal M, Sung H HY, Williams I D, Wong K S, Tang B Z. Hyperbranched Conjugated Polysiloles:Synthesis, Structure, Aggregation-Enhanced Emission, Multicolor FluorescentPhotopatterning, and Superamplified Detection of Explosives. Macromolecules2010,43(11):4921-4936.
    [8] Zhao Z J, Liu D D, Mahtab F, Xin L Y, Shen Z F, Yu Y, Chan C Y K, Lu P, Lam J W Y,Sung H H Y, Williams I D, Yang B, Ma Y G, Tang B Z. Synthesis, Structure,Aggregation-Induced Emission, Self-Assembly, and Electron Mobility of2,5-Bis(Triphenylsilylethynyl)-3,4-Diphenylsiloles. Chem.-Eur. J.2011,17(21):5998-6008.
    [9] Mei J, Wang J, Sun J Z, Zhao H, Yuan W Z, Deng C M, Chen S M, Sung H H Y, Lu P,Qin A J, Kwok H S, Ma Y G, Williams I D, Tang B Z. Siloles SymmetricallySubstituted on Their2,5-Positions with Electron-Accepting and Donating Moieties:Facile Synthesis, Aggregation-Enhanced Emission, Solvatochromism, and DeviceApplication. Chem. Sci.2012,3(2):549-558.
    [10] Wan J H, Mao L Y, Li Y B, Li Z F, Qiu H Y, Wang C, Lai G Q. Self-Assembly ofNovel Fluorescent Silole Derivatives into Different Supramolecular Aggregates: Fibre,Liquid Crystal and Monolayer. Soft Matter2010,6(14):3195-3201.
    [11] Yuan W Z, Chen S M, Lam J W Y, Deng C M, Lu P, Sung H H Y, Williams I D, KwokH S, Zhang Y M, Tang B Z. Towards High Efficiency Solid Emitters withAggregation-Induced Emission and Electron-Transport Characteristics. Chem.Commun.2011,47(40):11216-11218.
    [12] Chan C Y K, Zhao Z J, Lam J W Y, Liu J Z, Chen S M, Lu P, Mahtab F, Chen X J,Sung H H Y, Kwok H S, Ma Y G, Williams I D, Wong K S, Tang B Z. Efficient LightEmitters in the Solid State: Synthesis, Aggregation-Induced Emission,Electroluminescence, and Sensory Properties of Luminogens with Benzene Cores andMultiple Triarylvinyl Peripherals. Adv. Funct. Mater.2012,22(2):378-389.
    [13] Yang S, You J, Lan J, Gao G. Facile Access to Extremely Efficient Energy-TransferPairs Via an Unexpected Reaction of Squaraines with Ketones. J. Am. Chem. Soc.2012,134(29):11868-11871.
    [14] Zhao Q L, Zhang S, Liu Y, Mei J, Chen S J, Lu P, Qin A J, Ma Y G, Sun J Z, Tang B Z.Tetraphenylethenyl-Modified Perylene Bisimide: Aggregation-Induced Red Emission,Electrochemical Properties and Ordered Microstructures. J. Mater. Chem.2012,22(15):7387-7394.
    [15] Zhao Z J, Chan C Y K, Chen S M, Deng C M, Lam J W Y, Jim C K W, Hong Y N, Lu P,Chang Z F, Chen X P, Kwok H S, Qiu H Y, Tang B Z. Using Tetraphenylethene andCarbazole to Create Efficient Luminophores with Aggregation-Induced Emission, HighThermal Stability, and Good Hole-Transporting Property. J. Mater. Chem.2012,22(10):4527-4534.
    [16] Wang W Z, Lin T T, Wang M, Liu T X, Ren L L, Chen D, Huang S. AggregationEmission Properties of Oligomers Based on Tetraphenylethylene. Journal of PhysicalChemistry B2010,114(18):5983-5988.
    [17] Aldred M P, Li C, Zhang G F, Gong W L, Li A D Q, Dai Y F, Ma D G, Zhu M Q.Fluorescence Quenching and Enhancement of Vitrifiable Oligofluorenes End-Cappedwith Tetraphenylethene. J. Mater. Chem.2012,22(15):7515-7528.
    [18] Huang J, Yang X, Wang J Y, Zhong C, Wang L, Qin J G, Li Z. NewTetraphenylethene-Based Efficient Blue Luminophors: Aggregation Induced Emissionand Partially Controllable Emitting Color. J. Mater. Chem.2012,22(6):2478-2484.
