用户名: 密码: 验证码:
形状记忆合金的机敏摩擦学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形状记忆合金(SMA)不仅具有形状记忆效应,而且在一定条件下还具有良
     好的耐磨性,但由于其硬度较低,用传统的磨损机理无法解释这种现象。SMA在
     感知外界应力的前提下,能够改变自身的伪弹性模量和伪弹性应变,从而在摩擦
     接触过程中改善微凸体与材料表面的接触状态,表现出机敏摩擦学特性。本文立
     足于接触问题,采用弹塑性有限元和实验相结合的方法,对SMA的机敏摩擦学
     特性及磨损机理进行研究的同时,提出了SMA机敏摩擦学材料设计准则。
     在有限元分析中采用等向强化力学模型,对TiNi合金受单微凸体法向载荷、
     滑动载荷以及多微凸体接触模型加载阶段进行了分析;在实验部分当中,用纳米
     力学探针及Vickers压头与原子力显微镜相结合的方法对超弹TiNi合金的接触行
     为进行了研究,并在干滑动摩擦磨损条件下,把TiNi合金同奥氏体不锈钢的耐磨
     性进行了比较。总结全文,得到以下一些结果及主要结论:
     1.SMA在摩擦接触过程中所体现出的机敏摩擦学特性主要表现有:
     (1)提高材料塑性变形临界载荷的同时,也使材料塑性变形区域的面积减
     小,而且增加了合金的最大弹性应变,减少了塑性接触的微凸体数目。
     (2)伪弹性模量的降低减小了最大von Mises应力、接触应力以及接触界
     面间的摩擦应力,并使von Mises应力和接触应力其随载荷增加而增加的
     速度变缓,这种趋势在高载荷下更加明显。
     (3)SMA在磨粒或微凸体接触压入过程中产生较大的弹性恢复,残留的
     塑性变形较小,在载荷为2000μN时,伪弹性应变为0.055的TiNi合金的
     弹性恢复量是45#钢的1.8倍,而其塑性变形只有45#钢的60%,在载荷为
     0.49N和0.98N时,其弹性恢复量分别是不锈钢的1.40倍和1.31倍。
     2.SMA的磨损机理为:SMA塑性变形临界载荷的提高、塑性区域面积的减
     小以及弹性变形能力的增强可以减小磨粒的塑性嵌入,降低材料的破坏范围,形
     成的犁沟浅而窄,因而具有较好的耐磨粒磨损特性;接触表面应力的降低及塑性
     变形区域向材料表面的推迟,减小了裂纹在表面的发生,塑性变形临界载荷的提
     高和塑性变形区域的减小延缓裂纹在材料内部的形成,并限制了裂纹形成的范围,
     因而表现出耐疲劳磨损特性。总的说来,由于SMA在摩擦接触过程中表现出机
     敏摩擦学特性,因而具有较好的耐磨粒磨损和耐疲劳磨损性能。
Shape memory alloys (SMA) possess not only shape memory effects but also good anti-wear characteristic under certain conditions, but these alloys own low hardness, it is incapable to explain this phenomena using traditional wear mechanism. On the premise of sensing the environmental stress, SMA can change their pseudo-Young's modulus and pseudo-elastic strain, which improves the contact status between asperities and the surface of material, so behave the smart tribological characteristic. This paper based on the contact problem, through combination of the elastic-plastic finite element method and the experimentation, researched the smart triblogical characteristic and wear mechanism of SMA, at the same time the design rules of the smart tribological material were put forward.In finite element analyses, adopting the isotropic hardening mechanical model, the normal and sliding contact models of one asperity on surfaces of TiNi alloys and multi-asperities contact models were computed. In experiments, the contact behaviors of TiNi alloys were researched using nanoindenter and the combination of Vickers indenter and atomic force microscope, furthermore, the anti-wear magnitude of the TiNi alloy and austenitic stainless steel was compared under dry sliding wear. Summarizing the whole paper, some results were gotten as follows:1. During tribo-contact process, SMA's smart tribilogical characteristics behaved in follow terms:(1) The critical load of plastic deformation was increased, at the same time, the area of plastic deformation was decreased and the maximum elastic strain was enhanced, moreover, the amount of plastic contact asperities was reduced.(2) With the pseudo-Young's modulus decreasing, the maximum von Mises stress, contact stress and frictional stress all minished, furthermore, the increasing extents of the maximum von Mises stress and contact stress with the increasing load slowed down and this trend was more obvious under high loads.(3) SMA's elastic recovery was large and plastic deformation left was small during a particle or asperity indented on its surface. Under the load 2000μN, the elastic recovery of TiNi alloy of pseudo-elastic strain 0.055 was 1.8 times of 45~# steel, but the plastic deformation was only 60% of 45~# steel. Under load 0.49N and 0.98N, the elastic recovery of this alloy was 1.40 and 1.31 times of
