用户名: 密码: 验证码:
RNA干扰抑制Ndst1和Hs2st表达对前列腺癌细胞系Myc-CaP生物学行为的影响及机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1、构建靶向抑制Ndst1和Hs2st表达的RNA干扰载体
     2、观察抑制Ndst1和Hs2st表达对前列腺癌细胞系Myc-CaP生物学行为的影响
     3、初步探讨抑制Ndst1和Hs2st表达对前列腺癌细胞系Myc-CaP生物学行为影响的机制
     方法
     1、靶向抑制Ndst1和Hs2st表达的RNA干扰载体的构建、筛选和鉴定
     利用软件OligoEngine Workstation对Ndst1和Hs2st的mRNA序列进行分析,针对每个序列分别设计并合成3条备选干扰序列,与siRNA真核表达载体pSUPER.retro.neo+GFP进行重组,构建RNA干扰载体pSUPER-Ndst1和pSUPER-Hs2st。用干扰载体转染前列腺癌Myc-CaP细胞后,通过检测各转染组细胞中Ndst1和Hs2st的mRNA和蛋白表达情况,筛选出抑制效果最显著的干扰载体用于后续实验研究。
     2、靶向抑制Ndst1和Hs2st表达对前列腺癌细胞系Myc-CaP生物学行为影响的体外实验研究
     采用CCK-8法和细胞计数法绘制细胞生长曲线、软胶克隆形成实验和流式细胞仪检测细胞周期等实验方法,比较对照组和实验组Myc-CaP细胞的增殖能力;利用Transwell迁移实验、细胞划痕愈合实验和Transwell侵袭实验分别对对照组和实验组Myc-CaP细胞的迁移和侵袭能力进行观察;另外,采用Annexin V-FITC/PI双染法结合流式细胞仪检测了各转染组Myc-CaP细胞的凋亡。
     3、靶向抑制Ndst1和Hs2st表达对前列腺癌细胞系Myc-CaP生物学行为影响的体内实验研究
     将Ndst1和Hs2st敲低后的Myc-CaP细胞注射到裸鼠背部皮下,观察移植瘤的生成和生长情况。解剖出移植瘤组织,通过BrdU标记法检测瘤体细胞增殖情况,利用TUNEL法检测移植瘤细胞的凋亡情况。将Ndst1和Hs2st敲低后的Myc-CaP细胞用荧光染料染色,从尾静脉注射入裸鼠体内,3小时后解剖出肺组织进行冰冻切片,镜下观察短期肺转移情况。
     4、靶向抑制Ndst1和Hs2st表达对前列腺癌细胞系Myc-CaP生物学行为影响的机制初探
     将生长因子FGF-2与生物素结合后,加入Ndst1和Hs2st敲低后的Myc-CaP细胞中孵育,然后用R-藻红蛋白-抗生物素蛋白链菌素与生物素结合,用流式细胞仪检测FGF-2与Ndst1和Hs2st敲低后Myc-CaP细胞的结合能力。另外,我们还检测了FGF-2对Ndst1和Hs2st敲低前后的Myc-CaP细胞在生长、迁移和凋亡方面的作用变化。
     结果
     1、成功构建了靶向抑制Ndst1和Hs2st表达的RNA干扰载体:pSUPER-Ndst1和pSUPER-Hs2st,对Ndst1和Hs2st表达的抑制率分别为85.6%和80.2%。
     2、体外实验中,抑制Ndst1表达后的Myc-CaP细胞生长速度变慢;克隆形成能力降低46.2%迁移和侵袭能力分别降低30.0%和17.1%;凋亡率升高1.2倍。
     3、体外实验中,抑制Hs2st表达后的Myc-CaP细胞生长速度变慢;克隆形成能力降低81.2%;迁移和侵袭能力分别降低69.6%和69.5%。凋亡率升高2.9倍。
     4、裸鼠体内实验中,抑制Ndst1表达后的Myc-CaP细胞生长速度变慢,细胞增殖能力降低39.3%;短期肺转移能力降低40.8%;凋亡率升高1.6倍。
     5、裸鼠体内实验中,抑制Hs2st表达后的Myc-CaP细胞生长速度变慢,细胞增殖能力降低50.2%;短期肺转移能力降低65.6%;凋亡率升高5.9倍。
     6、抑制Ndst1或Hs2st表达后的Myc-CaP细胞与FGF-2的结合能力下降,分别为对照组Myc-CaP细胞的79.5%和38.8%。
     7、加入FGF-2 (20ng/ml)后,抑制Ndst1或Hs2st表达的Myc-CaP细胞生长速度加快,但明显比对照组慢;对照组、Ndst1组和Hs2st组Myc-CaP细胞迁移能力分别增加5.8、3.6和2.1倍;凋亡率分别下降了81.9%、51.4%和22.0%。
     结论
     1、抑制Ndst1或Hs2st表达能够降低Myc-CaP细胞在体内外的增殖、迁移和侵袭能力,促进其凋亡,其中抑制Hs2st表达对Myc-CaP细胞产生的影响更明显。
     2、抑制Ndst1或Hs2st表达后的Myc-CaP细胞对生长因子FGF-2的结合能力和反应能力下降,这可能是其生物学行为改变的机制之一。
Objects
     1. To construct RNA interference vectors targeting Ndstl and Hs2st
     2. To observed effects of Ndst1 and Hs2st suppression on the biological behaviors of prostate cancer cell line Myc-CaP
     3. To investigate preliminarily the influence mechanism of Ndst1 and Hs2st suppression on the biological behaviors of prostate cancer cell line Myc-CaP