    [19] Xu B J, Chi Z G, Yang Z Y, Chen J B, Deng S Z, Li H Y, Li X F, Zhang Y, Xu N S, XuJ R. Facile Synthesis of a New Class of Aggregation-Induced Emission MaterialsDerived from Triphenylethylene. J. Mater. Chem.2010,20(20):4135-4141.
    [20] Yao D, Zhao S, Guo J, Zhang Z, Zhang H, Liu Y, Wang Y.Hydroxyphenyl-Benzothiazole Based Full Color Organic Emitting Materials Generatedby Facile Molecular Modification. J. Mater. Chem.2011,21(11):3568-3570.
    [21] Li H Y, Zhang X Q, Chi Z G, Xu B J, Zhou W, Liu S W, Zhang Y, Xu J R. NewThermally Stable Piezofluorochromic Aggregation-Induced Emission Compounds. Org.Lett.2011,13(4):556-559.
    [22] Ohshita J, Lee K-H, Hashimoto M, Kunugi Y, Harima Y, Yamashita K, Kunai A.Preparation of4,4-Diaryl-2-(Tricyanoethenyl)Dithienosiloles and Vapor-ChromicBehavior of the Film. Org. Lett.2002,4(11):1891-1894.
    [23] An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. Strongly FluorescentOrganogel System Comprising Fibrillar Self-Assembly of a Trifluoromethyl-BasedCyanostilbene Derivative. J. Am. Chem. Soc.2004,126(33):10232-10233.
    [24] Yoon S-J, Chung J W, Gierschner J, Kim K S, Choi M-G, Kim D, Park S Y.Multistimuli Two-Color Luminescence Switching Via Different Slip-Stacking ofHighly Fluorescent Molecular Sheets. J. Am. Chem. Soc.2010,132(39):13675-13683.
    [25] Yoon S J, Kim J H, Kim K S, Chung J W, Heinrich B, Mathevet F, Kim P, Donnio B,Attias A J, Kim D, Park S Y. Mesomorphic Organization and ThermochromicLuminescence of Dicyanodistyrylbenzene-Based Phasmidic Molecular Disks:Uniaxially Aligned Hexagonal Columnar Liquid Crystals at Room Temperature withEnhanced Fluorescence Emission and Semiconductivity. Adv. Funct. Mater.2012,22(1):61-69.
    [26] Ning Z J, Chen Z, Zhang Q, Yan Y L, Qian S X, Cao Y, Tian H. Aggregation-InducedEmission (AIE)-Active Starburst Triarylamine Fluorophores as Potential Non-DopedRed Emitters for Organic Light-Emitting Diodes and Cl2Gas Chemodosimeter. Adv.Funct. Mater.2007,17(18):3799-3807.
    [27] Wang B, Wang Y C, Hua J L, Jiang Y H, Huang J H, Qian S X, Tian H. StarburstTriarylamine Donor-Acceptor-Donor Quadrupolar Derivatives Based onCyano-Substituted Diphenylaminestyrylbenzene: Tunable Aggregation-InducedEmission Colors and Large Two-Photon Absorption Cross Sections. Chem. Eur. J.2011,17(9):2647-2655.
    [28] Liu Y, Tao X T, Wang F Z, Dang X N, Zou D C, Ren Y, Jiang M H.Aggregation-Induced Emissions of Fluorenonearylamine Derivatives: A New Kind ofMaterials for Nondoped Red Organic Light-Emitting Diodes. J. Phys. Chem. C2008,112(10):3975-3981.
    [29] Liu Y, Chen S M, Lam J W Y, Mahtab F, Kwok H S, Tang B Z. Tuning the ElectronicNature of Aggregation-Induced Emission Chromophores with EnhancedElectron-Transporting Properties. J. Mater. Chem.2012,22(11):5184-5189.
    [30] Qin W, Ding D, Liu J Z, Yuan W Z, Hu Y, Liu B, Tang B Z. BiocompatibleNanoparticles with Aggregation-Induced Emission Characteristics asFar-Red/near-Infrared Fluorescent Bioprobes for in Vitro and in Vivo ImagingApplications. Adv. Funct. Mater.2012,22(4):771-779.
    [31] Zhou J, Chang Z F, Jiang Y B, He B R, Du M, Lu P, Hong Y N, Kwok H S, Qin A J,Qiu H Y, Zhao Z J, Tang B Z. From Tetraphenylethene to Tetranaphthylethene:Structural Evolution in AIE Luminogen Continues. Chem. Commun.2013,49(25):2491-2493.
    [32] Hong Y, Lam J W Y, Tang B Z. Aggregation-Induced Emission: Phenomenon,Mechanism and Applications. Chem. Commun.2009,29:4332-4353.
