用户名: 密码: 验证码:
聚苯胺及其衍生物的电化学制备和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机导电聚合物具有优良的物理化学性能,在电化学催化、化学生物传感器、电化学电容器等诸多领域有着广泛的应用前景。在众多的有机导电聚合物中,聚苯胺(PANI)由于原料廉价易得、合成简单、电导率较高、环境稳定性好等特点已成为当今研究的热点。近年来,随着纳米技术和复合材料的飞速发展,一些具有纳米尺寸的导电聚苯胺和导电聚苯胺复合膜已被成功地合成出来,这种具有特殊结构的导电聚苯胺可望在保持聚苯胺原有性能的基础上进一步拓展其功能特性。本论文首次采用脉冲电流技术(PGM)在无模板、非限域的条件下合成了具有纳米纤维结构的导电聚苯胺,并就其在电化学生物传感、电化学催化、电化学电容等领域的应用展开了研究,论文主要研究结果如下:
     1.以不锈钢(SS)为基底材料,首次采用脉冲电流方法在无模板、非限域的条件下成功地在小质子酸(硫酸或硝酸)水溶液中合成出了具有纳米纤维结构的导电聚苯胺膜。详细探讨了电解工艺参数(脉冲占空比、频率、平均电流密度以及溶液温度)等对纳米纤维聚苯胺膜合成的影响,获得了制取纳米纤维聚苯胺的最佳工艺条件。采用扫描电子显微镜(SEM)、透射电子显微镜和循环伏安法(CVM)对膜层的微观结构、电化学性能进行了详细的研究。结果表明,PANI膜由直径为70~100nm的聚苯胺纤维交织而成,纳米纤维之间存在大量缝隙和孔洞。这种纳米纤维结构的导电聚苯胺膜与采用常规化学或电化学方法制备的颗粒状聚苯胺膜相比较,有着更大的比表面、更好的离子电子导电性能和更高的电化学反应活性,是一种性能更加优异的功能膜或功能性载体膜。
     2.以制备的纳米纤维状聚苯胺为载体负载Pt催化剂,制得新型的Pt/(nano-fibrous PANI)复合电极,研究其对甲醇氧化的电催化性能。SEM、能量散射谱结果显示复合电极的结构为直径50~80nm左右的Pt颗粒均匀地分散在纳米聚苯胺纤维上。循环伏安、交流阻抗结果表明,Pt/(nano-fibrous PANI)复合电极对甲醇的阳极氧化有着优异的催化活性和协同催化作用。当Pt载量大于200μg/cm~2时,这种电极对甲醇氧化的电催化活性远优于Pt微粒修饰的颗粒聚苯胺电极和裸铂电极。研究结果还表明,不同的Pt沉积修饰方法(PGM、CVM)对电极催化活性有较大影响。
     3.采用PGM或CVM分别在Pt或SS表面合成出聚间苯二胺膜(PMPD)、聚苯胺-石墨复合膜(PGCF)和Pt/(nano-fibrous PANI)。以上述三种膜为基质,采用电化学掺杂的方法,成功地制得了结构新颖、性能优异的聚间苯二胺葡萄糖氧化酶电极(PMPD-GOD)、Pt修饰纳米纤维聚苯胺葡萄糖氧化酶电极
Organic conductive polymers, on account of their excellent physical and chemical properties, are promising in many fields such as electrochemical catalysis, chemical/biosensor, electrochemical capacitor and so on. Among conductive polymers, polyaniline (PANI) has attracted considerable interesting due to its availability, simple synthesis, high conductivity and stability. In recent years, with the rapid development of nanotechnology and composite materials, nano-sized PANI and PANI composite film with better functional properties have been synthesized. In this paper, nano-fibrous PANI films have been templatelessly and nonstrictedly synthesized for the first time by pulse galvanostatic method (PGM). The applications of the nano-fibrous PANI film in electrochemical biosensor, electrochemical catalysis and electrochemical capacitor were investigated. The main progresses are presented as follows:1. Nano-fibrous PANI, for the first time, was templatelessly and nonstrictedly synthesized on stainless steel (SS) electrode by PGM in proton acids with small molecular size, such as H2SO4or HNO3 solution. Influences of electrolytic parameters (the ratio of ton to toff, frequency, mean current density and temperature of electrolyte) on synthesis of nano-fibrous PANI were studied in detail. The process conditions were optimized. The morphology and electrochemical property of PANI films prepared by PGM were investigated by scanning electron microscopy (SEM), transmitting electron microscopy and cyclic voltammetric method (CVM). The results show that the morphology of PANI is nano-fiber with diameter of 70~100nm and many microgaps and pores exist among the PANI fibers. The nano-fibrous PANI films have larger specific surface area, better ionic and electronic conductivity, and higher electrochemical activity than those of granular PANI films prepared by conventional chemical or electrochemical methods. Therefore, the nano-fibrous PANI film is a more excellent functional film or functional carrier than conventional PANI film.2. The novel composite electrode [Pt/(nano-fibrous PANI)] was prepared by using nano-fibrous PANI film as the carrier of Pt catalyst and the electrocatalytic performance of this composite electrode for methanol oxidation was investigated. SEM and energy dispersive spectroscopy results show that the composite electrode is characterized by about 50~80nm Pt microparticles dispersing uniformly on nano-fibrous PANI film. The cyclic voltammetry and electrochemical impedance