    45# steel respectively.2. SMA's wear mechanism was described as follows: the increasing critical load of plastic deformation, the decreasing area of plastic deformation and enhancement of elastic recovery could minish the particles' plastic embed and reduce the crack range, then the plowed gauge was shallow and narrow, so SMA exhibited good particle wear resistance. The depressing contact stress and postponing of plastic region moving to the surface could reduce the possibility of surface cracks happening, the increasing critical load of plastic deformation and decreasing plastic area not only lessened cracks happening within the material but also limited the cracks happening range, so SMA behaved good fatigue wear resistance. Generally speaking, owing to the smart tribological characteristic during tribo-contact process, SMA owned good particle and fatigue wear resistance.3. The pseudo-elastic strain played the most important role in three parameters i.e. the pseudo-elastic strain, pseudo-Young's modulus and critical stress of martensitic transformation which effected the SMA's smart tribological characteristic. The material with the combination of low pseudo-Young's modulus and high critical stress of martensitic transformation behaved the best tribological characterics, so the design rules of smart tribological materials were put forward:(1) Increasing the material's pseudo-elastic strain.(2) Decreasing the material's pseudo-Young's modulus.(3) Enhancing the material's critical stress of martensitic transformation.The material filling above three conditions simultaneously would possess the best tribological characteristic.4. Using three-dimension finite element model simulated the tip of nanoindenter indenting process on the surface of pseudoelastic TiNi alloy, considering all influencing factors synthetically, the tip's displacements gotten from finite element computing were close to those of the nanoindentation. It indicated that adopting the isotropic hardening mechanical model to analyze SMA's tribo-contact characteristics during loading process was reasonable.
引文
[1] 吴承建,陈国良,强文江,金属材料学,第一版,2000年,冶金工业出版社,238-239
    [2] 赵连诚,蔡伟,郑玉峰,合金的形状记忆效应与超弹性,第一版.,2002年,国防工业出版社,1-2
    [3] Miyazaki S and Otsuka K, Mechanical behavior associated with the premartensitic rhomhohedral-phase transition in a Ti_(50)Ni_(47)Fe_3 alloy, Philosophical Magazine A, 1984, 50, 393-108
    [4] Hwang C M, Meichle M, Salamon M B et al, Transition behaviors of a TiNiFe alloy Ⅱ, Sbusequent premartensitic behavior and the commensurate phase, Philosophical Magazine A, 1983, 47, 31-36
    [5] Sandrock G D, Prekins A J and Hehemann R F, The premartensitic instability in near—equiatomic TiNi, Metallurgical Transactions, 1971, 2, 2767-2781
    [6] Wayman C M, Comelis J and Shimizu K, Transformation behavior and the shape memory effect in thermally cycled TiNi, Scripta Metallurgica, 1972, 6, 115-122
    [7] Hwang C M and Wayman C M, Compositional dependence of transformation temperatures in ternary TiNiAl and TiNiFe alloys, Scripta Metallurgica, 1983, 17, 381-384
    [8] Fukuda T, Saburi T, Doi K et al, Nucleation and self-accommodation of the R-phase in Ti-Ni alloys, Materials Transactions, JIM, 1992, 33, 271-277
    [9] Eisenwasser J D and Brown L C, Pseudoelasticity and the strain-memory effect in Cu-Zn-Sn alloys, Metallurgical Transactions, 1972, 3, 1359-1363
    [10] Otsuka K, Sakamoto H and Shimizu K, Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys, Acta Metallurgica, 1979, 27, 585-601
    [11] J. Jialing, W. Hongliang, Wear Resistance of Ni-Ti Alloy, Acta Metallurgica Sinica, 1988, 24, A66-A69
    [12] A. Ishida, A.Takei, M.Sato,S.Miyazaki, Stress-strain Curves of Sputtered Thin Films of Ti-Ni. Thin Solid Films., 1996, 281-282, 337-339.