    [33] Liu L, Zhang G, Xiang J, Zhang D, Zhu D. Fluorescence “Turn on” Chemosensors forAg+and Hg2+Based on Tetraphenylethylene Motif Featuring Adenine and ThymineMoieties. Org. Lett.2008,10(20):4581-4584.
    [34] Bian N, Chen Q, Qiu X L, Qi A D, Han B H. Imidazole-Bearing Tetraphenylethylene:Fluorescent Probe for Metal Ions Based on AIE Feature. New Journal of Chemistry2011,35(8):1667-1671.
    [35] Peng L, Wang M, Zhang G, Zhang D, Zhu D. A Fluorescence Turn-on Detection ofCyanide in Aqueous Solution Based on the Aggregation-Induced Emission. Org. Lett.2009,11(9):1943-1946.
    [36] Liu Y, Tang Y, Barashkov N N, Irgibaeva I S, Lam J W Y, Hu R, Birimzhanova D, YuY, Tang B Z. Fluorescent Chemosensor for Detection and Quantitation of CarbonDioxide Gas. Journal of the American Chemical Society2010,132(40):13951-13953.
    [37] Hu R, Luis Maldonado J, Rodriguez M, Deng C, Jim C K W, Lam J W Y, Yuen M M F,Ramos-Ortiz G, Tang B Z. Luminogenic Materials Constructed fromTetraphenylethene Building Blocks: Synthesis, Aggregation-Induced Emission,Two-Photon Absorption, Light Refraction, and Explosive Detection. J. Mater. Chem.2012,22(1):232-240.
    [38] Toal S J, Magde D, Trogler W C. Luminescent Oligo(Tetraphenyl)Silole Nanoparticlesas Chemical Sensors for Aqueous Tnt. Chem. Commun.2005,43):5465-5467.
    [39] Zhao Z J, Liu J Z, Lam J W Y, Chan C Y K, Qiu H Y, Tang B Z. LuminescentAggregates of a Starburst Silole-Triphenylamine Adduct for Sensitive ExplosiveDetection. Dyes Pigment.2011,91(2):258-263.
    [40] Li Z, Dong Y Q, Lam J W Y, Sun J, Qin A, Haeussler M, Dong Y P, Sung H H Y,Williams I D, Kwok H S, Tang B Z. Functionalized Siloles: Versatile Synthesis,Aggregation-Induced Emission, and Sensory and Device Applications. Adv. Funct.Mater.2009,19(6):905-917.
    [41] Liu Y, Yu Y, Lam J, Hong Y, Faisal M, Yuan W, Tang B. Simple Biosensor with HighSelectivity and Sensitivity: Thiol-Specific Biomolecular Probing and IntracellularImaging by AIE Fluorogen on a Tlc Plate through a Thiol–Ene Click Mechanism.Chem.-Eur. J.2010,16(28):8433-8438.
    [42] Liu Y, Deng C, Tang L, Qin A, Hu R, Sun J Z, Tang B Z. Specific Detection ofD-Glucose by a Tetraphenylethene-Based Fluorescent Sensor. J. Am. Chem. Soc.2011,133(4):660-663.
    [43] Zhao M, Wang M, Liu H, Liu D, Zhang G, Zhang D, Zhu D. Continuous on-SiteLabel-Free Atp Fluorometric Assay Based on Aggregation-Induced Emission of Silole.Langmuir2008,25(2):676-678.
    [44] Chen Q, Bian N, Cao C, Qiu X L, Qi A D, Han B H. Glucosamine HydrochlorideFunctionalized Tetraphenylethylene: A Novel Fluorescent Probe for AlkalinePhosphatase Based on the Aggregation-Induced Emission. Chem. Commun.2010,46(23):4067-4069.
    [45] Wang M, Zhang D, Zhang G, Tang Y, Wang S, Zhu D. Fluorescence Turn-on Detectionof DNA and Label-Free Fluorescence Nuclease Assay Based on theAggregation-Induced Emission of Silole. Anal. Chem.2008,80(16):6443-6448.
    [46] Wang M, Zhang D, Zhang G, Zhu D. The Convenient Fluorescence Turn-on Detectionof Heparin with a Silole Derivative Featuring an Ammonium Group. Chem. Commun.2008,37:4469-4471.
    [47] Xue W, Zhang G, Zhang D, Zhu D. A New Label-Free Continuous Fluorometric Assayfor Trypsin and Inhibitor Screening with Tetraphenylethene Compounds. Org. Lett.2010,12(10):2274-2277.
