用户名: 密码: 验证码:
香菇葡聚糖稀至浓溶液的行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三螺旋香菇β-(1→3)-D-葡聚糖(lentinan)表现高度特异性免疫增强作用,能活化巨噬细胞,增强细胞杀伤性,并能激活机体带癌状态下的低免疫功能。多糖的生物活性与它在生物体内特殊的空间伸展状态和独特的分子识别能力有关。然而,至今仍不清楚香菇葡聚糖在溶液中不同条件下的分子链构象转变和氢键作用。本论文主要从香菇中提取和纯化得到三螺旋链香菇葡聚糖,采用高分子物理理论和表征方法研究它在不同浓度区间的分子尺寸和形态,以及分子间相互作用及导致的链构象变化。本工作涉及高分子物理与生物化学交叉学科领域,也是国际前沿研究领域之一。
     本论文的主要创新包括以下几点:(1)用高分子物理方法首次证实短的三螺旋链彼此紧密平行排列形成有序的“柴火棒状”团簇;(2)首次证明lentinan水溶液可发生溶液-凝胶转变行为,并提出其凝胶化机理为:高度缠结的Lentinan三螺旋链形成连续的网络,导致凝胶化,但不存在交联点和明显的聚集体,因此它是不具有流动性的浓溶液;(3)首次发现,在7-9℃区间内,lentinan水溶液粘度随温度出现反常变化,归因于三螺旋侧链的有序—无序变化;(4)证实lentinan与聚核苷酸形成由氢键力驱动的新的三螺旋复合物,而且复合物中聚核苷酸的热稳定性明显增强。
     本论文主要研究内容和结论概括如下。采用改进的碱液浸提法从香菇子实体中成功提取出水溶性的β-(1→3)-D-葡聚糖,命名为lentinan。该法具有高纯度、高产率、低成本、零污染等诸多优点。利用动态激光光散射仪(DLS)成功地分析lentinan水溶液中单条三螺旋和聚集体对应的双模式峰,并将LLS和DLS结果相结合,弄清单条的三螺旋链和它所形成的物理聚集体的分子参数。运用“快”和“慢”模型成功地描述了稀溶液中lentinan三螺旋链的短链构象,指出其中占主要成分的三螺旋链与少量聚集体共存于水溶液体系中。DLS和原子力显微镜(AFM)结果揭示短的三螺旋链彼此紧密平行排列形成有序的“柴火棒状”团簇。同时证明,只有低分子量的棒状链才能在较强相互作用和最小的空间位阻下形成有序排列的聚集体。
     运用流变仪证实lentinan水溶液在25℃时发生溶液—凝胶转变。依据Winter-Chambon提出的凝胶化转变附近频率与损耗模量tanδ无依赖关系的理论确定了该体系的凝胶点cgel。同时发现,Winter-Chambon确定凝胶点的方法可适用于本体系。Lentinan具有大量羟基而容易聚集,而且三螺旋的构象使其分子链具有很高的刚性。因此,lentinan不同于大多数合成高分子和其它柔顺链多糖,具有较低的cgel,且随着分子量的增加,cgel显著降低。流变测量结果指出该溶液的损耗模量(G”)和储能模量(G’)与频率的依赖关系服从标度定律(G’~ωn),且标度指数n显著依赖于多糖浓度及分子量。Lentinan水溶液在低频时即表现出剪切变稀行为,归因于其刚性的分子链在剪切应力作用下的取向。与非凝胶多糖xanthan和schizophyllan相比,Lentinan水溶液在更低浓度时就形成凝胶。
     运用流变仪成功地确定了lentinan水溶液冷致弹性凝胶的形成,以及不同恒定温度下G’,G”和tanδ的变化规律。温度降低时lentinan试样均形成弱凝胶,升温即溶解,且lentinan水体系溶液/凝胶转变是热可逆的。依据tanδ与温度的依赖关系用Winter-Chambon方法准确确定体系的临界凝胶化转变温度Tgel,并证明该法有效。同时发现,Tgel随着分子量或聚合物浓度减小而降低。凝胶点时的标度指数n值随聚合物浓度增大而减小,但是与分子量没有依赖关系。Lentinan水体系凝胶机理可推测如下:高度缠结的Lentinan三螺旋链形成连续的网络,导致凝胶性质化,但不存在交联点和明显的聚集体,因此它是非流动性的浓溶液。
     流变实验证明,25℃时lentinan在稀溶液中为典型的牛顿流体,而在半稀溶液区间呈现剪切变稀行为。零切粘度的浓度和分子量依赖关系证明lentinan表现出棒状高分子各相同性溶液的特征,但是不能用棒状高分子的管道模型描绘,这归因于lentinan具有较高的分子量。随着溶液浓度增加,弱凝胶形成,并且可以观察到凝胶结构中由很长的多糖链形成缠结网络结构。储能模量(G’)的反常变化以及复合黏数η*在7-9℃出现极大值,说明lentinan凝胶相中形成了更刚性的结构。Lentinan侧链的葡萄糖残基与主链周围的水分子通过由于氢键作用形成了更刚性结构,即发生了从无序到有序的分子内构象转变。首次发现,侧链的葡萄糖残基在高于9℃时相对自由,而当温度低于9℃时,氢键形成,导致链刚性和直径增加,并且更加固定。另外,这种有序—无序的分子内构象转变具有溶剂依赖性。
     利用差示扫描微量热法成功地表征了溶剂种类和分子量对有序-无序转变的影响。Lentinan可以从有序的三螺旋Ⅰ型转变到相对无序的三螺旋Ⅱ型的构象。结果表明这种链构象的低温转变明显依赖于溶剂种类,同时转变温度的高低直接取决于溶剂本身的热力学性质。低温转变在未达到临界浓度之前无浓度依赖性,分子量对转变温度的影响较小。Lentinan级试样发生有序—无序构象转变的协同单元分子量约为13×104,该值与溶剂种类几乎无关。试样分子量越小,协同单元分子量越大,但是与其它氢键诱导的构象转变相比,低温转变协同性较差。激光光散射测定结果证明lentinan在侧链相对固定时,分子链形成更加伸展的刚性棒状链构象。基于实验结果,提出一个涉及不同分子尺寸的链构象变化模型来描述lentinan有序—无序构象转变。直观地解释了lentinan发生从有序的三螺旋Ⅰ型到相对无序的三螺旋Ⅱ型的构象转变时,协同单元分子量与溶剂种类和分子链尺寸无关。
     利用圆二色谱和紫外光谱成功地表征了香菇三螺旋链多糖lentinan与聚核苷酸poly(A)及poly(C)在Vw=0.936的DMSO/水混合溶剂的相互作用。实验结果证明lentinan与聚核苷酸形成由氢键力驱动的复合物,而且复合物中聚核苷酸的热稳定性明显增强。同时,动态光散射测量结果示出lentinan与poly(C)形成复合物的动态过程,表明poly(C)能迅速参与lentinan的复性过程,并与lentinan形成较稳定的新的三螺旋复合物。由此本工作为弄清多糖参与生命活动的形式和功能提供了重要科学依据。
     通过上述基础研究结果确定了lentinan在不同浓度区间的动力学及热力学性质以及分子间相互作用及诱导的链构象变化。本工作完善了用高分子物理理论确立生物大分子的尺寸、形状及其链构象转变的方法,并且对它们在生命过程中的作用提供了有价值的科学数据,具有重要学术意义和应用前景。同时,也为香菇多糖进一步开发为保健品和天然药物提供大量有价值的科学数据,具有应用前景。
Lentinan, existing as triple helical chains in water, mainly refers to theβ-(1→3)-D-glucan in the fruiting bodies of lentinus edodes. It has been reported that lentinan not only exhibits a high specificity immunopotentiation, activing of the macrophage, inhibiting of the proliferation of tumor cell, but also processes immune function of economy depressed by cancer. These significant bioactivities are related to the space extension state of polysaccharide in organism and its unique molecular recognition ability. However, the conformation transition of molecular chains and hydrogen bonding interactions of lentinan in different solutions, as well as the relationship of the chain structure to bioactivities are still unknown. In this thesis, triple helical lentinan was extracted and purified from Lentinus edodes. The molecular size and chain conformation in different concentration region were investigated by polymer physical theories and methods. Therefore, this work is in a cross field of polymer physics, biology and medicine, and also one of the frontiers of polymer science.