    spectroscopy results show that the composite electrode has excellent catalytic activity for methanol oxidation and there is a synergism for methanol oxidation on Pt/(nano-fibrous PANI) electrode. The composite electrode exhibits higher electrocatalytic activity for methanol oxidation than the granular PANI electrode modified by Pt microparticles and the bare Pt electrode when Pt loading is above 200 ug/cm2. Moreover, the research results present that the catalytic activity of the composite electrode was greatly affected by the deposition methods of Pt (PGM> CVM).3. Poly(m-phenylenediamine) (PMPD) film, PANI-graphite composite film (PGCF) and Pt/(nano-fibrous PANI) film were synthesized on the surface of Pt or SS electrode by PGM or CVM. Three kinds of novel glucose biosensors were prepared by electrochemical doping method based on PMPD, PGCF and Pt/(nano-fibrous PANI), respectively. The morphologies of polymer films and the electrochemical response performances of the enzyme electrodes were investigated by SEM and electrochemical method. The results present that the electrochemical response performances of the enzyme electrodes are related to the morphologies of polymer films. PMPD film and PGCF are porous and netty structure, which possess large specific surface area and are beneficial for the glucose oxidase (GOD) immobilization and the ion transfer. Pt/(nano-fibrous PANI) film is characterized by 50~80nm Pt microparticles dispersing uniformly on 70~100nm PANI nano-fibers, which has very large specific surface area and good electrocatalytic activity for the oxidation of H2O2. Furthermore, the influences of measuring temperature, measuring potential and pH value of glucose solution on the electrochemical response performances of the enzyme electrodes were studied in detail. The results indicate that the enzyme electrodes prepared above all have good electrochemical response performance, reproducibility and stability. The PGCF-GOD electrode, the PMPD-GOD electrode and the PMPD-GOD/Pt/(nano-fibrous PANI) electrode gave a linear response to glucose in the range of l*10-4~8xl0-3 mol/L, 5><10'4~lxl0"2 mol/L and 2xl0-6~12*10-3 mol/L, respectively. Both the PMPD-GOD/Pt/(nano-fibrous PANI) electrode and the PMPD-GOD electrode have good anti-interference to uric acid and ascorbic acid. Moreover, the PMPD-GOD/Pt/(nano-fibrous PANI) electrode was applied to determine glucose concentration in serum, the analytical results determined by using the enzyme electrode and those provided by the hospital agree closely. Therefore, this kind of enzyme electrode has good application prospect. Based on the calculating of the kinetic parameters, the maximum response current density of the PMPD-GOD,
引文
[1] Chiang C K, Fincher C R, Park Y W, et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett., 1977, 39 (17): 1098-1101
    [2] 王利祥,王佛松.导电聚苯胺的研究进展:合成链结构和凝聚态结构.应用化学,1990,7(5):1-10
    [3] Macdiramid A G, Chiang J C. Chemical, electrochemical and infrared studies of polyaniline. Synth. Met., 1987, 18 (1-3): 285-290
    [4] 王利祥,王伟松.取代苯胺的化学氧化聚合.高分子学报,1989,(3):264-269
    [5] Wudl F, Angus R O, Lujr F L, et al. Poly-p-phenyleneamineimine: synthesis and comparison to polyaniline. J. Am. Chem. Soc., 1987, 109 (12): 3677-3684
    [6] Gregory R V, Tzou K. A method to prepare soluble polyaniline salt solutions-in situ doping of PANI base with organic dopants in polar solvents. Synth. Met., 1993, 53 (3): 365-377
    [7] Kobayashi T, Hiroshi Y, Hideo T. Polyaniline film-coated electrodes as electrochromic display devices. J. Electroanal. Chem. Interfacial Electrochem., 1984, 161 (2): 419-423
    [8] 汪晓芹,廖晓兰,周安宁等.聚苯胺及其复合材料研究现状.应用化工,2001,30(1):4-7
    [9] Langer J. Unusual properties of the aniline black: Does the superconductivity exist at room temperature? Solid State Commu., 1978, 26(11): 839-844
    [10] Travers J P, Chroboczek J, Devreux F, et al. Transport and magnetic resonance studies of polyaniline. Mol. Cryst. Liq. Cryst., 1985, 121(1-4): 195-199
    [11] 井新利,郑茂盛,蓝立文.反向微乳液法合成导电聚苯胺纳米粒子.高分子材料科学与工程,2000,16(2):23-25
    [12] Diaz A F, Logan J A. Electroactive polyaniline film. Electroanal. Chem., 1980, 111 (1): 111-114
    [13] 穆绍林,阚锦晴,张爱光.苯胺在碱性溶掖中的电化学聚合.电化学,1996,2(1):54-60
    [14] Tsakova V, Milchev J, Schultze W. Growth of polyaniline films under pulse potentiostatic condition. J. Electroanal. Chem., 1993, 346(1-2): 85-87
    [15] Kobayashi T, Hiroshi Y, Hideo T. Oxidative degradation pathway of polyaniline film electrodes. J. Electroanal. Chem. Interfacial Electrochem., 1984, 177 (1-2): 293-297
    [16] Do J S, Chang W B. Amperometric nitrogen dioxide gas sensor based on PAn/Au/Nafion prepared by constant current and cyclic voltammetry methods. Sens. Actuator B, 2004, 101 (1-2): 97-106