    [48] Leung C W T, Hong Y, Chen S, Zhao E, Lam J W Y, Tang B Z. A Photostable AIELuminogen for Specific Mitochondrial Imaging and Tracking. J. Am. Chem. Soc.2013,135(1):62-65.
    [49] Shimizu M, Hiyama T. Organic Fluorophores Exhibiting Highly EfficientPhotoluminescence in the Solid State. Chem.-Asian J.2010,5(7):1516-1531.
    [50] Kamtekar K T, Monkman A P, Bryce M R. Recent Advances in White OrganicLight-Emitting Materials and Devices (WOLEDs). Adv. Mater.2010,22(5):572-582.
    [51] Li D, Zhang H, Wang C, Huang S, Guo J, Wang Y. Construction of Full-Color-Tunableand Strongly Emissive Materials by Functionalizing a Boron-Chelate Four-Ring-Fused
    [Small Pi]-Conjugated Core. J. Mater. Chem.2012,22(10):4319-4328.
    [52] Zheng J Y, Zhang C, Zhao Y S, Yao J. Detection of Chemical Vapors with TunableEmission of Binary Organic Nanobelts. Phys. Chem. Chem. Phys.2010,12(40):12935-12938.
    [53] Mizobe Y, Tohnai N, Miyata M, Hasegawa Y. A Tunable Solid-State FluorescenceSystem Consisting of Organic Salts of Anthracene-2,6-Disulfonic Acid with PrimaryAmines. Chem. Commun.2005,0(14):1839-1841.
    [54] Tohnai N, Sasaki T, Hisaki I, Miyata M. Control of Crystal Structures and Solid-StateFluorescence Properties on Salts of Anthracene-2,6-Disulfonic Acid with AliphaticPrimary Amines. J. Crystallogr. Soc. Jpn.2010,52(4):208-213213.
    [55] Hinoue T, Shigenoi Y, Sugino M, Mizobe Y, Hisaki I, Miyata M, Tohnai N. Regulationof Π-Stacked Anthracene Arrangement for Fluorescence Modulation of Organic Solidfrom Monomer to Excited Oligomer Emission. Chem.-Eur. J.2012,18(15):4634-4643.
    [56] Wenying S, Yanjun L, Shan H, Yufei Z, Changming L, Min W, Evans D G, Xue D.Patterned Fluorescence Films with Reversible Thermal Response Based on theHost-Guest Superarchitecture. J. Mater. Chem.2011,21(30):11116-11122.
    [57] An B-K, Gihm S H, Chung J W, Park C R, Kwon S-K, Park S Y. Color-Tuned HighlyFluorescent Organic Nanowires/Nanofabrics: Easy Massive Fabrication and MolecularStructural Origin. J. Am. Chem. Soc.2009,131(11):3950-3957.
    [58] Kokado K, Chujo Y. Multicolor Tuning of Aggregation-Induced Emission throughSubstituent Variation of Diphenyl-O-Carborane. J. Org. Chem.2010,76(1):316-319.
    [59] Kokado K, Chujo Y. Emission Via Aggregation of Alternating Polymers withO-Carborane and P-Phenylene Ethynylene Sequences. Macromolecules2009,42(5):1418-1420.
    [60] Kokado K, Tokoro Y, Chujo Y. Luminescent and Axially Chiral Π-ConjugatedPolymers Linked by Carboranes in the Main Chain. Macromolecules2009,42(23):9238-9242.
    [61] Kokado K, Nagai A, Chujo Y. Poly(γ-Glutamic Acid) Hydrogels with Water-SensitiveLuminescence Derived from Aggregation-Induced Emission of o-Carborane.Macromolecules2010,43(15):6463-6468.
    [62] Li X, Qian Y, Wang S, Li S, Yang G. Tunable Fluorescence Emission and EfficientEnergy Transfer in Doped Organic Nanoparticles. J. Phys. Chem. C2009,113(9):3862-3868.
    [63]钱妍,李沙瑜,王双青,于贵,刘云圻,孙晓波,徐新军,王潜,许慧君,杨国强.基于聚集荧光增强体系的掺杂纳米粒子的可调控荧光发射与能量传递性质研究.化学学报2008,66(9):1053-1058.
    [64] Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, Li C, Li Y, Yang G.Aggregation-Induced Emission Enhancement of2-(2’-Hydroxyphenyl)Benzothiazole-Based Excited-State Intramolecular Proton-Transfer Compounds. J.Phys. Chem. B2007,111(21):5861-5868.
    [65] Kim S, Yoon S-J, Park S Y. Highly Fluorescent Chameleon Nanoparticles and PolymerFilms: Multicomponent Organic Systems That Combine Fret and PhotochromicSwitching. J. Am. Chem. Soc.2012,134(29):12091-12097.