     Methods
     1. Construction, screening and identification of RNA interference vectors targeting Ndst1 and Hs2st
     Using OligoEngine Workstation 2.0 to analysis the mRNA sequences of Ndst1 and Hs2st, designed and synthesized three target sequences for each gene to recombined with the siRNA eukaryotic expression vector pSUPER.retro.neo+GFP, and obtain pSUPER-Ndst1 and pSUPER-Hs2st. After recombination interference vector was transfected into prostate cancer, Myc-Cap cells, we select the interference vector with the most significant inhibitory effect for follow-up experiments by detecting the mRNA and protein expression of Ndst1 and Hs2st in the transfected group cells
     2. In vitro effects of Ndstl and Hs2st suppression on the biological behaviors of prostate cancer cell line Myc-CaP
     Using drawing of the cell growth curve with CCK-8 method and cell counting method, soft colony forming assay and cell cycle detection by flow cytometry to detect cell proliferation; using Transwell chamber, cell scratch healing assay and Matrigel Invasion Chamber to detect migration and invasion capacity of Myc-CaP cells in the control group and experimental group; Using Annexin V-FITC/PI double staining method combined with flow cytometry to detect Myc-CaP cells apoptosis.
     3. In vivo effects of Ndst1 and Hs2st suppression on the biological behaviors of prostate cancer cell line Myc-CaP
     Injected the Myc-CaP cells with Ndst1 and Hs2st suppression into nude mice subcutaneously, and observe the formation and growth of tumor. Detect tumor cell proliferation and apoptosis of transplanted tumor tissue by BrdU labeling and TUNEL method respectively. Injected the Myc-CaP cells stained with fluorochrome into nude mice through tail vein, and separate lung tissue for frozen section and observe of lung metastases under microscope
     4. Preliminary study on the influence mechanism of Ndstl and Hs2st suppression on the biological behaviors of prostate cancer cell line Myc-CaP
     Added biotin-FGF-2 into Ndstl and Hs2st knockdown Myc-CaP cells, Then used the
     R-phycoerythrin-streptavidin-biotin to combined with biotin, detected the binding capacity of FGF-2 with Ndstl and Hs2st knockdown Myc-CaP cells by flow cytometry. In addition, we examined effect of FGF-2 on Ndstl and Hs2st knockdown Myc-CaP cells in the growth, invasion and apoptosis.