    [17] Luo Y C, Do J S. Urea biosensor based on PANi(urease)-Nafion/Au composite electrode. Biosens. Bioelectron., 2004, 20 (1): 15-23
    [18] Genies E M, Lapkowski M, Spectroelectrochemical study of polyaniline versus potential in the equilibrium state. Electroanal. Chem., 1987, 220 (1): 67-82
    [19] Nunziante P, Pistoia G. Factor affecting the growth of thick polyaniline films by cyclic voltammetry technique. Electrochimi. Acta, 1989, 34 (2): 223-228
    [20] Zotti G, Cattarin S, Comisso N. Cyclic potential electropolymerization of aniline. J. Electroanal. Chem., 1988, 239 (1-2): 387-396
    [21] Dinh H N, Birss V I. Characteristics of the polyaniline anodic pre-peak. Electrochimi. Acta, 1999, 44 (26): 4763-4771
    [22] Kitani A, Kaya M, Tsujioka S I, et al. Flexible polyaniline. J. Polym. Sci. Part A: Polym. Chem., 1988, 26 (6): 1531-1539
    [23] Martion C R, Cai Z, VanDyke L S, et al. Template synthesis of conducting polymers-enhanced conductivity, enhanced supermolecular order interesting microstructer. Polym. Mater. Sci. Eng., 1991, 64: 204-206
    [24] 王臻,力虎林.模板法制备高度有序的聚苯胺纳米纤维阵列.高等学校化学学报,2002,23(4):721-723
    [25] Huang J, Wan M X. Polyaniline doped with different sulfonic acids by in situ doping polymerization. J. Polym. Sci. Part A: Polym. Chem., 1999, 37 (9): 1277-1284
    [26] Wan M X, Li J C. Microtubules of polyaniline doped with HCl and HBF_4. J. Polym. Sci. Part A.. Polym. Chem., 1999, 37 (9): 4605-4609
    [27] Shen Y Q, Wan M X. Tubular polypyrrole synthesized by in situ doping polymerization in the presence of organic function acids as dopants. J. Polym. Sci. Part A: Polym. Chem.,1999, 37 (9): 1443-1449
    [28] Yang Y, Wan M X. Chiral nanotubes of polyaniline synthesized by a template-free method. J. Mater. Chem., 2002, 12 (4): 897-901
    [29] Choi S T, Park S M. Preparation of polyaniline nano-wire on the Au electrode. Adv. Mater., 2000, 12 (20): 1547-1549
    [30] Huang L, Wang Z, Wang H, et al. Polyaniline nanowires by electropolymerization from liquid crystalline phases. J. Mater. Chem., 2002, 12 (2): 388-391
    [31] Huang J, Vivji S, Weiler B H, et al. Polyaniline nanofibers: Facile synthesis and chemical sensors. J. Am..Chem. Soc., 2003, 125 (2): 314-315
    [32] 吴伯荣,田艳红,马志亲等.乙炔黑吸附聚合法制取聚苯胺的研究.高分子材料科学与工程,1996,12(4):41-44
    [33] Ago H, Kugler T, Cacialli F, et al. Work function of purified and oxidized carbon nanotubes. Synth. Met., 1999, 103 (1-3): 2494-2495
    [34] Gill M, Mykytiuk J, Armes S P, et al. Novel colloidal polyaniline-silica composites. J. Chem. Soc.,Chem. Commum., 1992, (8): 664-667
    [35] 吴秋菊,薛志坚,漆宗能等.具有伸展链构象聚苯胺/蒙脱土混杂纳米复合物的合成与表征.高分子学报,1999,(5):551-556
    [36] Wan M X, Li W G. A composite of polyaniline with both conducting and fettomagnetic functions. J. Appl. Polym. Sci., 1997, 35 (11): 2129-2136
    [37] 张广平,毕先同.聚苯胺在一些有机溶剂中的溶解性.高分子学报,1994,(1):55-59
    [38] 封伟,韦玮,吴洪才.光电导聚苯胺/染料共聚材料性能的研究.功能材料,1999,30(3):317-319
    [39] Isao Y, Takuma Y, Takakazu Y. Ring-opening graft copolymerization of epoxide with polyaniline: Chemical properties and lithium ionic conductivity of the copolymer. J. Polym. Sci. Part A: Polym. Chem., 2001, 39 (18): 3137-3142
    [40] 邓建国,王建华,龙新平等.聚苯胺复合材料研究进展.高分子通报,2002,(3):33-37
    [41] 肖诗铁,黄怡,田海明.聚苯胺/PA6导电复合膜电化学合成与性能.功能高分子学报,1998,11(2):257-260
    [42] 刘皓,李兴致,勾学平等.聚苯胺/维尼纶导电复合纤维的制备与性能.高分子材料科学与工程,1994,10(6):22-25
    [43] 曾幸荣,潘莉芳,张淳等.PANI-PVC原位复合材料的制备与性能.高分子材料科学与工程,1996,12(5):53-56
    [44] 万景华,王行方,黄红军等.聚苯胺/聚乙炔复合导电膜的研究.功能材料,1996,27(4):320-322
    [45] 蔡沛祥,张润建,朱芳等.聚苯胺修饰碳纤维针型复合微pH传感器.分析化学,1997,25(11):1250-1254
    [46] 万其进,张学记,张春光等.聚苯胺修饰碳纤维超微pH传感器研究及其在植物柱头活体测试中的应用.高等学校化学学报,1997,18(2):226-228
    [47] 王朝瑾,李云峰,陈志刚.聚苯胺修饰钨丝针型pH传感器的研究及在河鲫鱼测试中的应用.食品科学,2000,21(12):118-120
    [48] 王朝瑾,李云峰,应太林.聚苯胺修饰钨丝针型复合微pH传感器的研究及在水果测试中的应用.食品科学,2000,21(10):48-50
    [49] Zhou X Y, Cha H Y, Yang C, et al. Determination of pH using a polyaniline-coated piezoelectric crystal. Anal. Chim. Acta, 1996, 329 (1): 105-109
    [50] 方惠群,李根喜,丁仕兵等.微电极研究-聚苯胺修饰微盘电极的研究.分析化学,1993,21(12):1435-1438
    [51] 李晓瑄,李星玮.用于阴离子检测的聚苯胺电极.功能材料,1997,28(3):328-330
    [52] Sung J Y, Huang H J. Application of a polyaniline-Nafion composite electrode to the determination of alkali and alkaline earth metal ions using flow-injection analysis and ion chromatography. Anal. Chim. Acta, 1991, 246 (2): 275-281