    [66] Tong H, Hong Y, Dong Y, Ren Y, H ussler M, Lam J W Y, Wong K S, Tang B Z.Color-Tunable, Aggregation-Induced Emission of a Butterfly-Shaped MoleculeComprising a Pyran Skeleton and Two Cholesteryl Wings. J. Phys. Chem. B2007,111(8):2000-2007.
    [67] Zhang X Q, Yang Z Y, Chi Z G, Chen M N, Xu B J, Wang C C, Liu S W, Zhang Y, XuJ R. A Multi-Sensing Fluorescent Compound Derived from Cyanoacrylic Acid. J.Mater. Chem.2010,20(2):292-298.
    [68] Caira M R, Crystalline Polymorphism of Organic Compounds. Design of OrganicSolids, Berlin: Springer-verlag,1998:163-208.
    [69] Yu L. Polymorphism in Molecular Solids: An Extraordinary System of Red, Orange,and Yellow Crystals. Acc. Chem. Res.2010,43(9):1257-1266.
    [70] Anthony S P. Organic Solid-State Fluorescence: Strategies for Generating Switchableand Tunable Fluorescent Materials. ChemPlusChem2012,77(7):518-531.
    [71] Zhang G Q, Lu J W, Sabat M, Fraser C L. Polymorphism and ReversibleMechanochromic Luminescence for Solid-State Difluoroboron Avobenzone. J. Am.Chem. Soc.2010,132(7):2160-2162.
    [72] Mutai T, Satou H, Araki K. Reproducible on-Off Switching of Solid-StateLuminescence by Controlling Molecular Packing through Heat-Mode Interconversion.Nat. Mater.2005,4(9):685-687.
    [73] Wang M, Zhang D Q, Xin Z G, Zhu D B. Fluorescence Enhancement Upon Gelationand Thermally-Driven Fluorescence Switches Based on Tetraphenylsilole-BasedOrganic Gelators. Chem. Phys. Lett.2009,475(1-3):64-67.
    [74] Luo X L, Li J N, Li C H, Heng L P, Dong Y Q, Liu Z P, Bo Z S, Tang B Z. ReversibleSwitching of the Emission of Diphenyldibenzofulvenes by Thermal and MechanicalStimuli. Adv. Mater.2011,23(29):3261-3265.
    [75] Zhang G, Singer J P, Kooi S E, Evans R E, Thomas E L, Fraser C L. ReversibleSolid-State Mechanochromic Fluorescence from a Boron Lipid Dye. J. Mater. Chem.2011,21(23):8295-8299.
    [76] Zhang X Q, Chi Z G, Zhang J Y, Li H Y, Xu B J, Li X F, Liu S W, Zhang Y, Xu J R.Piezofluorochromic Properties and Mechanism of an Aggregation-Induced EmissionEnhancement Compound Containing N-Hexyl-Phenothiazine and Anthracene Moieties.J. Phys. Chem. B2011,115(23):7606-7611.
    [77] Zhou X, Li H Y, Chi Z G, Zhang X Q, Zhang J Y, Xu B J, Zhang Y, Liu S W, Xu J R.Piezofluorochromism and Morphology of a New Aggregation-Induced EmissionCompound Derived from Tetraphenylethylene and Carbazole. New Journal ofChemistry2012,36(3):685-693.
    [78] Yoon S-J, Park S Y. Polymorphic and Mechanochromic Luminescence Modulation inthe Highly Emissive Dicyanodistyrylbenzene Crystal: Secondary Bonding Interactionin Molecular Stacking Assembly. J. Mater. Chem.2011,21(23):8338-8346.
    [79] Chi Z G, Zhang X Q, Xu B J, Zhou X, Ma C P, Zhang Y, Liu S W, Xu J R. RecentAdvances in Organic Mechanofluorochromic Materials. Chem. Soc. Rev.2012,41(10):3878-3896.
    [80] Mutai T, Tomoda H, Ohkawa T, Yabe Y, Araki K. Switching of Polymorph-DependentESIPT Luminescence of an Imidazo[1,2-a]Pyridine Derivative. Angew. Chem. Int. Ed.2008,47(49):9522-9524.
    [81] Zhao N, Yang Z Y, Lam J W Y, Sung H H Y, Xie N, Chen S J, Su H M, Gao M,Williams I D, Wong K S, Tang B Z. Benzothiazolium-FunctionalizedTetraphenylethene: An AIE Luminogen with Tunable Solid-State Emission. Chem.Commun.2012,48(69):8637-8639.