     The innovative points of this work are as follows. (1) It was, for the first time, confirmed by using polymer physics method that the short triple helical chains parallel aligned to each other and close packed to form ordered "faggot-like" clusters. (2) Lentinan fractions formed weak gels and the gelation mechanism is proposed as follows:the extremely entangled lentinan chains make a continuous network, conferring to the system the gel-like properties, and there were no contain junction zones and pronounced aggregates in lentinan gel. The Lentinan aqueous gel is more like a very concentrated solution that is unable to flow within a timescale of usual observation. (3) It was found firstly the abnormal experimental phenomenon that the storage modulus G' and complex viscosityη* went through a maximum at 7-9℃was ascribed to the order-disorder structure transition of the side glucose residues. (4) Lentinan could form a higher-order structure with polynucleotide through hydrogen-bonding and hydrophobic interactions, and the thermostability of polynucleotide in the complex was dramatically increased.
     The main contents and conclusions in this project are divided into the following parts. Lentinan, aβ-(1→3)-D-glucan, was isolated from Lentinus edodes by using an improved extraction and purification method to show good water solubility and high yield. Dynamic light scattering was successfully used to detect the bimodal peaks corresponding to individual triple helical chains and their aggregates in the lentinan aqueous system. A combination of static and dynamic LLS results created their molecular characteristic parameters of both the fast mode and the slow one, which are corresponding to the relaxation of individual triple helical lentinan and their physical associations, respectively. By using fast and slow modes we successfully described the chain conformation of triple helical lentinan in dilute aqueous solution, indicating co-existence of the predominant triple helical chain and few aggregates. The results from DLS and AFM revealed that the short triple helical chains parallel aligned to each other and close packed to form ordered "faggot-like" clusters. Only the rod-like chains of lentinan having low molecular weight could form ordered aggregates, as a results of the strongest interaction and the smallest steric hindrance between each chains.
     The solution-gel transition of Lentinan in water at 25℃was observed rheologically. The gel point cgei was determined by using the Winter-Chambon method (frequency-independent of tanδin the vicinity of the solution-gel transition). It was found that the Winter-Chambon criterion worked well in determining the critical gelation point of the present system although the system behaved as a weak gel before gelation. The cgei was relatively lower than the general synthesized polymers and other flexible polysaccharides, resulting from the high stiffness of triple helix and strong aggregation as a result of abundant hydroxyl groups. The cgei decreased sharply with increasing molecular weight. G'and G " were found to follow a power law behavior as a function of frequency (G'-ωn), and the exponents n are strongly dependent on concentration and molecular weight. The Lentinan solution exhibited shear-thinning behavior at low frequency because of the orientation of the stiff chains under shear force. Compared to the non-gelling Xanthan gum and schizophyllan, Lentinan could form gels more easily at low concentration.
     The cold-set formation of an elastic fractal gel for triple helical Lentinan in water was investigated rheologically from measurements of G',G" and tanδunder isothermal conditions at different constant temperatures. The results showed that Lentinan fractions formed weak gels with decreasing temperature, and the sol-gel transition was thermally reversible. The critical gelation temperature Tgel was accurately determined by the Winter-Chambon method from the temperature dependence of tanδ, indicating the validity of the Winter-Chambon criterion. It was found that Tgel decreased with decreasing molecular weight and polymer concentration, and that the exponent (n) values at the gel point decreased with increasing polymer concentration but showed an independence of molecular weight. The gelation mechanism for lentinan fractions in water is proposed as follows:the extremely entangled lentinan chains make a continuous network, conferring to the system the gel-like properties, and there were no contain junction zones and pronounced aggregates in lentinan gel. The Lentinan aqueous gel is more like a very concentrated solution that is unable to flow within a timescale of usual observation.
     The experimental results and their analysis presented above have led us to conclude that the polysaccharide Lentinan exhibits Newtonian-flow behavior in dilute solution and shear-thinning behavior in semidilute concentration domain at 25℃. The concentration and molecular weight dependences of the zero-shear viscosity appear common to viscous properties of isotropic solutions of rodlike polymers, but they could not described by the tube model for rodlike polymers. This was attributed to the high molecular weight of Lentinan used here. With increasing concentration, weak gel formed and the gel structure was observed to be the entangled network. The abnormal experimental phenomenon that the storage modulus G' and complex viscosityη* went through a maximum at 7~9℃was ascribed to the formation of more rigid structure in the lentinan gel state.. Moreover, the order-disorder structure transition associating with the hydrogen-bond interaction between the side glucose residues and the water molecules surrounding the polysaccharide backbone was also observed in this temperature range. Namely, the side glucose residues were free at higher than~9℃, and the hydrogen-bonds were formed as temperature lower than~9℃, resulting in the increase in chain stiffness and diameter. Moreover, this order-disorder intramolecular conformation is solvent-dependent. This result further proved that lentinan adopts a triple-helical conformation in water.
     Lentinan could transit from triple helix-I to triple helix-II, namely from a highly immobilization of the backbone to a relatively rotating one. The influence of solvent and molecular weight to the order-disorder conformation transition were investigated by US-DSC. The result revealed that the order-disorder transition depended on solvent kinds dramatically, and the transition temperature was directly laid on the thermodynamic property of solvent. Moreover, the transition had no polymer concentration dependence and the influence of molecular weight was tiny. The molecular weight of each cooperative unit for lentinan sample was about 13×104, and the value was slightly affected by solvent kinds. Moreover, the molecular weight of cooperative units elevated with a decrease of lentinan's Mw. However, compared to other hydrogen-bond induced conformation transition, the cooperativity of lentinan in low temperature was poor. The results of dynamic light scattering revealed that when the side chain was relatively immobilizated, lentinan polymer chains formed a more stiff and extend rod-like conformation. On the basis of the experiment results, a schematic diagram to describe the effect of molecular size to the order-disorder transition was proposed, and clearly revealed that the molecular weight of cooperative units has no dependence on solvent kinds and molecular weight.