    [53] Lindfors T, Sjoberg P, Bobacka J, et al. Characterization of a single-piece all-solid-state lithium-selective electrode based on soluble conducting polyaniline. Anal. Chim. Acta, 1999, 385 (1-3): 163-173
    [54] Updike S J, Hicks G P. The enzyme electrode. Nature, 1967, 214: 986-988
    [55] Liu X, Neoh K G, Kang E T. Enzymatic activity of glucose oxidase covalently wired via viologen to electrically conductive polypyrrole films. Biosens. Bioelectron., 2004, 19 (8): 823-834
    [56] Eftekhari A. Electropolymerization of aniline onto passivated substrate and its application for preparation of enzyme-modified electrode. Synth. Met., 2004, 145 (2-3): 211-216
    [57] Curulli A, Valentini F, Orlanduci S, et al. Pt based enzyme electrode probes assembled with Prussian Blue and conducting polymer nanostructures. Biosens. Bioelectron., 2004, 20 (6): 1223-1232
    [58] Tirkes S, Toppare L, Alkan S, et al. Immobilization of glucose oxidase in polypyrrole/polytetrahydrofuran graft copolymers. Int. J. Bio. Macromol., 2002, 30 (2): 81-87
    [59] Shi L X, Xiao Y, Willner I. Electrical contacting of glucose oxidase by DNA-templated polyaniline wires on surfaces. Electrochem. Commun., 2004, 6 (10): 1057-1060
    [60] Amit L, Sharma S, Annapoorni B, et al. Characterization of electrochemically synthesized poly(2-uoroaniline) and its application to glucose biosensor. Curr. Appl. Phys., 2003, 3 (2-3): 239-245
    [61] Malinauskas A, Garjonyt R, Mazeikien R, et al. Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review. Talanta, 2004, 64 (1): 121-129
    [62] Mu S L, Xue H G, Qian B D. Bioelectrochemical responses of the polyaniline glucose oxidase electrode. J. Electroanal. Chem., 1991, 304 (1-2): 7-16
    [63] Lukachova L V, Karyakin A A, Karyakina E E, et al. The improvement of polyaniline glucose biosensor stability using enzyme immobilization from water-organic mixtures with a high content of organic solvent. Sens. Actuator B, 1997, 44 (1-3): 356-360
    [64] 薛怀国,穆绍林.葡萄糖氧化酶修饰聚苯胺电极的动力学.高等学校化学学报,1993,14(1):138-140
    [65] 薛怀国,沈之荃,李永舫.胺氧化酶修饰聚苯胺电极的生物电化学响应特性.高等学校化学学报,2002,23(4):730-733
    [66] Mu S L, Kan J Q, Zhou J B. Bioelectrochemical responses of the polyaniline uricase electrode. J. Electroanal. Chem. Interfacial Electrochem., 1992, 334 (1-2): 121-132
    [67] 穆绍林,阚锦晴.聚吡咯尿酸酶电极的生物电化学活性.化学学报,1993,51(7):632-638
    [68] Pandey P C, Singh G. Tetraphenylborate doped polyaniline based novel pH sensor and solid-state urea biosensor. Talanta. 2001, 55 (4): 773-782
    [69] 穆绍林,薛怀国.聚苯胺黄嘌呤氧化酶电极的生物电化学活性.化学学报,1995,53(6):521-525
    [70] 阚锦晴,穆绍林.聚苯胺尿酸酶电极性能的研究.物理化学学报,1993,9(3):345-350
    [71] Niu L, Li Q H, Wei F H, et al. Formation optimization of platinum-modified polyaniline films for the electrocatalytic oxidation of methanol.Synth. Met., 2003, 139 (2): 271-276
    [72] Kost K M, Bartak D E. Electrodeposition of platinum microparticles into polyaniline films with electrocatalytic applications. Anal. Chem., 1988, 60 (21): 2379-2384
    [73] Buttner E, Holze R. Hydroquinone oxidation electrocatalysis at polyaniline films. J. Electroanal. Chem., 2001, 508 (1-2): 150-155
    [74] Laborde H, Leger J M, Lamy C. Electrocatalytic oxidation of methanol and Cl molecules on highly dispersed electrodes, Part1: Platinum in polyaniline. J. Appl. Electrochem.,1994, 24 (3): 219-226
    [75] Mikhaylova A A, Molodkina E B, Khazova O A, et al. Electrocatalytic and adsorption properties of platinum microparticle electrodeposited into polyaniline films. J. Electroanal. Chem., 2001, 509 (2): 119-127
    [76] Gholamian M, Contractor A Q. Oxidation of formic acid at platinum microparticles dispersed in a polyaniline matrix, Influences of long-range order and metal-polymer interaction. J. Electroanal. Chem., 1990, 289 (1-2): 69-83
    [77] Napporn W T, Leger J M, Lamy C. Electrocatalytic oxidation of carbon monoxide at lower potential on platinum-based alloys incorporated in polyaniline. J. Electroanal. Chem., 1996, 408 (1-2): 141-147
    [78] Esteban P, Leger J M, Lamy C. Electrocatalytic oxidation of methanol on platinum dispersed in polyaniline conducting polymers. J. Appl. Electrochem., 1989, 19 (3): 462-464
    [79] Rajendra Prasad K, Munichandraiah N. Electrooxidation of methanol on polyaniline without dispersed catalyst particles. J. Power Sources, 2002, 103 (2): 300-304