    [13] [日]舟久保 熙康著,千东范译,形状记忆合金,第一版,1992年,机械工业出版社,34-35
    [14] Brown.L.C, Pseudoelasticity in beta Cu Al Ni alloys at temperatures below M_s, Metallurgical Transactions A, 1975, 6A, 1124-1126
    [15] Saburi. T, Nenno. S, Phenomenological consideration on the thermoelastic martensite, Scripta Metallurgica, 1975, 9, 887-894
    [16] Miura. S, Maeda. S, Nakanishi, N, Pseudoelasiticity in Au-Cu-Zn thermoelastic martensite. Philosophical Magazine, 1974, 30, 565-581
    [17] Wield. D. V, Gillam. E, Shape memory effect and pseudoelasticity in Cu-Zn-Si, Scripta Metallurgica, 1972, 6, 1157-1160
    [18] Guedou. J. Y, Rieu. J, Twinning and pseudoelasticity in single crystal Fe-Al alloys, Scripta Metallurgica 1978, 12, 927-930
    [19] Nakanishi.N, Mori.T, Miura.S, Murakami.Y, Kachi.S, Pseudoelasticity in Au-Cd thermoelastic martensite, Philosophical Magazine, 1973, 28, 277-292
    [20] Miyazaki.S, Imai.T, Igo.Y, Otsuka.K, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metallurgical Transactions A, 1986, 17A, 115-120
    [21] Miyazaki.S, Kimura.S, Otsuka.K, Shape-memory effect and pseudoelasticity associated with the Rophase transition in Ti-50at%Ni single crystals, Philosophical Magazine A, 1988, 57, 467-478
    [22] Lin.H.C, Wu.S.K, Tensile behavior of a cold-rolled and reverse-transformed equiatomic TiNi alloy, Acta Metallurgical Materialia, 1994, 42, 1623-1630
    [23] Wu.S.K, Lin.H.C, Yen.Y.C, Study on the wire drawing of TiNi shape memory alloys, Materials Science & Engineering, 1996, A215, 113-119
    [24] Lin.H.C, Lin.K.M, Chen.Y.C, Study on the machining characteristics of TiNi shape memory alloys, Journal of Materials Processing Technology, 2000, 105, 327-332
    [25] Wu.S.K, Lin.H.C, Yeh.C.H, Comparison of the cavitation erosion resistance of TiNi alloys, SUS304 stainless steel and Ni-based self-fluxing alloy, Wear., 2000, 244, 85-93
    [26] Tobushi Hisaaki, Tanaka Kikuaki, Hori Tatsuya, Sawada Takayuki, Hattori Takeharu, Pseudoelasticity of TiNi shape memory alloy (dependence on maximum strain and temperature), JSME International Journal, 1993, 36, 314-318
    [27] Tobushi. Hisaaki, Tanaka, Kikuaki, Kimura, Kimio, Hori Tatsuya, Sawada Takayuki, Stress-strain-temperature relationship associated with the R-phase transformation in TiNi shape memory alloy, JSME International Journal, 1992, 35, 278-284
    [28] Lin Ping-hua, Tobushi, Hisaaki, Tanaka. Kikuaki, Ikai, Akira. Deformation properties of TiNi shape memory alloy, SME International Journal, 1996, 39, 108-116
    [29] B.Strnadel, S.Ohashi, H.Ohtsuka, T.Ishihara, S.Miyazaki, Cyclic stress-strain characteristics of Ti-Ni and Ti-Ni-Cu shape memory alloys, Materials Science and Engineering, 1995, A202, 148-156
    [30] Y.F.Zheng, B.M.Huang, J.X.Zhang, L.C.Zhao, The microstructure and linear superelasticity of cold-drawn TiNI alloy, Marterials Science and Engineering, 2000, A279, 25-35
    [31] Yong Liu, Zeliang Xie, Jan Van Humbeeck, Cyclic deformation of TiNi shape memory alloys, Materials Science and Engineering, 1999, A273, 673-678
    [32] K.Gail, H.Shitoglu, Y.L.Chumlyakov and L. V.Kireeva, Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi, Acta Materialia, 1999, 47(4), 1203-1217
    [33] Ken Gall, Huseyin Sehitoglu, Yuriy I.Chumlyakov and Irina V.Kireeva, Scripta Materialia, 1999, 40(1), 7-12
    [34] S.Miyazaki,T.Imai, Y.Igo and K.Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metallurgical Transactions A, 1986, 17A, 115-120
    [35] Rogers.C.A, Linng.C and JiaJ, Structure modification of simply supported laminated plates using embedded shape memory alloy fibers, Computers and Structures, 1991, 38(5/6), 569-580