     The circular dichroism (CD) and ultraviolet absorbance (UV) were used to investigate the interaction between triple helical lentinan and polynucleotide (poly(A) and poly(C)) in ww=0.93 water/DMSO system. The results showed that lentinan could formed a higher-order structure with polynucleotide through hydrogen-bonding and hydrophobic interactions, and the thermostability of polynucleotide in the complex was dramatically increased. Moreover, dynamic light scattering was used to detect the dynamic procedure of the interaction between lentinan and polynucleotide. The results indicated that poly(C) took part in the renaturation of lentinan chains rapidly, and formed a new triple helical complex.
     This foundation research mentioned above focus on the thermodynamics and dynamics properties of lentinan in different concentration region, along with the intermolecular interaction and the conformation transition led by. This work provided important scientific data determining the macromolecule size, shape and conformation transition by using polymer physics method as well as their function in life process. It not only has scientific significance, but also provides important scientific data for the exploration and application of lentinan.
引文
[1]张俐娜,天然高分子改性材料及应用,化学工业出版社,2006.
    [2]张树政,糖生物学与糖生物工程,清华大学出版社,北京,2002,11月.
    [3]Chihara, G, Hamuro, J., Maeda, Y, Arai, Y. and Fukuoka, F., Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing.(an edible mushroom), Cancer Research 1970,30, 2776-2781.
    [4]Chihara, G, Maeda, Y, Hamuro, J., Sasaki, T. and Fukuoka, F., Inhibition of Mouse Sarcoma 180 by Polysaccharides from Lentinus edodes (Berk.) Sing, Nature 1969,222, 687-688.
    [5]Fruehauf, J., Bonnard, G. and Herberman, R., The effect of lentinan on production of interleukin-1 by human monocytes, Immunopharmacology 1982,5,65-74.
    [6]Gergely, P., Vallent, K., Bodo, I., Feher, J. and Kaneko, Y, Effects of lentinan on cytotoxic functions of human lymphocytes, Immunopharmacol. Immunotoxicol 1988,10, 157-163.
    [7]Hamuro, J., R llinghoff, M. and Wagner, H., Induction of cytotoxic peritoneal exudate cells by T-cell immune adjuvants of the beta (1 leads to 3) glucan-type lentinan and its analogues, Immunology 1980,39,551-559.
    [8]Ladanyi, A., Timar, J. and Lapis, K., Effect of lentinan on macrophage cytotoxicity against metastatic tumor cells, Cancer Immunology, Immunotherapy 1993,36,123-126.
    [9]Maeda, Y. and Chihara, G, The effects of neonatal thymectomy on the antitumor activity of lentinan, carboxymethyl pacymaran and Zymosan and their effects on various immune response, Int. J. Cancer 1973,11,153-161.
    [10]Wang, X. H., Xu, X. J. and Zhang, L., Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution, Journal of Physical Chemistry B 2008, 112,10343-10351.
    [11]Wang, X. H., Zhang, Y Y, Zhang, L. N. and Ding, Y W, Multiple Conformation Transitions of Triple Helical Lentinan in DMSO/Water by Microcalorimetry, Journal of Physical Chemistry B 2009,113,9915-9923.
    [12]Zhang, L., Li, X., Zhou, Q., Zhang, X. and Chen, R., Transition from Triple Helix to Coil of Lentinan in Solution Measured by SEC, Viscometry, and 13C NMR, Polymer Journal 2002,34,443-449.
    [13]Zhang, L., Zhang, X., Zhou, Q., Zhang, P., Zhang, M. and Li, X., Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering, Polymer Journal 2001,33,317-321.
    [14]Xu, X., Zhang, X., Zhang, L. and Wu, C., Collapse and association of denatured lentinan in water/dimethlysulfoxide solutions, Biomacromolecules 2004,5,1893-1898.
    [15]Zhang, X., Zhang, L. and Xu, X., Morphologies and conformation transition of lentinan in aqueous NaOH solution, Biopolymers 2004,75,187-195.
    [16]Surenjav, U., Zhang, L., Xu, X., Zhang, X. and Zeng, F., Effects of molecular structure on antitumor activities of (1-> 3)-[beta]-d-glucans from different Lentinus Edodes, Carbohydrate Polymers 2006,63,97-104.
    [17]Zhang, L., Li, X. L., Xu, X. J. and Zeng, F. B., Correlation between antitumor activity, molecular weight, and conformation of lentinan, Carbohydrate Research 2005,340, 1515-1521.
    [18]Yap, A. and Ng, M., An improved method for the isolation of Lentinan from the edible and Medicinal Shiitake mushroom, Lentinus Edodes (Burk) Sing (Agaricomycetideae), Int. J. Medicinal Mushroom 2001,3,6-19.
    [19]Whistler, R., Methods in Carbohydrate Chemistry, New York:Academic Press 1965,5, 5-6.
    [20]Lu, C. in Method for separation and purification of lentinan for drug use, Vol. 2006-10031910 2006.
    [21]Zhang, P., Zhang, L. and Cheng, S., Chemical structure and molecular weights of β-(1(?)3)-glucan from Lentinus, Biosci. Biotechnol. Biochem 1999,63,1197-1202.
    [22]Du, B., Yang, G., Wen, S., Tang, J. and Li, D. in Method for extracting lentinan with ultrahigh pressure from lentinus edodes, Vol.2008-10150533 2008.
    [23]Minato, K., Mizuno, M., Ashida, H., Hashimoto, T., Terai, H. and Tsuchida, H., Influence of strage conditions on immunomodulating activities in Lentinus edodes (Berk.) Sing.(Agaricales sl, Basidiomycetes), Int. J. Med. Mushrooms 1999,1,243-250.
    [24]Minato, K., Mizuno, M., Kawakami, S., Tatsuoka, S., Denpo, Y., Tokimoto, K. and Tsuchida, H., Changes in immunomodulating activities and content of antitumor polysaccharides during the growth of two medicinal mushrooms, Lentinus edodes (Berk.) Sing, and Grifola frondosa (Dicks.:Fr.) SF Gray, International Journal of Medicinal Mushrooms 2001,3,1-7.
    [25]Minato, K., Mizuno, M., Terai, H. and Tsuchida, H., Autolysis of lentinan, an antitumor polysaccharide, during storage of Lentinus edodes, shiitake mushroom, Journal of Agricultural and Food Chemistry 1999,47,1530-1532.