    [80] Kosteckl R, Ulmann M, Augustynskl J, et al. Enhanced rate of redox conversion films induced by the incorparation of platinum micropaticles. J, Phys. Chem., 1993, 97 (31): 8113-8115
    [81] 吴文,钟起玲,高劲松等.钯微粒修饰聚苯胺电极催化甲酸氧化的活化现象.厦门大学学报,1994,33(6):795-799
    [82] 钟起玲,熊丽华,钟志京等.甲酸在钯微粒修饰聚苯胺电极上氧化催化的协同效应研究.物理化学学报,1996,12(4):346-352
    [83] 李五湖,陈琳琳,钟起玲等.钯微粒修饰聚苯胺电极对甲酸氧化的电催化研究.应用化学,1993,10(4):55-57
    [84] 吴婉群,王月丰,范例.铂微粒修饰的聚苯胺薄膜电极对甲醇氧化的电催化作用.应用化学,1995,12(1):68-72
    [85] Rajendra Prasad K, Munichandraiah N. Potentiodynamically deposited polyaniline on stainless steel: Inexpensive, high-performance electrodes for electrochemical supercapacitors. J. Electrochem. Soc., 2002, 149 (11): A1393-A1399
    [86] Fusalba F, Gouerec P, Villers D, et al. Electrochemical charaterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J. Electrochem. Soc., 2001, 148 (1): A1-A6
    [87] Rajendra Prasad K, Munichandraiah N. Electrochemical study of polyaniline in a gel polymer electrolyte: High energy and high power characteristics of a solid state redox supercapacitor. Electrochem. Solid-State Lett., 2002, 5 (12): A271-A274
    [88] Kitani A, Kaya M, Kazuo S. Performance study of aqueous polyaniline batteries. J. Electrochem. Soc., 1986, 133 (6): 1069-1073
    [89] Anton J, Dominis Geoffrey M, Spinks Gordon G, et al. Comparison of polyaniline primers prepared with different dopants for corrosion protection of steel. Prog. in Org. Coat., 2003, 48 (1): 43-49
    [90] Macdiarmid A G. Conducting polymers: What does the future hold? Synth. Met. 1987, 21 (1-3): 79-83
    [91] Kabbabi A, Gloaguen F, Andolfatto F. Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane. J. Electroanal. Chem., 1994, 373 (1-2): 251-254
    [92] Jusys Z, Behm R J. Methanol oxidation on a carbon-supported Pt fuel cell catalyst-A kinetic and mechanistic study by differential electrochemical mass spectrometry. J. Phys. Chem. B, 2001, 105 (44): 10874-10883
    [93] Li W Z, Liang C H, Qiu J S, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 2002, 40 (5): 791-794
    [94] Liu Z L, Lin X H, Lee J Y, et al. Preparation and characterization of Pt-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cell. Langmiur, 2002, 18 (10): 4054-4060
    [95] 陈军峰,徐才录,毛宗强等.碳纳米管表面沉积Pt及其质子交换膜燃料电池的性能.中国科学(A辑),2001,31(6):529-533
    [96] Ye J H, Fedkiw P. Electrodeposition of high surface area Pt in a well adherent nafion film on glassy carbon. Electrochim. Acta, 1996, 41 (2): 221-231
    [97] Dong S J, Qiu Q S. Electrodeposition of Pt particles on glass carbon modified with cobalt porphyrin and Nafion film and their electrocatalytic reduction of dioxygen. J. Electroanal. Chem., 1991, 314 (1-2): 223-239
    [98] Katayama Aramata A, Ohnishi R. Metal electrodes bonded on solid polymer electrolytes: platinum bonded on solid polymer electrolyte for electrooxidation of methanol in perchloric acid solution. J. Am. Chem. Soc., 1983, 105 (3): 658-659
    [99] 钟起玲,吴文,李五湖等.电催化甲酸氧化中钯微粒与聚苯胺的相互作用.物理化学学报,1994,10(9):813-817
    [100] Gerard M, Chaubey A, Malhotra B D. Application of conducting polymers to biosensors. Biosens. Bioelectron., 2002, 17 (5): 345-359
    [101] 郑智敏,吴辉煌,周绍民.葡萄糖氧化酶修饰玻碳电极的性能研究.厦门大学学报,1990,29(1):47-51
    [102] 傅谊,马建标,何炳林.聚苯胺固定化葡萄糖氧化酶电极的生物电化学性质.自然科学进展,1998,8(3):292-296
    [103] Evtugyn G, Mingaleva A, Budnikov H, et al. Affinity biosensors based on disposable screen-printed electrodes modified with DNA, Anal. Chim. Acta, 2003, 479 (2): 125-134
    [104] 刘盛辉,孙长林,何品刚等.单链脱氧核糖核酸在石墨电极表面固定化的研究.分析化学,1999,27(2):230-234
    [105] Wang J, Rivas G, Cai X H, et al. Sequence-specific electrochemical biosensing of M. tuberculosis DNA. Anal. Chim. Acta, 1997, 337(1): 41-48
    [106] 刘平柱,龚克成.聚苯胺嵌入氧化石墨微粉复合物的合成及表征.高分子学报,2000,(4):492-495
    [107] Elzbieta F, Francois B. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39 (6): 937-950
    [108] Huggins R A. Supercapacitors and electrochemical pulse sources. Solid State Ionics, 2000, 134 (1-2): 179-195
    [109] Kotz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta, 2000, 45 (15-16): 2483-2498
    [110] Takasu Y, Nakamura T, Ohkawauchi H, et al. Dip-coated Ru-V oxide electrodes for electrochemical capacitors. J. Electrochem. Soc., 1997, 144 (8): 2601-2606