    [36] Thomson. P, Balas. G. J and Leo. P.H, The use of shape memory alloy for passive structural damping, Smart Materials & Structures, 1995, 4(1), 36-42
    [37] Chandhay. Z, Rogers.C.A, Banding and shape control of beams using shape memory actuator, J Intelligent Material Systems and Structures, 1991, 2, 581-602
    [38] Barsoum.R.G.S, Active materials and adaptive structures, Smart Materials & Structures, 1997, 6(1), 110-115
    [39] Birman. V, Review of mechanics of shape memory alloy structures, Applied Mechanics Review, 1997, 50(11), 629-645
    [40] Fischer.F. D, Sun.Q.P, Tanaka. K, Transformation-induced plasticity (TRIP), Applied Mechanics Review, 1996, 49(6), 317-364
    [41] 王健,沈亚鹏,王社良,形状记忆合金的本构关系,上海力学,1998,19(3),185-195
    [42] 高山,沈亚鹏,许德刚,形状记忆合金及其工程应用中的力学分析,力学进展,1997,27(3),301-312
    [43] 王健,沈亚鹏,形状记忆合金作动器的设计及优化,力学学报,1998,30(4),449-460
    [44] 邹静,钟伟芳,形状记忆合金的多维本构关系,固体力学学报,1999,20(2),171-176
    [45] 刘爱荣,潘亦苏,周本宽,形状记忆合金的研究进展,材料导报,2001,15(5),34-36
    [46] 佟景伟,高丛峰,李鸿琦,等,温度对高应变率扭-拉复合加载形状记忆合金本构关系影响的研究,固体力学学报,2001,22(1),69-73
    [47] 王志刚,黄克智,一种描述形状记忆合金拟弹性变形行为的本构关系,力学学报,1991,23(2),201-210
    [48] 杨兆海,高丛峰,梁丽杰,高温高应变率扭-拉复合加载下铁基记忆合金的本构关系,吉林大学自然科学学报,2000,(3),65-67
    [49] 王跃方,杨大智,陈腓瑕等,含形状记忆合金智能材料系统的力学分析与设计研究,功能材料,2000,31(6),569-571
    [50] 王社良,沈亚鹏,形状记忆合金的力学特性及工程应用,工业建筑,1998,28(3),31-36
    [51] 王社良,马怀忠,沈亚鹏,形状记忆合金在结构抗震控制中的应用,西安建筑科技大学学报,1998,30(2),115-118
    [52] 彭旭东,董光能,谢友柏,摩擦学的新思想—摩擦学机敏材料与结构,润滑与密封,1998,(2),2-6
    [53] 金嘉陵,王宏亮,Ni-Ti合金耐磨性研究,金属学报,1988,24(1),A66-A69
    [54] 金嘉陵,Ni-Ti合金的超弹性及其相变的SEM原位观察,金属学报,1984,20(3),A176-A181
    [55] Y.Shida and Y.Sugimoto, Water jet erosion behaviour of Ti-Ni binary alloys, Wear, 1991, 146, 219-228
    [56] P.Clayton, Tribological behavior of a titanium-nickel alloy, Wear, 1993, 162-164, 202-210
    [57] J.Singh, A.T.Alpas, Dry sliding wear mechanisma in a Ti_(50)Ni_(47)Fe_3 intermatallic alloy, Wear, 1995, 181-183, 302-311
    [58] R.H.Richrnan, A.S.Rao, D.Kung, Cavitation erosion of NiTi explosively welded to steel, Wear, 1995, 181-183, 80-85
    [59] R.H.Richman, A.S.Rao, D.E.Hodgson, Cavitation erosion of two NiTi alloys, Wear, 1992, 157, 401-407
    [60] Hong W.Wang and D.Y.Yang. Friction and wear of unlubricated copper-Based CuZnAI shape memory alloys. Wear. 148(1991): 113-121
    [61] 王红卫,吴望子,王凤庭,杨大智,Cu基形状记忆合金干滑动磨损研究,金属学报,1991,27(6),444—448
    [62] Rong Liu, D.Y.Li, A finite element model study on wear resistance of pseudoelastic TiNi alloy, Materials Science and Engineering, 2000, A277, 169-175
    [63] D.Y.Li, Wear behaviour of TiNi shape memory alloys, Scripta Materialia, 1996, 34(2), 195-200
    [64] D.Y.Li, A new type of wear -resistant material: pseudo-elastic TiNi alloy, Wear, 1998, 221, 116-123
    [65] R.Liu and D.Y.Li, Indentation behavior of pseudoelastic TiNi alloy, Scripta Materialia, 1999, 41 (7), 691-696
    [66] R.Liu and D.Y.Li, Indentation behaviour and wear resistance of pseudoelastic Ti-Ni alloy, Materials Science and Technology, 2000, 16, 328-332
    [67] Tiancheng Zhang, D.Y.Li, An experimental study on the erosion behavior of pseudoelastic TiNi alloy in dry sand and in aggressive media, Materials Science and Engineering, 2000, A293, 208-214
    [68] H.Z.Ye, R.Liu, D.Y.Li and R.Eadie, Development of a new wear-resistant material:TiC/TiNi composite, Scripta Materialia, 1999, 41 (10), 1039-1045
    [69] D.Y.Li, Rong Liu, The mechanism responsible for high wear resistance of pseudo-elastic TiNi alloy-a novel tribo-material, Wear, 1999, 225-229, 77-783
    [70] D Y Li, Exploration of TiNi shape memory alloy for potential application in a new area: tribological engineering, Scripta Material Structure, 2000, 9, 717-726
    [71] rong Liu, D.Y.Li, modification of Archard's equation by taking account of elastic/pseudoelastic properties of materials, Wear, 2001, 251,956-964