     Results
     1. Constructed successfully RNA interference vectors, pSUPER-Ndstl and pSUPER-Hs2st, targeting Ndstl and Hs2st, inhibition rates were85.6% and 80.2% separately.
     2. In vitro studies:Ndstl suppression Myc-CaP cells growth slow down; colony-forming ability decreased by 46.2%; migration and invasive ability decreased by 30.0% and 17.1%; apoptosis rate increased 1.2 times.
     3. In vitro study:Hs2st suppression Myc-CaP cells growth slow down; colony-forming ability decreased by 81.2%; migration and invasive ability decreased by 69.6% and 69.5%; apoptosis rate increased 2.9 times.
     4. In nude mice:Ndstl suppression Myc-CaP cells growth slow down; proliferation rate reduced by 39.3%; capacity of short-term lung metastases by 40.8%; apoptosis rate increased 1.6 times.
     5. In nude mice:Hs2st suppression Myc-CaP cells growth slow down; proliferation rate reduced by50.2%; capacity of short-term lung metastases by 65.6%; apoptosis rate increased 5.9 times.
     6. Binding capacity of Ndstl and Hs2st suppression Myc-CaP cells with FGF-2 decreased by 79.5%和38.8% separately, compared with the control group.
     7. Adding the FGF-2 (20ng/ml), the growth of Ndstl and Hs2st suppression Myc-CaP cells accelerated, but obviously slower than the control group; the control group, Ndstl group and Hs2st group Myc-CaP cells migration capacity increased by 5.8,3.6 and 2.1 times; apoptosis rate decreased by 81.9%,51.4% and 22.0% respectively.
     Conclusions
     1. Suppression of Ndstl or Hs2st can inhibit Myc-CaP cells proliferation, migration and invasion and promote apoptosis, in which suppression of Hs2st has more pronounced effect.
     2. Changes in the biological behaviors of Ndstl or Hs2st suppression Myc-CaP cells are related to the binding capacity decline of FGF-2 with Myc-CaP cells.
引文
1. Jemal A, Siegel R, Ward E, et al. Cancer statistics [J]. SO CA Cancer J Clin 2006, 56:106-130.
    2.杨才明.泌尿系统肿瘤检测的新方法[J].标记免疫分析与临床,2001,8(2):107
    3. Dianat SS, Margreiter M, Eckersberger E, et al. Gene polymorphisms and prostate cancer: the evidence [J]. BJU Int.2009,104(11):1560-1572.
    4. Isaacs JT. The biology of hormone refractory prostate cancer. Why does it develop? [J] Urol Clin North Am,1999,26(2):263-273.
    5. Mulloy B, Fotster MJ. Conformation and dynamics of heparin and heparan sulfate [J]. Glycobiology,2000,10(4):1147-1156.
    6. Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology [J]. Nature 2007,446:1030-1037.
    7. Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K. Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library [J]. J Biol Chem 2004,279:12346-12354.
    8. Esko, JD, Lindahl, U. Molecular diversity of heparin sulfate [J]. J. Clin. Invest,2001,108: 169-173.
    9. Bernfield, M. et al. Functions of cell surface heparin sulfate proteoglycans [J]. Annu. Rev. Biochem,1999,68,729-777.
    10. Esko, J, Lindahl, U. Molecular diversity of heparin sulfate [J]. J. Clin. Invest,2001,108, 169-173.
    11.Kleeff, J. et al. The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer [J]. J. Clin. Invest,1998,102,1662-1673.
    12. Lai, J. et al. Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer [J]. J. Biol. Chem,2003,278,23107-23117.
    13. Davies EJ, Blackhall FH, Jonathan H, et al. Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer [J]. Clinical Cancer Research,2004,10:5178-5186.