    [111] Hu C C, Chang K H. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codepositing iridium oxide. Electrochim. Acta, 2000, 45 (17): 2685-2696
    [112] Lee S H, Liu P, Seong M J, et al. Electrochemical supercapacitors for optical modulation. Electrochem. Solid-stated Lett., 2003, 6 (2): A40-A42
    [113] Sugimoto W, Shibutani T, Murakami Y, et al. Charge storage capabilities of rutile-type RuO_2-VO_2 solid solution for electrochemical supercapaciors. Electrochem. Solid-stated Lett., 2002, 5(7): A170-A172
    [114] Lin C Q, Popov B N, Ploehn H J. Modeling the effects of electrode composition and pore structure on the performance of electrochemical capacitors. J. Electrochem. Soc., 2002, 149 (2): A167-A175
    [115] Zhou Y K, He B L, Zhou W J, et al. Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim. Acta, 2004, 49 (2): 257-262
    [116] Sung J H, Kim S J, Lee K H. Preparation of compact polyaniline films: electrochemical synthesis using agar gel template and charge-storage applications. J. Power Sources, 2004, 126 (1-2): 258-267
    [117] Sivakkumar S R, Saraswathi R. Performance evaluation of poly(N-methylaniline) and polyisothianaphthene in charge-storage devices. J. Power Sources, 2004, 137(2): 322-325
    [118] Park J H, Park O O. Short communication, Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. J. Power Sources, 2002, 111 (1): 185-190
    [119] Rajendra Prasad K, Munichandraiah N. Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance polyaniline coated, stainless-steel electrodes. J. Power Sources, 2002, 112 (2): 443-451
    [120] Dinh H N, Birss V I. Electrochemical and mass measurements during small voltage amplitude pertubation of conducting polyaniline films. J. Electroanal. Chem., 1998, 443 (1): 63-71
    [121] 孙再成,邝力,景遐斌等.化学和电化学方法合成苯/胺封端苯胺四聚体.高等学校化学学报,2002,23(3):496-499
    [122] 尹斌,孙强,张祖训.聚苯胺薄膜电极上循环伏安法可逆波理论和验证.高等学校化学学报,1994,15(8):1140-1145
    [123] 查全性.电极过程动力学导论.北京:科学出版社,2000,301-311
    [124] Kulesza P J, Miecznikowski K, Chojak M, et al. Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate. Electrochim. Acta, 2001, 46 (28): 4371-4378
    [125] Marcel C, Tarascon J M. An all plastic WO_3.H_2O/polyaniline electrochromic device. Solid State Ionics, 2001, 143 (1): 89-101
    [126] Li Y X, Hagen J, Haarer D, Novel photoelectrochromic cells containing a polyaniline layer and a dye-sensitized nanocrystalline TiO_2 photovoltaic cell. Synth. Met., 1998, 94 (3): 273-277
    [127] Wei Y, Wang J G, Jia X R, et al. Polyaniline as corrosion protection coatings on cold rolled steel. Polymer, 1995, 36 (23): 4535-4537
    [128] Ivanov V F, Nekrasov A A, Gribkova O L, et al. Electrochromic properties of vacuum-evaporated polyzniline films. Synth. Met., 1996, 83 (3): 249-251
    [129] Yano J, Yamasaki S. Three-color electrochromism of an aramid film containing polyaniline and poly(o-phenylenediamine). Synth. Met., 1999, 102 (1-3): 1157-1157
    [130] Baba A, Tian S J, Stefani F, et al. Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. J. Electroanal. Chem., 2004, 562 (1): 95-103
    [131] Milica M, Popovic Branimir N. Electrochemical synthesis and corrosion behavior of thin polyaniline-benzoate film on mild steel. Synth. Met., 2004, 143 (2): 191-195
    [132] Jose E, Pereira S, Susana I, et al. Polyaniline acrylic coatings for corrosion inhibition: the role played by counter-ions. Corr. Sci., 2005, 47 (3): 811-822
    [133] Ogurtsov N A, Puda A A, Kamarchik P, et al. Corrosion inhibition of aluminum alloy in chloride mediums by undoped and doped forms of polyaniline. Synth. Met., 2004, 143 (1): 43-47
    [134] Cook A, Gabriel A, Siew D, et al. Corrosion protection of low carbon steel with polyaniline: passivation or inhibition? Curr. Appl. Phys., 2004,4(2-4): 133-136
    [135] Chiang J C, MacDiarmid A G. Polyaniline: protonic acid doping of the emeraldine form to the metallic regime. Synth. Met., 1986, 13 (1-3): 193-205
    [136] Volkov A, Tourillon G, Lacaze P C. Electrochemical polymerization of aromatic amines: IR, XPS and PMT study of thin film formation on a Pt electrode. J. Electroanal. Chem., 1980, 115 (2): 279-291
    [137] Mengoli G, Munari M T, Bianco P. Anodic synthesis of polyaniline coatings onto Fe sheets. J. Appl. Polym. Sci., 1981, 26 (12): 4247-4257