    [72] Rong Liu and D.Y.Li, Experimental studies on tribological properties of pseudoelastic TiNi alloy with comparison to stainless steel 304, Metallurgical and Materials Transactions A, 2000, 31A, 2773-2783
    [73] D.Y.Li, Development of novel wear-resistant materials: TiNi-based pseudoelastic tribomaterials, Materials and Design, 2000, 21, 551-555
    [74] D.Y.Li and X.Ma, Variation in wear resistance of a novel triboalloy-pseudoelastic TiNi alloy-with respect to its pseudoelasticity and hardness, Journal of Material Science and Technology, 2001, 17, 45-47
    [75] Y.N.Liang, S.Z.Li, Y.B.Jin, WAin, S.Li, Wear behavior of a TiNi alloy, Wear, 1996, 198, 236-241
    [76] Lin.H.C, Liao.H.M, He.J.L, Chen.H.C., Lin.K.M, Wear characteristics of TiNi shape memory alloys, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Sciences, 1997, 28A(9), 1871-1877
    [77] 徐久军,张会臣,王刚,严立,黑祖昆,杨大智,形状记忆合金复合式“自适应”摩擦表面研究,96’中国材料研讨会论文集,北京,1996,化学工业出版社,465-468
    [78] 徐久军,张会臣,王刚,严立,杨大智,TiNi系形状记忆合金两体磨粒磨损机制研究,大连 理工大学学报,1998,38(6),724-728
    [79] K.L.Johnson 著,徐秉业,罗学富,刘信声,宋国华,孙学伟译,接触力学,第一版,1992,高等教育出版社,1-2
    [80] 潘新祥,耐磨梯度表面层滑动接触的有限元分析及其摩擦学特性的研究,大连海事大学,博士学位论文,1999,6-7
    [81] J.O.Smith and Chang Keng Liu, Urbana.Ill. Stresses due to tangential and normal loads on an elastic solid with application to some contact stress problems, Journal of Applied Mechanics, Transactions of the ASME, 1953, 7, 157-166
    [82] G.M.Hamilton, L.E.Goodman, The stress field created by a circular sliding contact, Journal of Applied Mechanics, Transactions of the ASME, 1966, 33, 371-376
    [83] A.K.Gautesen, John Dundurs, The interface crack under combined loading, Journal of applied mechanics, Transactions of the ASME, 1988, 55, 580-588
    [84] k.L.Johnson, Contact mechanics, 1985, Combridge university press,
    [85] Vergne.Ph, Villechaise.B, Berhte.D, Elastic behavior of multiple contacts: asperity interaction, Journal of Tribology, Transactions of the ASME, 1985, 107(2), 224-228
    [86] Seabra.J, Berhte.D, Elastohydrodynamic point contacts, part 1: formulation and numerical solution, Wear, 1989, 130, 301-318
    [87] Seabra.J, Berhte.D, Elastohydrodynamic point contacts, Part Ⅱ: Influence of surface speeds, surface waviness and load on the contact behaviour, 1989, Wear, 130, 319-335
    [88] Mcdowell.D.L, Moyar.G.J, Effects of non-linear kinematic hardening on plastic deformation and residual stresses in rolling line contact, Wear, 1991, 144, 19-37
    [89] D.L.Mcdowell, An approximate algorithm for elastic-plastic two-dimensional rolling/sliding contact, Wear, 1997, 211,237-246
    [90] Jiang.Yanyao, Sehitoglu.huseyin, Analytical approach to elastic-plastic stress analysis of rolling contact, Journal of Triboiogy, Transactions of the ASME, 1994, 116(3), 577-587
    [91] Stefan Bjorklund, Soren Andersson, A numerical method for real elastic contacts subjected to normal and tangential loading, Wear, 1994, 179, 117-122
    [92] Y.M.Chen, L.K.Ives, J.W.Dally, Numerical simulation of sliding contact over a half-plane, Wear, 1995, 185, 83-91
    [93] N.Stalin-Muller, K.Dang.Van, Numerical simulation of the sliding wear test in relation to material properties, Wear, 1997, 203-204, 180-186
    [94] H.S.Nagaraj, Elastoplastic contact of bodies with friction under normal and tangential loading, Journal of Tribology, Transactions of the ASME, 1984, 160(10), 519-526
    [95] V.Bhargava, G.T.hahn, C.A.Rubin, An elastic-plastic finite element model of rolling contact, Part2: Analysis of repeated contacts, Journal of Applied Mechanics, Transations of the ASME, 1985, 52, 75-82