    14. Bogenrieder, T.& Herlyn, M. Axis of evil:molecular mechanisms of cancer metastasis [J]. Oncogene,2003,22:6524-6536.
    15. Bernfield, M. et al. Functions of cell surface heparin sulfate proteoglycans [J]. Annu. Rev. Biochem,1999,68,729-777.
    16. Saoncella, S. Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers [J]. Proc. Natl Acad. Sci,1999,96, 2805-2810.
    17. Beauvais, D. M., Burbach, B. J.& Rapraeger, A. C. The syndecan-1 ectodomain regulates α vβ 3 integrin activity in human mammary carcinoma cells [J]. J. Cell Biol,2004,167, 171-181.
    18. Adatia, R. et al. Suppression of invasive behavior of melanoma cells by stable expression of anti-sense perlecan cDNA[J]. Ann. Oncol,1997,8:1257-1261.
    19. Iozzo, RV, San Antonio, JD. Heparan sulfate proteoglycans:heavy hitters in the angiogenesis arena [J]. J. Clin. Invest,2001,108:349-355.
    20. Jiang, X.& Couchman, J. R. Perlecan and tumor angiogenesis [J]. J. Histochem. Cytochem, 2003,51:1393-1410.
    21. Mark M. Fuster, Lianchun Wang, Janice Castagnola. Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis [J]. J Cell Biol.2007,177(3): 539-549.
    22. Fire A, Xu S, Montgomery M, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391:806-811.
    23. Ikeda Y, Sineriz F, Bultel L, Grand E, et al. Synthesis of a trisulfated heparan sulfate disaccharide analog and its use as a template for preliminary molecular imprinting studies [J]. Carbohydr Res,2008,343(4):587-95.
    24. Laumonier T, Walpen AJ, Maurus CF, et al. Dextran sulfate acts as an endothelial cell protectant and inhibits human complement and natural killer cell-mediated cytotoxicity against porcine cells[J]. Transplantation,2003,76(5):838-43.
    25. Rudd TR, Guimond SE, Skidmore MA, et al. Influence of substitution pattern and cation binding on conformation and activity in heparin derivatives [J]. Glycobiology,2007, 17(9):983-993.
    26. Fire A, Xu S, Montgomery M, Kostas S, Driver S, Mello C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391: 806-811.
    27. Blackhall FH, Merry CL, Davies EJ, et al. Heparan sulfate proteoglycans and cancer [J]. Br J Cancer,2001,85(8):1094-1098.
    28. Aravin A A, Klenov MS, Vagin VV, et al. Role of double-stranded RNA in eukaryotic gene silencing [J]. Mol Biol (Mosk),2002,36(2):240-251
    29. Bosher JM, Labousesse M. RNA interference:genetic watchdog [J].Nat Cell Biol,2000, 2(2):E31-36
    30. Montgomery MK, Xu S, Fire A, et al. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans [J]. Proc Natl Acad Sci USA,1998, 95(26):15502-15507
    31. Ramaswamy G, Slack FJ. SiRNA:A guide for RNA silencing [J].Chem Biol,2002,9(10): 1053-1055.
    32. Hannon GJ. RNA interference [J]. Nature,2002,418(6894):244-251
    33. Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to enerate new siRNAs [J]. Cell.2001,107(3): 297-307.
    34. Grishok A, Pasquinelli AE, Conte D, et al.Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing [J]. Cell.2001,106(1):23-34.
    35. Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway [J]. Cell.2001,107(3):309-321.
    36. Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA [J]. Science,2001,293(5531):834-838.
    37. Paddison PJ, Hannon GJ. siRNAs and shRNAs:skeleton keys to the human genome[J]. Cuurr Opin Mol Ther,2003,5(3):217-224.
    38. Brummelkamp TR, Bernads R, Agami R. A system for stable expression of short interfering RNAs in Mammalian cells [J].Science,2002,296:550-553.