    [26]Zhang, M., Cui, S., Cheung, P. and Wang, Q., Antitumor polysaccharides from mushrooms:a review on their isolation process, structural characteristics and antitumor activity, Trends in Food Science & Technology 2007,18,4-19.
    [27]Carbonero, E., Gracher, A., Komura, D., Marcon, R., Freitas, C., Baggio, C., Santos, A., Torri, G., Gorin, P. and Iacomini, M., Lentinus edodes heterogalactan:Antinociceptive and anti-inflammatory effects, Food Chemistry 2008,111,531-537.
    [28]Chaubey, M. and Kapoor, V, Structure of a galactomannan from the seeds of Cassia angustifolia Vahl, Carbohydrate Research 2001,332,439-444.
    [29]Deng, C., Yang, X., Gu, X., Wang, Y, Zhou, J. and Xu, H., A [beta]-glucan from the sclerotia of Pleurotus tuber-regium (Fr.) Sing, Carbohydrate Research 2000,328, 629-633.
    [30]Lluveras, A., Bonaduce, I., Andreotti, A. and Colombini, M. P., GC/MS Analytical Procedure for the Characterization of Glycerolipids, Natural Waxes, Terpenoid Resins, Proteinaceous and Polysaccharide Materials in the Same Paint Microsample Avoiding Interferences from Inorganic Media, Analytical Chemistry 2009,82,376-386.
    [31]Harris, P., Henry, R., Blakeney, A. and Stone, B., An improved procedure for the methylation analysis of oligosaccharides and polysaccharides, Carbohydrate Research 1984,127,59-73.
    [32]Mischnick, P., Lange, M., Gohdes, M., Stein, A. and Petzold, K., Trialkylsilyl derivatives of cyclomaltoheptaose, cellulose, and amylose:rearrangement during methylation analysis, Carbohydrate Research 1995,277,179-187.
    [33]Needs, P. W. and Selvendran, R. R., Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide, Carbohydrate Research 1993,245,1-10.
    [34]Hrmova, M. and Fincher, G, Purification and properties of three (1-> 3)-beta-D-glucanase isoenzymes from young leaves of barley (Hordeum vulgare), Biochemical Journal 1993,289,453-461.
    [35]Cui, S. W. in Structural analysis of polysaccharides, Vol. (Ed. S. W. Cui), CRC Taylor & Francis press, Boca Raton, FL:CRC,2005, pp.146-160.
    [36]Kiho, T., Sakushima, M., Wang, S., Nagai, K. and Ukai, S., Polysaccharides in Fungi. XXVI. Two Branched (1→3)-β-D-Glucans from Hot Water Extract of Yu er, Chem.Pharm. Bull 1991,39,798-800.
    [37]Gidley, M., Quantification of the structural features of starch polysaccharides by NMR spectroscopy, Carbohydrate Research 1985,139,85-93.
    [38]Kim, Y.-T., Kim, E.-H., Cheong, C., Williams, D. L., Kim, C.-W. and Lim, S.-T., Structural characterization of [beta]-(1->3,1->6)-linked glucans using NMR spectroscopy, Carbohydrate Research 2000,328,331-341.
    [39]Tao, Y. Z., Zhang, L., Yan, F. and Wu, X. J., Chain conformation of water-insoluble hyperbranched polysaccharide from fungus, Biomacromolecules 2007,8,2321-2328.
    [40]Saito, H., Ohki, T. and Sasaki, T., A 13C-nuclear magnetic resonance study of polysaccharide gels. Molecular architecture in the gels consisting of fungal, branched (1->3)-β-D-glucans (lentinan and schizophyllan) as manifested by conformational changes induced by sodium hydroxide, Carbohydrate Research 1979,74,227-240.
    [41]Saito, H., Ohki, T., Takasuka, N. and Sasaki, T., A 13C-N.M.R.-Spectral study of a gel-forming, branched (1->3)-β-D-glucan, (lentinan) from lentinus edodes, and its acid-degraded fractions. Structure, and dependence of conformation on the molecular weight, Carbohydrate Research 1977,58,293-305.
    [42]Sasaki, T. and Takasuka, N., Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes, Carbohydrate Research 1976,47,99-104.
    [43]Maeda, Y., Hamuro, J. and Chihara, G., The mechanisms of action of anti-tumour polysaccharides. Ⅰ. The effects of antilymphocyte serum on the anti-tumour activity of lentinan, International Journal of Cancer 1971,8,41-46.
    [44]Suzuki, N., Wada, A. and Suzuki, K., Hydrodynamic behavior of lentinan molecules as studied by quasielastic light-scattering, Carbohydrate Research 1982,109,295-298.
    [45]Senti, F., Hellman, N., Ludwig, N., Babcock, G., Tokin, R., Glass, C. and Lambers, B., Viscosity, sedimentation, and light-scattering properties of fraction of an acid-hydrolyzed dextran, J. Polym. Sci 1955,17,527-546.
    [46]Zhang, L. and Yang, L., Properties of auricularia auricula-judae β-D-glucan in dilute solution, Biopolymers 1995,36,695-700.
    [47]Sato, T., Norisuye, T. and Fujita, H., Double-stranded helix of xanthan:dimensional and hydrodynamic properties in 0.1 M aqueous sodium chloride, Macromolecules 1984, 17,2696-2700.
    [48]Kashiwagi, Y, Norisuye, T. and Fujita, H., Triple helix of Schizophyllum commune polysaccharide in dilute solution.4. Light scattering and viscosity in dilute aqueous sodium hydroxide, Macromolecules 1981,14,1220-1225.
    [49]Ding, Q., Jiang, S., Zhang, L. and Wu, C., Laser light-scattering studies of pachyman, Carbohydrate Research 1998,308,339-343.
    [50]Giannotti, M. I., Rinaudo, M. and Vancso, G. J., Force spectroscopy of hyaluronan by atomic force microscopy:From hydrogen-bonded networks toward single-chain behavior, Biomacromolecules 2007,8,2648-2652.
    [51]Bluhm, T. and Sarko, A., The triple helical structure of lentinan, a linear β-(1→3)-D-glucan, Canadian Journal of Chemistry 1977,55,293-299.
    [52]Deslandes, Y, Marchessault, R. H. and Sarko, A., Triple-Helical Structure of (1→3)-β-D-Glucan, Macromolecules 1980,13,1466-1471.
    [53]Kratky, O. and Porod, G., Type approximations for polymer chain distributions, Rec. Trav. Chim 1949,68,1106-1122.
    [54]Yamakawa, H., A Hypothesis on Polymer Chain Configurations. Helical Wormlike Chains, Macromolecules 1977,10,692-696.
    [55]Yamakawa, H., Stiff-chain macromolecules, Annual Review of Physical Chemistry 1984,35,23-47.
    [56]Yamakawa, H. and Fujii, M., Statistical mechanics of helical wormlike chains. Ⅰ. Differential equations and moments, The Journal of Chemical Physics 1976,64,5222.