    [96] P.Wriggers, Finite element wethods for contact problems with friction, Tribology International, 1996, 29, 651-658
    [97] G.J.M.A.Schreppers, W.A.M Brekelmans and A.A.H.J.Sauren, A finite element formulation of the large sliding contact, International Journal for Numerical Methods in Engineering, 1992, 35, 133-143
    [98] 赵华,杨翊仁,金雪岩,厚氧化层的弹塑性接触应力分析,摩擦学学报,2000,20(2),135-138
    [99] 杨楠,陈大融,孔宪梅,多粗糙峰弹塑性接触的有限元分析,摩擦学学报,2000,20(3),202-206
    [100] Gutier.P, Darbeida.A, Billard.A, Frantz.C, von Stebut.J, Tribological behaviour of N- or O-doped austenitic stainless-steel magnetron sputter-deposited coatings, Surface and Coatings Technology, 1999, 114(2), 148-155
    [101] Przemeck.K, Gahr.K.-H. Zum, Microstructure and tribological properties of alumina ceramic with laser-dispersed tungsten additions, Journal of Materials Science, 1998, 33(18), 4531-4541
    [102] Schmid.Steven R, Hector.Louis G, Simulation of asperity plowing in an atomic force microscope, Part Ⅱ: Plowing of aluminum alloys, Wear., 1998, 215(1-2), 257-266
    [103] W.C.Oliver, G.M.Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 1992, 7(6), 1564-1583
    [104] G.M.Pharr, W.C.Oliver, F.R.Brotzen, On the generality of the relationship among contact stiffness, contact area and elastic modulus during indentation, Journal of Materials Research, 1992, 7(3), 613-617
    [105] F.K.Mante, G.R.Baran, B.Lucas, Nanoindentation studies of titanium single crystals, Biomaterials, 1999, 20, 1051-1055
    [106] S.Moyne, C.Poilane, K.Kitamura, S.Miyazaki, P.Delobelle, C.Lexcellent, Analysis of the thermomechanical behavior of Ti-Ni shape memory alloy thin films by bulging and nanoindentation procrdures, Materials Science and Engineering, 1999, A273-275,727-732
    [107] M.G.Gee, B.Roebuek, P.Lindahl, H-O Andren, Constituent phase nanoindentation of WC/Co and Ti(C,N) hard metals, Materials Science and Engineering, 1996, A209, 128-136
    [108] C.W.Shih, M.Yang, and J.C.M.Li, Effect of tip radius on nanoindentation, Journal of Materials Research, 1991, 6(12), 2623-2628
    [109] Shefford P.Baker., Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime, Thin Solid Films, 1997, 308-309, 289-296
    [110] 孙菊芳,有限元法及其应用,第一版,1990,北京航空航天大学出版社,9-15
    [111] 殷有泉,固体力学非线性有限元引论,第一版,1987,北京大学出版社,清华大学出版社,65-74
    [112] 王勖成,邵敏,有限单元法基本原理和数值方法,第二版,1997,清华大学出版社,1-2
    [113] 徐秉业,刘信声,应用弹塑性力学,第一版,2001,清华大学出版社,31-83
    [114] 崔世杰,张清杰,应用塑性力学,第一版,1992,河南科学技术出版社,185-186
    [115] D.R.J.欧文,E.辛顿著,曾国平,刘忠,徐家礼译,塑性力学有限元—理论与应用,第一版,1989,兵器工业出版社,180-181
    [116] 杨甲申,几种圆柱体接触问题的模拟求解,2000ANSYS中国用户年会论文集,成都,2000,597-600
    [117] 何安瑞,杨荃,陈先霖,变接触支持辊综合性能仿真分析,2000ANSYS中国用户年会论 文集,成都,2000,513-518
    [118] 李瑞遐,有限元法与边界元法,第一版,1993,上海科技教育出版社,113-117
    [119] Orgeas.L, Favier.D, Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression, Acta Materialia, 1998, 46(15), 5579-5591
    [120] Orgeas.L, Favier.D, Stress state effect on mechanical behaviour of shape memory alloys: Experimental characterisation and modeling, Journal De Physique, 2001, 11 (8), 867-874
    [121] Plietsch.R, Ehrlich.K, Strength differential effect in pseudoelastic NiTi shape memory alloys, Acta Materialia, 1997, 45(6), 2417-2424
    [122] Plietsch.R, Bourauel.C, Drescher.D, Nellen.B, Analytical description of the bending behaviour of NiTi shape-memory alloys, Journal of Materials Science, 1994, 29(22), 5892-5902
    [123] Y.Liu, Z.Xie, J.Van humbeeck and L.Delaey, Some results on the detwinning process in NiTi shape memory alloys, Script Materialia, 1999, 41 (12), 1273-1281
    [124] H.Schemgell and A.C.kneissl, Training and stability of the intrinsic two-way shape memory effect in Ni-Ti alloys, Script Materialia, 1998, 39(2), 205-212