    39. Dykxhoorn DM, Novina CD, Sharo PA. Killing the messenger:short RNAs that silence gene expression [J].Nat Rev Mol Cell Biol,2003,4(6):457-467.
    40. Yoshinari K, Miyagishi M, Taira K.Effects on RNAi of the tight tructure, sepuence and position of the targeted region [J]. Nucleic Acids Res,2004,32(2):691-699.
    41.J萨姆布鲁克,D.W.拉塞尔著.黄培堂译.分子克隆实验指南[M].第3版,北京:科学出版社,2002,1276-1305.
    42. Willard M, Freeman, Stephen J. et al. Quantitative RT-PCR:Pitfall and Potential [J]. Bio Techniques 1999,26(1):112-125.
    43. Simpson DA, Feeney S, Boyle C, et al. Retinal VEGF mRNA measured by SYBR green I fluorescence:a versatile approach to quantitative PCR [J]. Mol Vis.2000,6:178-183
    44. Kellogg, DE, Rybalkin, S. Chen, N. et al. "TaqStart AntibodyTM:"Hot Start" PCR Facilitated by a Neutralizing Monoclonal Antibody Directed Against Taq DNA Polymerase," [J] BioTechniques,1994,16(6):1134-1137.
    45.姜彬.细胞培养技术简介及避免污染的策略[J].生物学通报,2008,43(3):54-55
    46.邵婉华.细胞的培养在临床研究方面的进展[J].中国社区医师(综合版),2005,16:5
    47. Al-Rubeai M. Apoptosis and cell culture technology [J]. Adv Biochem Eng Biotechnol.1998, 59:225-249.
    48.熊建文,肖化,张镇西,等.MTT法和CCK-8法检测细胞活性之测试条件比较[J],激光生物学报,2007,16:559-562
    49. Fey MF. Cell cycle and cancer--from the tumor cell line to the patient [J]. Praxis (Bern 1994), 2000,89(11):435-437.
    50. Bartek J, Lukas J.Mammalian G1 and S-phase checkpoints in response to DNA damage [J]. J Curr Opin Cell Biol,2001,13(6):738-747.
    51.齐菲菲,贺福初,姜颖.肿瘤转移研究的现状与趋势[J].生物化学与生物物理进展,2009,36(10):1244-1251
    52. Chen S, Cheng AC, Wang MS, et al. Detection of apoptosis induced by new type gosling viral enteritis virus in vitro through fluorescein annexin V-FITC/PI double labeling[J]. World J Gastroenterol.2008,14(14):2174-2178
    53. Knuchel R, Hofstadter F. In vitro culture:from tissue to cell line. Pathologe [J].1994, 15(3):141-9.
    54. Giovanella BC, Fogh J. The nude mouse in cancer research [J]. Adv Cancer Res.1985, 44:69-120.
    55.郝光荣主编.实验动物学(第2版)[M]上海:第二军医大学出版社,1999:37-72.
    56.叶翩,张淑玲,揭盛华,等.人肝癌裸鼠移植模型的研究进展[J],世界华人消化杂志,2006,14(36):3500-3503.
    57.李新明.非放射性标记物BrdU研究进展[J].口腔材料器械杂志,1998,7(1):32-35.
    58. HG Gratzner. Monoclonal antibody to 5-bromo-and 5-iododexyuridine:a new reagent for detection of DNA replication [J]. Science,1982,218:474-475.
    59.黄文孝,肖红俊,汪吉宝,等.用BrdU标记技术观察大鼠内淋巴囊的S期细胞[J].中国组织化学与细胞化学杂志,2002,11(4):403-404.
    60. Sarcevic B. Apoptosis in tumors [J]. Acta Med Croatica,2009,63(2):43-47.
    61. Blankenberg FG. In vivo detection of apoptosis [J]. J Nucl Med,2008,49:81S-95S.
    62. Heatwole VM. TUNEL assay for apoptotic cells [J]. Methods Mol Biol,1999,115:141-148.
    63. Wang JQ, Li W, Wang Q, Liu K, et al. Skip metastasis of prostate cancer:diagnosis and treatment[J]. Zhonghua Nan Ke Xue,2009,15(12):1120-1123.