    [57]Yamakawa, H. and Shimada, J., Statistical mechanics of helical wormlike chains. Ⅶ. Continuous limits of discrete chains, The Journal of Chemical Physics 1978,68,4722.
    [58]Benoit, H. and Doty, P., Light Scattering from Non-Gaussian Chains, The Journal of Physical Chemistry 1953,57,958-963.
    [59]Zhang, L., Liu, W., Norisuye, T. and Fujita, H., Double-stranded helix of xanthan: Rigidity in 0.01 M aqueous sodium chloride containing 0.01 N hydrochloric acid, Biopolymers 1987,26,333-341.
    [60]Yamakawa, H. and Fujii, M., Intrinsic viscosity of wormlike chains. Determination of the shift factor, Macromolecules 1974,7,128-135.
    [61]Bohdanecky, M., New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers, Macromolecules 1983,16, 1483-1492.
    [62]Yamakawa, H. and Yoshizaki, T., Transport coefficients of helical wormlike chains.3. Intrinsic viscosity, Macromolecules 1980,13,633-643.
    [63]Niu, A. Z., Liaw, D. J., Sang, H. C. and Wu, C., Light-scattering study of a zwitterionic polycarboxybetaine in aqueous solution, Macromolecules 2000,33, 3492-3494.
    [64]Stokke, B. T., Elgsaeter, A., Brant, D. A. and Kitamura, S., Supercoiling in circular triple-helical polysaccharides, Macromolecules 1991,24,6349-6351.
    [65]Stokke, B. T., Elgsaeter, A., Brant, D. A., Kuge, T. and Kitamura, S., Macromolecular cyclization of (1(?)6)-branched-(1(?)3)-β-D-glucans observed after denaturation-renaturation of the triple-helical structure, Biopolymers 1993,33,193-198.
    [66]Okobira, T., Miyoshi, K., Uezu, K., Sakurai, K. and Shinkai, S., Molecular Dynamics Studies of Side Chain Effect on the β-1,3-d-Glucan Triple Helix in Aqueous Solution, Biomacromolecules 2008,9,783-788.
    [67]Dresser, D. and Phillips, J., The orientation of the adjuvant activities of Salmonella typhosa lipopolysac-charide and lentinan, Immunology 1974,27,895.
    [68]Taguchi, T., Furue, H., Kimura, T., Kondo, T., Hattori, T., Itoh, I. and Ogawa, N., Results of phase Ⅲ study of lentinan, Gan to kagaku ryoho. Cancer & chemotherapy 1985,12,366.
    [69]Suzuki, M., Iwashiro, M., Takatsuki, F., Kuribayashi, K. and Hamuro, J., Reconstitution of Anti-tumor Effects of Lentinan in Nude Mice:Roles of Delayed-type Hypersensitivity Reaction Triggered by CD4-positive T Cell Clone in the Infiltration of Effector Cells into Tumor, Jpn. J. Cancer Res 1994,85,409-417.
    [70]Hamuro, J., Takatsuki, F., Suga, T., Kikuchi, T. and Suzuki, M., Synergistic Antimetastatic Effects of Lentinan and Interleukin 2 with Pre- and Post-operative Treatments, Cancer Science 1994,85,1288-1297.
    [71]Guo, Z., Hu, Y., Wang, D., Ma, X., Zhao, X., Zhao, B., Wang, J. and Liu, P., Sulfated modification can enhance the adjuvanticity of lentinan and improve the immune effect of ND vaccine, Vaccine 2009,27,660-665.
    [72]Kerekgyarto, C., Virag, L., Tanko, L., Chihara, G. and Fachet, J., Strain differences in the cytotoxic activity and TNF production of murine macrophages stimulated by lentinan, International journal of immunopharmacology 1996,18,347-353.
    [73]Djordjevic, B., Skugor, S., J rgensen, S., verland, M., Mydland, L. and Krasnov, A., Modulation of splenic immune responses to bacterial lipopolysaccharide in rainbow trout (Oncorhynchus mykiss) fed lentinan, a beta-glucan from mushroom Lentinula edodes, Fish & shellfish immunology 2009,26,201-209.
    [74]Drandarska, I., Kussovski, V., Nikolaeva, S. and Markova, N., Combined immunomodulating effects of BCG and Lentinan after intranasal application in guinea pigs, International Immunopharmacology 2005,5,795-803.
    [75]Edagawa, Y., Smriga, M., Nishiyama, N. and Saito, H., Systemic administration of lentinan, a branched [beta]-glucan, enhances long-term potentiation in the rat dentate gyrus in vivo, Neuroscience letters 2001,314,139-142.
    [76]Murata, T., Hatayama, I., Kakizaki, I., Satoh, K., Sato, K. and Tsuchida, S., Lentinan Enhances Sensitivity of Mouse Colon 26 Tumor to cis-diamminedi-chloroplatinum (Ⅱ) and decreases Glutataione Transferase Expression, Jpn. J. Cancer Res 1996,87, 1171-1178.
    [77]Kupfahl, C., Geginat, G. and Hof, H., Lentinan has a stimulatory effect on innate and adaptive immunity against murine Listeria monocytogenes infection, International Immunopharmacology 2006,6,686-696.
    [78]Yu, Z., LiHua, Y, Qian, Y. and Yan, L., Effect of Lentinus edodes polysaccharide on oxidative stress, immunity activity and oral ulceration of rats stimulated by phenol, Carbohydrate Polymers 2009,75,115-118.
    [79]Markova, N., Kussovski, V., Radoucheva, T., Dilova, K. and Georgieva, N., Effects of intraperitoneal and intranasal application of Lentinan on cellular response in rats, International Immunopharmacology 2002,2,1641-1645.
    [80]Liu, F., Ooi, V. E. C. and Fung, M. C., Analysis of immunomodulating cytokine mRNAs in the mouse induced by mushroom polysaccharides, Life Sciences 1999,64, 1005-1011.
    [81]Zhou, L., Zhang, Q., Zhang, Y., Liu, J. and Cao, Y., The shiitake mushroom-derived immuno-stimulant lentinan protects against murine malaria blood-stage infection by evoking adaptive immune-responses, International Immunopharmacology 2009,9, 455-462.
    [82]Alban, S. and Franz, G, Partial synthetic glucan sulfates as potential new antithrombotics:A review, Biomacromolecules 2001,2,354-361.
    [83]Bao, X., Duan, J., Fang, X. and Fang, J., Chemical modification of the (1(?)3)-a-D-glucan from spores of Ganoderma lucidum and investigation of their physicochemical properties and immunological activity, Carbohydrate Research 2001, 336,127-140.
    [84]Inoue, K., Kawamoto, K., Nakajima, H., Kohno, M., Kadoya, S. and Mizuno, D., Chemical modification and antitumor activity of a D-manno-D-glucan from Microellobosporia grisea, Carbohydrate Research 1983,115,199-208.