    [138] Cai Z, Lei J, Liang W, et al. Molecular and supermolecular origins of enhanced electric conductivity in template-synthesized polyheterocyc- lic fibrils.1. supermolecular effects. Chem. Mater., 1991, 3 (5): 960-967
    [139] Cai Z, Martin C R. Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J. Am. Chem. Soc, 1989, 111 (11): 4138-4139
    [140] Parthasarathy R V, Martin C R. Template-synthesized polyaniline microtubles. Chem. Mater., 1994,6(10): 1627-1632
    [141] Martin C R, Parthasarathy R V, Menon V. Template synthesis of electronically conductive polymer-a new route for achieving higher electronic conductivity. Synth. Met., 1993, 55 (2-3): 1165-1170
    [142] Huang J, Wan M X. Temperature and pressure dependence of conductivity of polyaniline synthesized by in situ doping
     polymerization in the presence of organic function acid as dopants. SolidState Commun., 1998, 108 (4): 255-259
    [143] Genies E M, Lapkowski M, Penneau J F. Cyclic voltammetry of polyaniline: interpretation of the middle peak. J. Electroanal. Chem., 1988, 249 (1-2): 97-107
    [144] 衣宝廉.燃料电池.北京:化学工业出版社,2000,1-7
    [145] Watanabe M, Saegua S. High platinum electrocatalyst utilizations for direct methanol oxidation. J. Electroanal. Chem., 1989, 271 (1-2): 213-220
    [146] Shimazu K, Inada R, Kita H. Enhancement of the catalytic activity of Pt microparticles dispersed in Nafion-coated electrodes for the oxidation of methanol by RF-plasma treatment. J. Electroanal. Chem., 1990, 284 (2): 523-529
    [147] Hogarth M P, Munk J, Shukla A K, et al. Performance of carbon-cloth bound porous-carbon electrodes containing an electrodeposited platinum catalyst towards the electrooxidation of methanol in sulphuric acid electrolyte. J. App. Electrochem., 1994, 24 (1): 85-88
    [148] Xia X H, Iwasita T, Ge F, et al. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum. Electrochim. Acta, 1996, 41 (5): 711-718
    [149] Becerk I, Suzer S, Kadirgan F. Electrooxidation of methanol on doped polypyrrole films in acidic media. J. Electroanal. Chem., 2001, 502 (1-2): 118-125
    [150] Yassar A, Roncali J, Garnier F. Preparation and electroactivity of poly(thiophene) electrodes modified by electrodeposition of palladium particles. J. Electroanal. Chem., 1998, 255 (1-2): 53-69
    [151] Bagotzky V S, Vassilyev Y B. Mechanism of electro-oxidation of methanol on the platinum electrode. Electrochim. Acta, 1967, 12 (9): 1323-1343
    [152] 黄辉,张文魁,马淳安等.多壁纳米碳管空气电极的交流阻抗研究.高等化学学报,2002,23(11):2151-2154
    [153] Yang H, Chung T D, Kim Y T, et al. Glucose sensor using a microfabricated electrode and electropolymerized bilayer films. Biosens. Bioelectron., 2002, 17(3): 251-259
    [154] Piro B, Dang L A, Pham M C, et al. A glucose biosensor based on modified-enzyme incorporated within electropolymerised poly (3,4-ethylenedioxythiophene)(PEDT) films. J. Electroanal. Chem., 2001,512(1-2): 101-109
    [155] Muguruma H, Hiratsuka A, Karube I. Thin-film glucose biosensor based on plasma-polymerized film: simple design for mass production. Anal. Chem., 2000, 72 (11): 2671-2675
    [156] Xu J J, Chen H Y. Amperometric glucose sensor based on glucose oxidase immobilized in electrochemically generated poly(ethacridine). Anal. Chim. Acta, 2000, 423 (1): 101-106
    [157] Chen L, Gorski W. Bioinorganic composites for enzyme electrode. Anal.Chem., 2001, 73 (13): 2862-2868
    [158] Lukachova L V, Karyakin A, Ivanova Y N, et al. Non-aqueous enzymology approach for improvement of reagentless mediator-based glucose biosensor. The Analyst, 1998, 123 (10): 1981-1985
    [159] Somasundrum M, Aoki K. The steady-state current at microcylinder electrodes modified by enzymes immobilized in conducting or non-conducting material. J. Electroanal. Chem., 2002, 530 (1-2): 40-46
    [160] Sung W J, Bae Y H. A glucose oxidase electrode based on electropolymerized conducting polymer with polyanion-enzyme conjugated dopant. Anal. Chem., 2000, 72 (9): 2177-2181
    [161] Adeloju S B, Wallace G G. Conducting polymers and the bioanalytical sciences. The Analyst, 1996, 121 (6): 699-703
    [162] Bartlett P N, Cooper J M, A review of the immobilization of enzymes in electropolymerized films. J. Electroanal. Chem., 1993, 362 (1-2): 1-12