    64. Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology [J]. Nature,2007,446:1030-1037
    65. Blackhall FH, Merry CL, Davies EJ, Jayson GC. Heparan sulfate proteoglycans and cancer [J]. Br J Cancer,2001,85:1094-1098
    66. Klagsbrun M. The affinity of fibroblast growth factors (FGFs) for heparin; FGF-heparan sulfate interactions in cells and extracellular matrix [J]. Curr Opin Cell Biol,1990, 2(5):857-63.
    67. Cao Y, Cao R, Hedlund EM. R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways [J]. J Mol Med,2008,86(7):785-789.
    68. Huss WJ, Barrios RJ, Foster BA, et al. Differential expression of specific FGF ligand and receptor isoforms during angiogenesis associated with prostate cancer progression. Prostate, 2003,54(1):8-16.
    69. Ornitz D M, Itoh N. Fibroblast growth factors [J]. Genome Biol,2001,2:1-12
    70. Gyeong-Hun B, Norbert P. Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila [J]. Current Opinion in Cell Biology,2000,12:575-580
    71.Guizzetti M, Costa LG. Sonic hedgehog in Smith-Lemli-Opitz syndrome and tumor development [J]. J Pediatr Hematol Oncol,2008,30(9):641-642.
    72. Cao Y, Cao R, Hedlund EM. R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways [J]. J Mol Med,2008,86(7):785-9.
    73. Kobayashi T, Habuchi H, Tamura K, et al. Essential role of heparan sulfate 2-O-sulfotransferase in chick limb bud patterning and development [J]. J Biol Chem.2007, 282(27):19589-19597.
    1. Bernfield M, Gotte M, Park PW, et al. Functions of cell surface heparan sulphate proteoglycans [J]. Ann Rev Biochem,1999,68:719-777.
    2. Gallagher JT, Lyon M, Steward WP. Structure and function of heparan sulphate proteoglycans [J]. Biochem,1986,236(2):313-325.
    3. Hiroko H, Koji K. Heparan sulfate proteoglycans mediating the epithelial and mesenchymal interaction [J]. Seikagaku,2001,73(10):1246-1256.
    4. Kallunki P, Eddy RL, Byers MG, et al. Cloning of human heparan sulfate proteoglycan core protein, assignment of the gene (HSPG2) to 1 p36.1-p35 and identification of a BamHI restriction fragment length polymorphism[J]. Genomics,1991, 11(2):389-396.
    5. Nadanaka S, Kitagawa H. Heparan sulphate biosynthesis and disease[J]. J Biochem,2008, 144(1):7-14.
    6. Kjellen L. Glucosaminyl N-deacetylase/N-sulphotransferases in heparan sulphate biosynthesis and biology [J]. Biochem Soc Trans,2003,31(2):340-342.
    7. Lindahl U, Cifonelli J A, Lindahl B, et al. The role of serine in the linkage of heparin to protein [J]. J Biol Chem,1965,240:2817-2820.
    8. Busse M, Kusche-Gullberg M. In vitro polymerization of heparan sulfate backbone by the EXT proteins [J]. J Biol Chem,2003; 278:41333-41337.
    9. Kjellen L. Glucosaminyl N-deacetylase/N-sulphotransferases in heparan sulphate biosynthesis and biology [J]. Biochem. Soc. Trans,2003 31:340-342.
    10. Calsson P, Presto J, Spillmann D, et al. Heparin/heparan sulfate biosynthesis:processive formation of N-sulfated domains[J]. J Biol Chem,2008,283(29):20008-14.
    11.Rong J, Habuchi H, Kimata K, et al. Expression of heparin sulphate L-iduronyl 2-O-sulphotransferase in human kidney 293 cells results in increased D-glucuronyl 2-O-sulphation[J]. Biochem J,2000,346:463-468.