    [85]Tsumuraya, Y., Hashimoto, Y. and Yamamoto, S., An L-arabino-D-galactan and an L-arabino-D-galactan-containing proteoglycan from radish (Raphanus sativus) seeds. Carbohydrate Research 1987,161,113-126.
    [86]Witvrouw, M. and De Clercq, E., Sulfated polysaccharides extracted from sea algae as potential antiviral drugs, General pharmacology 1997,29,497-511.
    [87]Tao, Y, Yan, F. and Zhang, L., Fractionation and characterization of a protein-polysaccharide complex from Pleurotus tuberregium sclerotia, Journal of Polymer Science Part B:Polymer Physics 2007,45,2546-2554.
    [88]Crescenzi, V., Francescangeli, A., Renier, D. and Bellini, D., New cross-linked and sulfated derivatives of partially deacetylated hyaluronan:Synthesis and preliminary characterization, Biopolymers 2002,64,86-94.
    [89]Riou, D., Colliec-Jouault, S., Pinczon du Sel, D., Bosch, S., Siavoshian, S., Le Bert, V., Tomasoni, C., Sinquin, C., Durand, P. and Roussakis, C., Antitumor and antiproliferative effects of a fucan extracted from ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line, Anticancer research 1996,16, 1213-1218.
    [90]Ruperez, P., Ahrazem, O. and Leal, J. A., Potential Antioxidant Capacity of Sulfated Polysaccharides from the Edible Marine Brown Seaweed Fucus vesiculosus, Journal of Agricultural and Food Chemistry 2002,50,840-845.
    [91]Talarico, L. B., Zibetti, R. G. M., Faria, P. C. S., Scolaro, L. A., Duarte, M. E. R., Noseda, M. D., Pujol, C. A. and Damonte, E. B., Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata, International Journal of Biological Macromolecules 2004,34,63-71.
    [92]Zhang, Q. B., Li, N., Liu, X. G., Zhao, Z. Q., Li, Z. and Xu, Z. H., The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity, Carbohydrate Research 2004,339,105-+.
    [93]Yoshida, O., Nakashima, H., Yoshida, T., Kaneko, Y, Yamamoto, I., Matsuzaki, K., Uryu, T. and Yamamoto, N., Sulfation of the immunomodulating polysaccharide lentinan: a novel strategy for antivirals to human immunodeficiency virus (HIV), Biochemical pharmacology 1988,37,2887-2891.
    [94]郭振环,胡元亮,马霞,赵晓娜,王德云,赵炳凯,郭利伟,刘萍and郝利华,硫酸化香菇多糖对新城疫疫苗免疫效果的影响,南京农业大学学报 2010,33,76-80.
    [95]陈冬生,张斌,于秋菊,杨林,香菇多糖联合顺铂治疗恶性腹腔积液临床观察,中国误诊学杂志 2010,6.
    [96]Li, S.-g., Wang, D.-g., Tian, W., Wang, X.-x., Zhao, J.-x., Liu, Z. and Chen, R., Characterization and anti-tumor activity of a polysaccharide from Hedysarum polybotrys Hand.-Mazz, Carbohydrate Polymers 2008,73,344-350.
    [97]Miyakoshi, H., Aoki, T. and Mizukoshi, M., Acting mechanisms of lentinan in human-Ⅱ. Enhancement of non-specific cell-mediated cytotoxicity as an interferon inducer, International journal of immunopharmacology 1984,6,373-379.
    [98]Vetvicka, V., Dvorak, B., Vetvickova, J., Richter, J., Krizan, J., Sima, P. and Yvin, J., Orally administered marine (1→3)-[beta]-d-glucan Phycarine stimulates both humoral and cellular immunity, International Journal of Biological Macromolecules 2007,40, 291-298.
    [99]Wierzbicki, A., Kiszka, I., Kaneko, H., Kmieciak, D., Wasik, T., Gzyl, J., Kaneko, Y. and Kozbor, D., Immunization strategies to augment oral vaccination with DNA and viral vectors expressing HIV envelope glycoprotein, Vaccine 2002,20,1295-1307.
    [100]Hamuro, J. and Chihara, G in Lentinan, a T-cell oriented immunopotentiator:its experimental and clinical applications and possible mechanism of immune modulation, Vol. Eds.:R. Fenichel and M. Chirigos), Dekker, New York,1985, pp.409-436.
    [101]Hobbs, C. in Medicinal mushrooms:an exploration of tradition, healing and culture, Vol. Botanica Press, Santa Cruz, Calif,1995.
    [102]Wasser, S. and Weis, A. in Shiitake mushrooms [Lentinus edodes (Berk.)Sing.], Vol. (Ed. E. Nevo), Peledfus, Haifa, Israe,1997.
    [103]Hamano, K., Gohra, H., Katoh, T., Fujimura, Y., Zempo, N. and Esato, K., The preoperative administration of lentinan ameliorated the impairment of natural killer activity after cardiopulmonary bypass, International journal of immunopharmacology 1999,21,531-540.
    [104]Wasser, S., Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides, Applied Microbiology and Biotechnology 2002,60,258-274.
    [105]Hou, X., Zhang, N., Xiong, S., Li, S. and Yang, B., Extraction of BaChu mushroom polysaccharides and preparation of a compound beverage, Carbohydrate Polymers 2008, 73,289-294.
    [106]Lull, C., Wichers, H. J. and Savelkoul, H. F. J., Antiinflammatory and immunomodulating properties of fungal metabolites, Mediators of Inflammation 2005, 63-80.
    [107]Ooi, V. E. C. and Liu, F., A review of pharmacological activities of mushroom polysaccharides, Int J Med Mushrooms 1999,1,195-206.
    [108]Shin, K., Lim, S., Lee, S., Lee, Y., Jung, S. and Cho, S., Anti-tumour and immuno-stimulating activities of the fruiting bodies of Paecilomyces japonica, a new type of Cordyceps spp, Phytotherapy Research 2003,17,830-833.
    [109]Hobbs, C., Medicinal value of Lentinus edodes (Berk.) Sing.(Agaricomycetideae). A literature review, International Journal of Medicinal Mushrooms 2000,2,287-302.
    [110]Ohno, N., Furukawa, M., Miura, N. N., Adachi, Y, Motoi, M. and Yadomae, T., Antitumor β-glucan from the cultured fruit body of Agaricus blazei, Biological & pharmaceutical bulletin 2001,24,820-828.
    [111]Aoki, T., Lentinan. In:Fenichel RL, Chirgis MA (eds) Immune modulation agents and their mechanisms, Immunol Stud 1984,25,62-77.
    [112]Moradali, M., Mostafavi, H., Ghods, S. and Hedjaroude, G., Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi), International Immunopharmacology 2007,7,701-724.
    [113]Maeda, Y, Watanabe, S., Chihara, C. and Rokutanda, M., Denaturation and Renaturation of a {beta}-1,6; 1,3-Glucan, Lentinan, Associated with Expression of T-Cell-mediated Responses, Cancer Research 1988,48,671.