    [163] Foulds N C, Lowe C R. Enzyme entrapment in electrically conducting polymers. J.Chem.Soc. Faraday Trans. I , 1986, 82 (4): 1259-1264
    [164] Umana M, Waller J. Protein modified electrodes. The glucose oxidase/polypyrrole system. Anal. Chem., 1986, 58 (14): 2979-2983
    [165] Becerik I, Kadirgan F. Glucose sensitivity of platinum-based alloys incorporated in polypyrrole films at neutral media. Synth. Met., 2001. 124 (2-3): 379-384
    [166] Kelaidopoulou A, Papoutsis A, Kokkinidis G, et al. Electrooxidation of β-D(+)glucose on bare and u.p.d. modified platinum particles dispersed in polyaniline. J. Appl. Electrochem., 1999. 29 (1): 101-107
    [167] Yamato H, Koshiba T, Ohwa M, et al. A new method for dispersing palladium microparticles in conducting polymer films and its application to biosensors. Synth. Met., 1997, 87 (3): 231-236
    [168] Cai L T, Chen H Y. Electrocatalytic reduction of hydrogen peroxide at platinum microparticles dispersed in a poly (o-phenylenediamine) film. Sens. Actuator B, 1999, 55 (1): 14-18
    [169] Coutanceau C, Croissant M J, Napporn T, et al. Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film. Electrochim. Acta, 2000, 46 (4): 579-588
    [170] Dempsey E, Wang J. Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a L-lactate biosensor. Talanta, 1993, 40 (3): 445-451
    [171] Abdel Hamid I, Atanasov P, Wilkins E. Development of a needle-type biosensor for intravascular glucose monitoring. Anal. Chim. Acta, 1995, 313 (1-2): 45-54
    [172] Trojanowicz M, Miernik A. Bilayer lipid membrane glucose biosensors with improved stability and sensitivity. Electrochim. Acta, 2001,46(7): 1053-1061
    [173] Palmisano F, Guerrieri A, Quinto M, et al. Electrosynthesized bilayer polymeric membrane for effective elimination of electroactive interferents in amperometric biosensors. Anal.Chem., 1995, 67 (5): 1005-1009
    [174] Losito I, Zambonin C G. Double electropolymer modified platinum electrode to follow the kinetic process H_2O_2 + ascorbic acid. Influence of the reaction on amperometric biosensor applications. J. Electroanal. Chem., 1996, 410 (2): 181-187
    [175] Yang Q L, Atanasov P, Wilkins E. Development of needle-type glucose sensor with high selectivity. Sens. Actuator B, 1998, 46 (3): 249-256
    [176] Castro Luna A M. A novel electrocatalytic polyaniline electrode for methanol oxidation. J. Appl. Electrochem., 2000, 30 (10): 1137-1142
    [177] Chen C C, Bose C S C, Rajeshwar K. The reduction of dioxygen and the oxidation of hydrogen at polypyrrole film electrodes containing nanodispersed platinum particles. J. Electroanal. Chem., 1993, 350
     (1-2): 161-176
    [178] Bose C S C, Rajeshwar K. Efficient electrocatalyst assemblies for proton and oxygen reduction: the electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles. J. Electroanal. Chem., 1992, 333 (1-2): 235-256
    [179] Ficicioglu F, Kadirgan F. Electrooxidation of methanol on platinum doped polyaniline electrodes: deposition potential and temperature effect. J. Electroanal. Chem., 1997, 430 (1-2): 179-182
    [180] 傅献彩,沈文霞,姚天扬.物理化学,第四版.北京:高等教育出版社,1990,862-866
    [181] Shu F R, Wilson G S. Rotating ring-disk enzyme electrode for surface catalysis studies. Anal. Chem., 1976, 48 (12): 1679-1686
    [182] Malitesta C, Palmisano F, Torsi L, et al. Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal. Chem., 1990, 62 (24): 2735-2740
    [183] 张国林,潘献华,阚锦晴等.导电复合材料葡萄糖氧化酶传感器的研究.物理化学学报,2003,19(6):533-537
    [184] 傅谊,马建标,何炳林.导电聚合物酶电极的研究概况.功能高分子学报,1997,10(9):443-448
    [185] 毛秋霞,黄永芳,陈甜女等.几种葡萄糖氧化酶部分性质的比较.华南农业大学学报,2000,21(2):54-56
    [186] 汪云,周东美,陈洪渊.聚邻苯二胺固定葡萄糖氧化酶在微带金电极上的性质.无锡轻工大学学报,1998,17(1):69-73
    [187] Sasso S V, Pierce R J, Walla R, et al. Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensor. Anal. Chem., 1990, 62(11): 1111-1117
    [188] Bartlett P N, Caruana D J. Electrochemical immobilization of enzymes Part Ⅴ. Microelectrodes for the detection of glucose based on glucose oxidase immobilized in a poly(phend) film. The Analyst, 1992, 117 (8): 1287-1292
    [189] Sircar S, Golden T C, Rao M B. Activated carbon: gas separation and storage. Carbon, 1996, 34 (1): 1-12
    [190] 张晓昕.郭树才,邓贻钊.高比表面积活性炭的物理模型.新型炭

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700