    12. Habuchi H, Tanaka M, Habuchi O, et al. The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine [J]. J Biol Chem,2000,275(4):2859-2868.
    13. Shworak NW, Liu J, Petros LM, et al. Multiple isoforms of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. Isolation, characterization, and expression of human cdnas and identification of distinct genomic loci [J]. J Biol Chem,1999,274(8):5170-5184
    14. P.W. Park et al., Cell surface heparan sulfate proteoglycans:selective regulators of ligand-receptor encounters [J]. J. Biol. Chem,275:29923-29926
    15. Walker A, Turnbull JE, Gallagher JT. Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor [J]. J Biol Chem,1994.269:931-935.
    16. Lopes CC, Dietrich CP, Nader HB. Specific structural features of syndecans and heparan sulfate chains are needed for cell signaling [J]. Braz J Med Biol Res,2006,39(2):157-67.
    17. Filmus J, Selleck SB. Glypicans:proteoglycans with a surprise [J]. J Clin Invest,2001,108 (4):497-501.
    18. Denzer AJ, Schulthess T, Fauser C, et al. Electron microscopic structure of agrin and mapping of its binding site in laminin-1[J].Embo J,1998,17(2):335-43.
    19. Knox SM, Whitelock JM. Perlecan:how does one molecule do so many things? [J] Cell Mol Life Sci,2006,63(21):2435-45
    20. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J and Zako M (1999) Functions of cell surface heparan sulphate proteoglycans [J]. Ann Rev Biochem 68:719-777.
    21. Kawashima H, Watanabe N, Hirose M, et al. Collagen ⅩⅧ, a basement membrane heparan sulfate proteoglycan, interacts with L-selectin and monocyte chemoattractant protein-1[J]. J Biol Chem.2003,278(15):13069-76.
    22. Patricia L. Robertson, Gary W. Heparin inhibits the growth of astrocytes in vitro [J]. Brain Research,1988,447:341-345.
    23. Witmer AN, van den Born J, Vrensen GF, et al. Vascular localization of heparan sulfate proteoglycans in retinas of patients with diabetes mellitus and in VEGF-induced retinopathy using domain-specific antibodies [J]. Curr Eye Res,2001,22(3):190-197.
    24. Murdoch AD, Iozzo RV. Perlecan:the multidomain heparan sulphate proteoglycan of basement membrane and extracellular matrix [J]. Virchows Archiv A Pathol Anat,1993, 423:237.
    25. Ettenson DS, Koo EW, Januzzi JL, et al. Endothelial heparan sulfate is necessary but not sufficient for control of vascular smooth muscle cell growth [J]. J Cell Physiol.2000,184 (1): 93-100.
    26. Yurchenco PD, Schittny JC. Molecular architecture of basement membranes [J]. FASEB J. 1990,4:1557.
    27. De Agostini AI, Rosenberg RD. New approaches for defining the molecular basis of anticoagulantly active heparan sulfate production [J]. Ann N Y Acad Sci.1991,614:279-288.
    28. Isaka T, Yoshimine T, Maruno M, et al. Altered expression of antithrombotic molecules in human glioma vessels [J]. Acta Neuropathol,1994,87:81.
    29. Abramovitch R, Neeman M, Reich R,et al. Intercellular communication between vascular smooth muscle and endothelial cells mediated by heparin-binding epidermal growth factor-like growth factor and vascular endothelial growth factor[J]. FEBS Lett,1998,425(3): 441-447.
    30. Alberdi E, Hyde CC, Becerra SP. Pigment epithelium-derived factor (PEDF) binds to glycosaminoglycans:Analysis of the binding site [J].Biochemistry,1998,37(30):10643-10 652.
    31. Venkataraman G, Raman R, Sasisekharan V et al.1999. Molecular characteristics of fibroblast growth factor-fibroblast growth factor receptor-heparin-like glycosaminoglycan complex [J]. Proc Natl Acad Sci USA,96:3658-3663.