    [114]Wang, X. H. and Zhang, L. N., Physicochemical properties and antitumor activities for sulfated derivatives of lentinan, Carbohydrate Research 2009,344,2209-2216.
    [115]Ikekawa, T., Beneficial effects of edible and medicinal mushrooms on health care, Int J Med Mushrooms 2001,3,291-298.
    [116]Matsuoka, H., Seo, Y., Wakasugi, H., Saito, T. and Tomoda, H., Lentinan potentiates immunity and prolongs the survival time of some patients, Anticancer research 1997,17, 2751-2755.
    [117]Wasser, S. and Weis, A., Medicinal properties of substances occurring in higher Basidiomycetes mushrooms:current perspectives (Review), International Journal of Medicinal Mushrooms 1999,1,31-62.
    [118]Fujimoto, K., Tomonaga, M. and Goto, S., A case of recurrent ovarian cancer successfully treated with adoptive immunotherapy and lentinan, Anticancer research 2006, 26,4015.
    [119]Kosaka, A., Suga, T. and Yamashita, A., Dose reductive effect of lentinan on the epirubicin therapy for breast cancer patients, International Journal of Immunotherapy 1995,11,143-151.
    [120]Gordon, M., Bihari, B., Goosby, E., Gorter, R., Greco, M., Guralnik, M., Mimura, T., Rudinicki, V., Wong, R. and Kaneko, Y., A placebo-controlled trial of the immune modulator, lentinan, in HIV-positive patients:a phase Ⅰ/Ⅱ trial, Journal of medicine 1998, 29,305.
    [121]Gordon, M., Guralnik, M., Kaneko, Y., Mimura, T., Goodgame, J. and Lang, W., Further clinical studies of curdlan sulfate (CRDS)--an anti-HIV agent, Journal of medicine 1995,26,97.
    [122]Cai, H., Chen, G. and Xiang, W. in Antineoplastic drug of liposome containing lentinan, mitoxantrone and mitoxantrone hydrochloride and its preparation, Vol.2007.
    [123]Deng, C. in Lentinan enteric-coated capsule and its preparation, Vol.2005-10078206 2006.
    [124]Peng, H. and Xu, J. in Manufacture of lentinan dripping pill, Vol.2004-10044404 2005.
    [125]Sun, D. and Wei, M. in Lentinan soft capsule and its preparation method, Vol. 2005-10035618 2007.
    [126]Guo, R. and Liu, Y. in Formulations of lentinan for intravenous injection, Vol. 92-101531 1993.
    [127]Jin, X., Tang, L., Chen, L., Wang, Y, Zhu, Y and Zhou, Z. in Pharmaceutical injections containing lentinan and cantharidinate for treating tumor, Vol.2007-10039260 2007.
    [128]Ma, B. and Wang, T. in Lentinan freeze-dried powder injections containing amino acids and sodium salts as excipients and its quality control, Vol.2005-10086530 2007.
    [129]Wu, S. and Wang, X. in New freeze-dried powder injection formulation of lentinan, Vol.2005-10022144 2007.
    [130]Deng, G in Method for manufacturing lentinan infusion solution, Vol. 2005-10042158 2005.
    [131]Yang, X. and Zhang, L. in A health protecting oral liquid containing refined fish oil, vitamin e, and lentinan, Vol.1994-115213 1995.
    [132]Liu, W. in Method for preparing tonic liquid and alcoholic beverage containing ganoderan and lentinan., Vol.2004-10061007 2005.
    [133]Teraoka, I. in Polymer Solution, Vol. John Wiley & Sons, Inc, New York,2002.
    [134]张俐娜,薛奇,莫志深,金熹高,高分子物理近代研究方法,第一版武汉大学出版社,武汉,2003,7月,pp.P11-76.
    [135]Lepoittevin, B., Matmour, R., Francis, R., Taton, D. and Gnanou, Y., Synthesis of dendrimer-like polystyrene by atom transfer radical polymerization and investigation of their viscosity behavior, Macromolecules 2005,38,3120-3128.
    [136]Striegel, A., Plattner, R. and Willett, J., Dilute solution behavior of dendrimers and polysaccharides:SEC, ESI-MS, and computer modeling, Anal. Chem 1999,71,978-986.
    [137]Burchard, W., Schmidt, M. and Stockmayer, W., Information on Polydispersity and Branching from Combined Quasi-Elastic and Intergrated Scattering, Macromolecules 1980,13,1265-1272.
    [138]Striegel, A., Mid-chain grafting in PVB-graft-PVB, Polymer International 2004,53, 1806-1812.
    [139]Yamakawa, H., Modern theory of polymer solutions, Harper & Row, New York, 1971.
    [140]Peng, S. and Wu, C., Ca2+-induced Thermoreversible and Controllable Complexation of Poly(N-vinylcaprolactam-co-sodium acrylate) Microgels in Water, The Journal of Physical Chemistry B 2001,105,2331-2335.
    [141]Wu, C. and Wang, X., Globule-to-coil transition of a single homopolymer chain in solution, Physical review letters 1998,80,4092-4094.
    [142]Zhang, G. and Wu, C., Reentrant coil-to-globule-to-coil transition of a single linear homopolymer chain in a water/methanol mixture, Physical review letters 2001,86, 822-825.
    [143]张俐娜,天然高分子科学与材料,科学出版社,2007.
    [144]Lin, S., Lee, W. and Schurr, J., Brownian motion of highly charged poly (L-lysine). Effects of salt and polyion concentration, Biopolymers 1978,17,1041-1064.
    [145]Mathiez, P., Mouttet, C. and Weisbuch, G., Quasielastic light-scattering study of polyadenylic acid solutions. Ⅱ, Biopolymers 1981,20,2381-2394.
    [146]Borsali, R., Nguyen, H. and Pecora, R., Small-Angle Neutron Scattering and Dynamic Light Scattering from a Polyelectrolyte Solution:DNA, Macromolecules 1998, 31,1548-1555.
    [147]Newman, J., Tracy, J. and Pecora, R., Dynamic light scattering from monodisperse 2311 base pair circular DNA:ionic strength dependence, Macromolecules 1994,27, 6808-6811.
    [148]Klucker, R., Munch, J. P. and Schosseler, F., Combined Static and Dynamic Light Scattering Study of Associating Random Block Copolymers in Solution, Macromolecules 1997,30,3839-3848.
    [149]Buhler, E., Munch, J. and Candau, S., Dynamical properties of wormlike micelles:A light scattering study, J. Phys. Ⅱ France 1995,5,765-787.
    [150]Forster, S., Schmidt, M. and Antonietti, M., Static and dynamic light scattering by aqueous polyelectrolyte solutions:effect of molecular weight, charge density and added salt, Polymer 1990,31,781-792.