    [125] M.Nishida, S.Li, K.Kitamura, T.Furukawa, A.Chiba, T.Hara and K.Hiraga, New deformation twinning mode of B 19' martensite in Ti-Ni shape memory alloy, Script Materialia, 1998, 39(12), 1749-1754
    [126] Ken Gall, Huseyin Sehitoglu, Yuriy I.Chumlyakov and Irina V.Kireeva, Pseudoelastic cyclic stress-strain response of over aged single crystal Ti-50.8at%Ni, Script Materialia, 1999, 40(1), 7-12
    [127] C.Lexcellent, G.Bourbon, Thermodynamical model of cyclic behaviour of Ti-Ni and Cu-Zn-Al shape memory alloys under isothermal undulated tensile tests, Mechanics of Materials, 1996, 24, 59-73
    [128] H.Djabella and R.D.Arnell, Finite element analysis of contact stress in elastic double-layer systems under normal load, Thin Solid Films, 1993,223, 98-108
    [129] 潘新祥,徐久军,严立,多微凸体粗糙面接触的有限元分析,大连海事大学学报,1998,24(3),93-97
    [130] 潘新祥,徐久军,严立,受法向力作用下梯度表面层的有限元分析,大连海事大学学报,1998,24(4),67-70
    [131] E.R.Kral, K.Komvopoulos, D.B.Bogy, Elastic-plastic finite element analysis of repeated indentation of a half-space by a rigid sphere, Journal of Applied Mechanics, Transactions of the ASME, 1993, 60, 829-841
    [132] E.R.Kral, K.Komvopoulos, D.B.Bogy, Finite element analysis of repeated indention of an elastic-plastic layered medium by a rigid sphere, part one: surface results, Journal of Applied Mechanics, Transactions of the ASME, 1995, 62, 20-28
    [133] E.R.Kral, K.Komvopoulos, D.B.Bogy, Finite element analysis of repeated indention of an elastic-plastic layered medium by a rigid sphere, part two: subsurface results. Journal of Applied Mechanics, Transactions of the ASME, 1995, 62, 30-42
    [134] A.K.Bhartacharya and W.D.Nixt, Finite element analysis of cone indentation, International. Journal of Solid Structures, 1991, 27(8), 1047-1058
    [135] A.K.Bhattacharya and W.D.Nixt, Finite element simulation of indentation experiments, International Journal of Solid Structures, 1988, 24(9), 881-891
    [136] C.H.Lee, S.Masaki and Shiro Kobayashi, Analysis of ball indention, International Journal of Mechanical Science, 1972, 14, 417-426
    [137] 唐纳德 皮克纳,L.M.伯恩斯坦主编,顾守仁,周有德等译,不锈钢手册,第一版,1987,机械工业出版社,325-326
    [138] 黄明志,石德珂,金志浩,金属力学性能,第一版,1986,西安交通大学出版社,21
    [139] 严立等著,摩擦学原理,第一版,1998,大连海事大学出版社,14
    [140] Hong Tian and Nannaji Saka, Finite element analysis of an elastic-plastic two-layer half-space: sliding contact, Wear, 1991, 148, 261-285
    [141] R.B.King and T.C.O'Sullivan, Sliding contact stresses in a two-dimensional layered elastic half-space, International Journal of Solid Structures, 1987, 23(5), 581-597
    [142] T.C.O'Sullivan, R.B.King, Sliding contact stress field due to a spherical indenter on a layered elastic half-space, Journal of Tribology, Transactions of the ASME, 1988, 110, 235-240
    [143] G.M.Hamilton, L.E.Goodman, The stressfield created by a circular sliding contact, Journal of Applied Mechanics, Transactions of the ASME, 1966, 6, 371-376
    [144] E.R.Kral, K.Komvopoulos, D.B.Bogy, Hardness of thin-film media: scrach experiments and finite element simulations, Journal of Tribology, Transactions of the ASME, 1996, 118, 1-11
    [145] Komvopoulos.K, Finite element analysis od a layered elastic solid in normal contact with a rigid surface, Journal of Tribology, Transactions of the ASME, 1988, 110, 477-485
    [146] 蔡泽高,刘以宽,王承忠,郑文龙,金属磨损与断裂,第一版,1985,上海交通大学出版社,2-3
    [147] D.F.摩尔著,黄文治,谢振中,杨明安译,摩擦学原理和应用,第一版,1982,机械工业出版社,6-7
    [148] Dundurs.J, Tsai K.C, Keer L.M, Contact between elastic bodies with wavy surfaces, Journal of Elasticity, 1973, 3,109-115
    [149] Ioannides.E, Kuijpers.J.C, Elastic stress below asperities in lubricated contacts, Journal of Tribology, Transactions of the ASME, 1986, 108, 394-402
    [150] K.Komvopoulos, D.-H.Choi, Elastic finite element analysis of multi-asperity contacts, Journal of Tribology, Transactions of the ASME, 1992, 114, 823-831