    32. Schlessinger J, Plotnikov AN, Ibrahimi OA, et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization [J].Mol Cell,2000,6(3):743.
    33. Wiedlocha A, Sorensen V. Signaling, internalization, and intracellular activity of fibroblast growth factor [J].Curr Top Microbiol Immunol,2004,286:45.
    34. Kleef J, Ishiwata T, Kumbasar A, et al. The cell-surface heparan sulphate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer [J]. J Clin Invest 1998,102(9):1662-1673.
    35. Sharma B, Handler M, Eichstetter I, et al. Antisense targetting of perlecan blocks tumor growth and angiogenesis in vivo [J]. J Clin Invest 1998,102(8):1599-1608
    36. Inki P, Jalkanen M. The role of syndecan-1 in malignancies [J]. Ann Med,1996,28:63-67
    37. Matsumoto A, Ono M, Fujimoto Y, et al. Reduced expression of Syndecan 1 in human hepatocellular carcinoma with high metastatic potential [J]. Int J Cancer,1997,74:482-491
    38. Alexander CM, Reichsman F, Hinkes MT, et al. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice [J]. Nat Genet 2000,25:329-332.
    39. Hirabayashi K, Numa F, Suminami Y, et al. Altered proliferative and metastatic potential associated with increased expression of syndecan-1[J], Tumour Biol,1998,19:454-463.
    40. Pilia G, Hughes-Benzie RM, MacKenzie A, et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome [J]. Nat Genet,1996,12:241-247.
    41. Stickens D, Brown D, Evans G. EXT genes are differentially expressed in bone and cartilage during mouse embryogenesis [J]. Dev Dyn,2000,218:452-464
    42. Hennekam RCM. Hereditary multiple exostosis [J]. J Med Genet,1991,28:262-266
    43. Esko J D. Genetic analysis of proteoglycan structure, function and metabolism [J]. Curr. Opin. Cell Biol,1991; 3:805-816.
    44. Saoncella, S. et al. Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers [J]. Proc. Natl Acad. Sci. USA,1999,96,2805-2810.
    45. Beauvais, DM, Burbach, BJ, Rapraeger, AC. The syndecan-1 ectodomain regulates αvβ3 integrin activity in human mammary carcinoma cells [J]. J. Cell Biol,2004,167,171-181.
    46. Adatia, R. et al. Suppression of invasive behavior of melanoma cells by stable expression of anti-sense perlecan cDNA [J]. Ann. Oncol,1997,8,1257-1261
    47. Vlodavsky, I. et al. Inhibition of tumor metastasis by heparanase inhibiting species of heparin [J]. Invasion Metastasis,1994,14,290-302
    48. Iozzo, RV, San Antonio, JD. Heparan sulfate proteoglycans:heavy hitters in the angiogenesis arena [J]. J. Clin. Invest.2001,108,349-355
    49. Jiang, X, Couchman, JR. Perlecan and tumor angiogenesis [J]. J. Histochem. Cytochem. 2003,51,1393-1410.
    50. Mark M. Fuster Lianchun Wang, Janice Castagnola. Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis [J]. J Cell Biol.2007,177 (3):539-549.
    51. Sharma, B. Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo [J]. J. Clin. Invest,1998,102,1599-1608.
    52. Presta, M. Heparin derivatives as angiogenesis inhibitors [J]. Curr. Pharm. Des,2003,9, 553-566.
    53. Liekens, S. Modulation of fibroblast growth factor-2 receptor binding, signaling, and mitogenic activity by heparin-mimicking polysulfonated compounds [J]. Mol. Pharmacol, 1999,56,204-213.
    54. Pisano, C. Undersulfated, low-molecular-weight glycol-split heparin as an antiangiogenic VEGF antagonist [J]. Glycobiology,2005,15,1C-6C。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700