    [82] Wang J, Mei J, Hu R R, Sun J Z, Qin A J, Tang B Z. Click Synthesis,Aggregation-Induced Emission, E/Z Isomerization, Self-Organization, and MultipleChromisms of Pure Stereoisomers of a Tetraphenylethene-Cored Luminogen. J. Am.Chem. Soc.2012,134(24):9956-9966.
    [83] Tang W, Xiang Y, Tong A. Salicylaldehyde Azines as Fluorophores ofAggregation-Induced Emission Enhancement Characteristics. J. Org. Chem.2009,74(5):2163-2166.
    [84] Chen X T, Xiang Y, Song P S, Wei R R, Zhou Z J, Li K, Tong A J.P-Carboxyl-N-Salicylideneanilines: Simple but Efficient Chromophores forOne-Dimensional Microrods with Aggregation-Induced Emission Enhancement (AIEE)Characteristics. J. Lumines.2011,131(7):1453-1459.
    [85] Song P S, Chen X T, Xiang Y, Huang L, Zhou Z J, Wei R R, Tong A J. A RatiometricFluorescent Ph Probe Based on Aggregation-Induced Emission Enhancement and ItsApplication in Live-Cell Imaging. J. Mater. Chem.2011,21(35):13470-13475.
    [86] Kwon J E, Park S Y. Advanced Organic Optoelectronic Materials: HarnessingExcited-State Intramolecular Proton Transfer (Esipt) Process. Adv. Mater.2011,23(32):3615-3642.
    [87] Chen X T, Xiang Y, Li Z F, Tong A J. Sensitive and Selective FluorescenceDetermination of Trace Hydrazine in Aqueous Solution Utilizing5-Chlorosalicylaldehyde. Anal. Chim. Acta2008,625(1):41-46.
    [88] Tang W X, Xiang Y, Tong A J. Salicylaldehyde Azines as Fluorophores ofAggregation-Induced Emission Enhancement Characteristics. J. Org. Chem.2009,74(5):2163-2166.
    [89] Chen X T, Xiang Y, Li N, Song P S, Tong A J. Fluorescence Turn-on Detection ofProtamine Based on Aggregation-Induced Emission Enhancement Characteristics of4-(6[Prime or Minute]-Carboxyl)Hexyloxysalicylaldehyde Azine. Analyst2010,135(5):1098-1105.
    [90] Peng L, Wei R, Li K, Zhou Z, Song P, Tong A. A Ratiometric Fluorescent Probe forHydrophobic Proteins in Aqueous Solution Based on Aggregation-Induced Emission.Analyst2013,138(7):2068-2072.
    [91] Chen X T, Wei R R, Xiang Y, Zhou Z J, Li K, Song P S, Tong A J. Organic CrystallineSolids Response to Piezo/Thermo Stimulus: Donor-Acceptor (D-A) AttachedSalicylaldehyde Azine Derivatives. J. Phys. Chem. C2011,115(29):14353-14359.
    [92] Rutsch F, Vaingankar S, Johnson K, Goldfine I, Maddux B, Schauerte P, Kalhoff H,Sano K, Boisvert W A, Superti-Furga A, Terkeltaub R. Pc-1Nucleoside TriphosphatePyrophosphohydrolase Deficiency in Idiopathic Infantile Arterial Calcification. Am. J.Pathol.2001,158(2):543-554.
    [93] Michael Doherty, Carolyn Belcher, Marian Regan, Adrian Jones, Ledingham J.Association between Synovial Fluid Levels of Inorganic Pyrophosphate and ShortTerm Radiographic Outcome of Knee Osteoarthritis. Ann. Rheum. Dis.1996,55(432-436.
    [94] Lee D H, Kim S Y, Hong J I. Fluorescent Pyrophosphate Sensor with High Selectivityover Atp in Water. Angew. Chem. Int. Ed.2004,43(36):4777-4780.
    [95] Cho H K, Lee D H, Hong J I. A Fluorescent Pyrophosphate Sensor Via ExcimerFormation in Water. Chem. Commun.2005,13):1690-1692.
    [96] Jang Y J, Jun E J, Lee Y J, Kim Y S, Kim J S, Yoon J. Highly Effective Fluorescentand Colorimetric Sensors for Pyrophosphate over H2PO4-in100%Aqueous Solution.J. Org. Chem.2005,70(23):9603-9606.
    [97] Lee H N, Xu Z C, Kim S K, Swamy K M K, Kim Y, Kim S J, Yoon J.Pyrophosphate-Selective Fluorescent Chemosensor at Physiological Ph: Formation of aUnique Excimer Upon Addition of Pyrophosphate. J. Am. Chem. Soc.2007,129(13):3828-3829.