    [151] 邵荷生,曲敬信,许小棣,陈华辉,摩擦与磨损,第一版,1992,煤炭工业出版社,144-145
    [152] T.Ohmura, S.Matsuoka, K.Tanaka, T.Yoshida, Nanoindentation load-displacement behavior of pure face centered cubic metal thin films on a hard substrate, Thin Solid Films, 2001, 385, 198-204
    [153] N.G.Chenchenin, J.Bottiger, J.P.Krog, Nanoindentation of amorphous aluminum oxide films I .The influence of the substrate on the plastic properties, Thin Solid Films, 1995, 261, 219-227
    [154] N.G.Chenchenin, J.Bottiger, J.P.Krog, Nanoindentation of amorphous aluminum oxide films Ⅲ. The influence of the substrate on the elastic properties, Tjin Solid Films, 1997, 304, 70-77
    [155] Jing Wang, Wen-Zhi Li, Heng-De Li, Bing Shi, Jian-Bin Luo, Nanoindentation study on the mechanical properties of TiC/Mo mutilayers, Thin Solid Films, 2000, 366, 117-120
    [156] D.Bellet, P.Lamagnere and A.Vincent, Y.Brechet, Nanoindentation investigation of the Young's modulus of porous silicon, Journal of Applied Physics, 1996, 80(7), 3772-3776
    [157] Philippe K.Zysset, X.Edward Guo, C.Edward Hoffler, Kristin E.Moore, Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the humanfemur, Journal of Biomechanics, 1999, 32, 1005-1012
    [158] C.W.Shih, M.Yang, and J.C.M.Li, Effect of tip radius on nanoindentation, Journal of Materials Research, 1991, 6(12), 2623-2628
    [159] W.C.Oliver, G.M.Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 1992,7(6), 1564-1583
    [160] GM.Pharr, W.C.Oliver, F.R.Brotzen, On the generality of the relationship among contact stiffness, contact area and elastic modulus during indentation. Journal of Materials Research, 1992,7(3), 613-617
    [161] L.Boudoukha, S.Paletto, GFantozzi, Mechanical characterization by nanoindentation of zirconium ion implanted alumina, Nuclear Instruments and Methods in Physics Research B, 1996,108,87-93
    [162] J.S.Zhang, X.J.Liu, H.Cui, Z.Q.Sun and G.L.Chen, nanoindentation characterization of the properties around reinforcements in a heated spray deposited 2015+15vol%SiCp metal-matrix composite, Scripta materialia, 1996,35(9), 1115-1120
    [163] K.W.Mclhaney, J.J.Vlassak, and W.D.Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. Journal of Materials Research, 1998, 13(5), 1300-1306
    [164] M.Guemmaz, A.Mosser, J-J.Grob, R.Stuck, Sub-surface modifications induced bu nitrogen ion implantation in stainless steel (SS316L), Correlation between microstructure and nanoindentation results, Surface and Coatings Technology, 1998, 100-101, 353-357
    [165] Wiliam D.Nix, Elastic and plastic properties of thin films on substrates: nanoindentation technique, Materials Science and Engineering, 1997, A234-236, 37-44
    [166] A.Gouldstone, H.-J.Koh, K.-Y.Zeng, A.E.Giannakopouls and S.Suresh, Discrete and continuous deformation during nanoindentation of thin films, Acta Metallurgical, 2000, 48, 2277-2295
    [167] Jeong-Hoon Ahn, Dongil Kwon, Micromechanical estimation of composite hardness using nanoindentation technique for thin-film coated system, Materials Science and Engineering, 2000, A285, 172-179
    [168] D.F.Bahr, D.E.Kramer and M.M.Gerberich, Non-linear deformation mechanisms during nanoindentation. Acta Materialia, 1998, 46(10), 3605-3617
    [169] C.Tromas, J.C.Girard, V.Audurier, J.Woirgard, Study of the low stress plasticity in single-crystal MgO by nanoindentation and atomic force microscopy, Journal of Materials Science, 1999, 34, 5337-5342
    [170] C.W.Shih, M.Yang, and J.C.M.Li, Effect of tip radious on nanoindentation. Journal of Material
    ?Research, 1991, 6(12), 2623-2628

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700