    [98] Lee J H, Park J, Lah M S, Chin A, Hong J I. High-Affinity Pyrophosphate by aSynergistic Effect Receptor Metal Coordination and Hydrogen Bonding in Water. Org.Lett.2007,9(19):3729-3731.
    [99] Swamy K M K, Kwon S K, Lee H N, Shantha Kumar S M, Kim J S, Yoon J.Fluorescent Sensing of Pyrophosphate and Atp in100%Aqueous Solution Using aFluorescein Derivative and Mn2+. Tetrahedron Lett.2007,48(49):8683-8686.
    [100] Huang X, Guo Z, Zhu W, Xie Y, Tian H. A Colorimetric and Fluorescent Turn-onSensor for Pyrophosphate Anion Based on a Dicyanomethylene-4H-ChromeneFramework. Chem. Commun.2008,41:5143-5145.
    [101] Guo Z, Zhu W, Tian H. Hydrophilic Copolymer Bearing Dicyanomethylene-4h-PyranMoiety as Fluorescent Film Sensor for Cu2+and Pyrophosphate Anion.Macromolecules2009,43(2):739-744.
    [102] Kim M J, Swamy K M K, Lee K M, Jagdale A R, Kim Y, Kim S-J, Yoo K H, Yoon J.Pyrophosphate Selective Fluorescent Chemosensors Based on Coumarin-DPA-Cu(II)Complexes. Chem. Commun.2009,46):7215-7217.
    [103] Huang X H, Lu Y, He Y B, Chen Z H. A Metal-Macrocycle Complex as a FluorescentSensor for Biological Phosphate Ions in Aqueous Solution. European J. Org. Chem.2010,10):1921-1927.
    [104] Shao N, Wang H, Gao X D, Yang R H, Chan W H. Spiropyran-Based FluorescentAnion Probe and Its Application for Urinary Pyrophosphate Detection. Anal. Chem.2010,82(11):4628-4636.
    [105] Chen W H, Xing Y, Pang Y. A Highly Selective Pyrophosphate Sensor Based onESIPT Turn-on in Water. Organic Letters2011,13(6):1362-1365.
    [106] Roy B, Rao A S, Ahn K H. Mononuclear Zn(II)-and Cu(II)-Complexes of aHydroxynaphthalene-Derived Dipicolylamine: Fluorescent Sensing Behaviours towardPyrophosphate Ions. Org. Biomol. Chem.2011,9(22):7774-7779.
    [107] Fabbrizzi L, Marcotte N, Stomeo F, Taglietti A. Pyrophosphate Detection in Water byFluorescence Competition Assays: Inducing Selectivity through the Choice of theIndicator. Angew. Chem. Int. Ed.2002,41(20):3811-3814.
    [108] Lee D H, Kim S Y, Hong J I. Quencher-Fluorophore Ensemble for Detection ofPyrophosphate in Water. Tetrahedron Lett.2007,48(26):4477-4480.
    [109] Zhao X, Liu Y, Schanze K S. A Conjugated Polyelectrolyte-Based FluorescenceSensor for Pyrophosphate. Chem. Commun.2007,28:2914-2916.
    [110] Zhao X J, Huang C Z. Selective Fluorometric Detection of Pyrophosphate andStringent Alarmone with Copper(II)-2,6-Bis(2-Benzimidazolyl)Pyridine Complex.Biosens. Bioelectron.2011,30(1):282-286.
    [111] Rahimi Y, Goulding A, Shrestha S, Mirpuri S, Deo S K. Mechanism of Copper InducedFluorescence Quenching of Red Fluorescent Protein, Dsred. Biochem. Biophys. Res.Commun.2008,370(1):57-61.
    [112] Maity D, Manna A K, Karthigeyan D, Kundu T K, Pati S K, Govindaraju T.Visible–near-Infrared and Fluorescent Copper Sensors Based on Julolidine Conjugates:Selective Detection and Fluorescence Imaging in Living Cells. Chem. Eur. J.2011,17(40):11152-11161.
    [113] Liu X, Zong C, Lu L. Fluorescent Silver Nanoclusters for User-Friendly Detection ofCu2+on a Paper Platform. Analyst2012,137(10):2406-2414.
    [114] Lin W, Yuan L, Feng J, Cao X. A Fluorescence-Enhanced Chemodosimeter for Fe3+Based on Hydrolysis of Bis(Coumarinyl) Schiff Base. Eur. J. Org. Chem.2008:2689-2692.
    [115] Zhao Z J, Lam J W Y, Tang B Z. Aggregation-Induced Emission of TetraaryletheneLuminogens. Curr. Org. Chem.2010,14(18):2109-2132.
    [116] An B-K, Gierschner J, Park S Y. Pi-Conjugated Cyanostilbene Derivatives: A UniqueSelf-Assembly Motif for Molecular Nanostructures with Enhanced Emission andTransport. Acc. Chem. Res.2012,45(4):544-554.
    [117] Yuan W Z, Gong Y Y, Chen S M, Shen X Y, Lam J W Y, Lu P, Lu Y W, Wan Z M, HuR R, Xie N, Kwok H S, Zhang Y M, Sun J Z, Tang B Z. Efficient Solid Emitters withAggregation-Induced Emission and Intramolecular Charge Transfer Characteristics:Molecular Design, Synthesis, Photophysical Behaviors, and OLED Application. Chem.Mater.2012,24(8):1518-1528.
    [118] Mei J, Wang J, Sun J Z, Zhao H, Yuan W, Deng C, Chen S, Sung H H Y, Lu P, Qin A,Kwok H S, Ma Y, Williams I D, Tang B Z. Siloles Symmetrically Substituted on Their2,5-Positions with Electron-Accepting and Donating Moieties: Facile Synthesis,Aggregation-Enhanced Emission, Solvatochromism, and Device Application. Chem.Sci.2012,3(2):549-558.
    [119] Zhao Z J, Liu D D, Mahtab F, Xin L Y, Shen Z F, Yu Y, Chan C Y K, Lu P, Lam J W Y,Sung H H Y, Williams I D, Yang B, Ma Y G, Tang B Z. Synthesis, Structure,Aggregation-Induced Emission, Self-Assembly, and Electron Mobility of2,5-Bis(Triphenylsilylethynyl)-3,4-Diphenylsiloles. Chem.-Eur. J.2011,17(21):5998-6008.
    [120] Chan C Y K, Zhao Z, Lam J W Y, Liu J, Chen S, Lu P, Mahtab F, Chen X, Sung H H Y,Kwok H S, Ma Y, Williams I D, Wong K S, Tang B Z. Efficient Light Emitters in theSolid State: Synthesis, Aggregation-Induced Emission, Electroluminescence, andSensory Properties of Luminogens with Benzene Cores and Multiple TriarylvinylPeripherals. Adv. Funct. Mater.2012,22(2):378-389.
    [121] Ning Z, Chen Z, Zhang Q, Yan Y, Qian S, Cao Y, Tian H. Aggregation-InducedEmission (AIE)-Active Starburst Triarylamine Fluorophores as Potential Non-DopedRed Emitters for Organic Light-Emitting Diodes and Cl2Gas Chemodosimeter. Adv.Funct. Mater.2007,17(18):3799-3807.
    [122] Sagara Y, Kato T. Stimuli-Responsive Luminescent Liquid Crystals: Change ofPhotoluminescent Colors Triggered by a Shear-Induced Phase Transition. Angew.Chem. Int. Ed.2008,47(28):5175-5178.
    [123] Sagara Y, Yamane S, Mutai T, Araki K, Kato T. A Stimuli-Responsive,Photoluminescent, Anthracene-Based Liquid Crystal: Emission Color Determined byThermal and Mechanical Processes. Adv. Func. Mater.2009,19(12):1869-1875.
    [124] Davis R, Rath N P, Das S. Thermally Reversible Fluorescent Polymorphs ofAlkoxy-Cyano-Substituted Diphenylbutadienes: Role of Crystal Packing in Solid StateFluorescence. Chem. Commun.2004,0(1):74-75.
    [125] Zhang X, Chi Z, Xu B, Jiang L, Zhou X, Zhang Y, Liu S, Xu J. MultifunctionalOrganic Fluorescent Materials Derived from9,10-Distyrylanthracene with AlkoxylEndgroups of Various Lengths. Chem. Commun.2012,48(88):10895-10897.
    [126] Nguyen N D, Zhang G, Lu J, Sherman A E, Fraser C L. Alkyl Chain Length Effects onSolid-State Difluoroboron [Small Beta]-Diketonate Mechanochromic Luminescence. J.Mater. Chem.2011,21(23):8409-8415.
    [127] Kumar N S S, Varghese S, Rath N P, Das S. Solid State Optical Properties of4-Alkoxy-Pyridine Butadiene Derivatives: Reversible Thermal Switching ofLuminescence. J. Phys. Chem. C2008,112(22):8429-8437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700