    [151]Sedlak, M., Dynamic light scattering from binary mixtures of polyelectrolytes. I. Influence of mixing on the fast and slow polyelectrolyte mode behavior, The Journal of Chemical Physics 1997,107,10799-10805.
    [152]Sedlak, M., What Can Be Seen by Static and Dynamic Light Scattering in Polyelectrolyte Solutions and Mixtures?, Langmuir 1999,15,4045-4051.
    [153]Tanahatoe, J. J. and Kuil, M. E., Light Scattering on Semidilute Polyelectrolyte Solutions:Molar Mass and Polyelectrolyte Concentration Dependence, The Journal of Physical Chemistry B 1997,101,9233-9239.
    [154]Zhou, K., Li, J., Lu, Y., Zhang, G., Xie, Z. and Wu, C., Re-examination of Dynamics of Polyeletrolytes in Salt-Free Dilute Solutions by Designing and Using a Novel Neutral-Charged-Neutral Reversible Polymer, Macromolecules 2009,42,7146-7154.
    [155]Gennes, P. d. in Scaling concepts in polymer physics, Vol. Cornell University Press, New York,1979.
    [156]Castelain, C., Doublier, J. and Lefebvre, J., A study of the viscosity of cellulose derivatives in aqueous solutions, Carbohydrate Polymers 1987,7,1-16.
    [157]Launay, B., Doublier, J. and Cuvelier, G. in The functional properties of food macromolecules Vol. Eds.:D. Ledward and J. Mitchell), Elsevier, London,1986, pp.1-78.
    [158]Morris, E., Cutler, A., Ross-Murphy, S., Rees, D. and Price, J., Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions, Carbohydrate Polymers 1981,1,5-21.
    [159]Sabater de Sabates, A. in Contribution a l' Etude des Relations entre Carateristiques macromoleculaires et proprietes Rheologiques en Solution Aqueuse Concentree d'un Epaississant Alimentarie:la Gomme de Caroube, Vol. Orsay University, ENSIA. Massy, 1979.
    [160]Lapasin, R. and Pricl, S. in Rheology of polysaccharide systems, Vol. Aspen Publishers, Glasgow:Blackie,1999, pp.250-494.
    [161]Hafren, J. and Cordova, A., Direct organocatalytic polymerization from cellulose fibers, Macromolecular Rapid Communications 2005,26,82-86.
    [162]Lue, A. and Zhang, L., Rheological Behaviors in the Regimes from Dilute to Concentrated in Cellulose Solutions Dissolved at Low Temperature, Macromolecular bioscience 2008,9,488-496.
    [163]Cross, M., Rheology of non-Newtonian fluids:a new flow equation for pseudoplastic systems, Journal of Colloid Science 1965,20,417-437.
    [164]Rayment, P., Ross-Murphy, S. and Ellis, P., Rheological properties of guar galactomannan and rice starch mixtures-Ⅰ. Steady shear measurements, Carbohydrate Polymers 1995,28,121-130.
    [165]Wang, Q., Ellis, P., Ross-Murphy, S. and Burchard, W., Solution characteristics of the xyloglucan extracted from Detarium senegalense Gmelin, Carbohydrate Polymers 1997,33,115-124.
    [166]Carreau, P., Rheological equation from molecular network theories Trans, Trans. Soc.Rheol 1972,16,99-127.
    [167]Hsu, J., Shie, C. and Tseng, S., Sedimentation of a cylindrical particle in a Carreau fluid, Journal of colloid and interface science 2005,286,392-399.
    [168]Siska, B., Bendova, H. and Machac, I., Terminal velocity of non-spherical particles falling through a Carreau model liquid, Chemical Engineering and Processing 2005,44, 1312-1319.
    [169]Osada, Y., Kajiwara, K. and Ishida, H., Gels handbook, Academic Press London, 2001.
    [170]Popa-Nita, S., Alcouffe, P., Rochas, C., David, L. and Domard, A., Continuum of Structural Organization from Chitosan Solutions to Derived Physical Forms, Biomacromolecules 2009,11,6-12.
    [171]Chambon, F. and Winter, H., Stopping of crosslinking reaction in a PDMS polymer at the gel point, Polymer Bulletin 1985,13,499-503.
    [172]Chambon, F. and Winter, H., Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry, JRheol 1987,31,683-697.
    [173]Winter, H. and Chambon, F., Analysis of linear viscoelasticity of a crosslinking polymer at the gel point, JRheol 1986,30,367-382.
    [174]Kjoniksen, A., Nystrom, B. and Lindman, B., Dynamic viscoelasticity of gelling and nongelling aqueous mixtures of ethyl (hydroxyethyl) cellulose and an ionic surfactant, Macromolecules 1998,31,1852-1858.
    [175]Liu, X., Qian, L., Shu, T. and Tong, Z., Rheology characterization of sol-gel transition in aqueous alginate solutions induced by calcium cations through in situ release, Polymer 2003,44,407-412.
    [176]Rodd, A., Cooper-White, J., Dunstan, D. and Boger, D., Gel point studies for chemically modified biopolymer networks using small amplitude oscillatory rheometry, Polymer 2001,42,185-198.
    [177]Rodd, A., Cooper-White, J., Dunstan, D. and Boger, D., Polymer concentration dependence of the gel point for chemically modified biopolymer networks using small amplitude oscillatory rheometry, Polymer 2001,42,3923-3928.
    [178]Roy, C., Budtova, T. and Navard, P., Rheological Properties and Gelation of Aqueous Cellulose-NaOH Solutions, Biomacromolecules 2003,4,259-264.
    [179]Nomura, Y., Toki, S., Ishii, Y. and Shirai, K., The Physicochemical Property of Shark Type I Collagen Gel and Membrane, Journal of Agricultural and Food Chemistry 2000,48,2028-2032.
    [180]Hasegawa, T., Umeda, M., Numata, M., Li, C., Bae, A., Fujisawa, T., Haraguchi, S., Sakurai, K. and Shinkai, S., Click chemistry'on polysaccharides:a convenient, general, and monitorable approach to develop (1→ 3)-[beta]-d-glucans with various functional appendages, Carbohydrate Research 2006,341,35-40.
    [181]Bot, A., Smorenburg, H., Vreeker, R., Paques, M. and Clark, A., Melting behaviour of schizophyllan extracellular polysaccharide gels in the temperature range between 5 and 20 C, Carbohydrate Polymers 2001,45,363-372.
    [182]Chuah, C. T., Sarko, A., Deslandes, Y. and Marchessault, R. H., Packing analysis of carbohydrates and polysaccharides. Part 14. Triple-helical crystalline structure of curdlan and paramylon hydrates, Macromolecules 1983,16,1375-1382.
    [183]Yanaki, T., Norisuye, T. and Fujita, H., Triple helix of Schizophyllum commune polysaccharide in dilute solution.3. Hydrodynamic properties in water, Macromolecules 1980,13,1462-1466.
    [184]Saito, H., Yoshioka, Y, Uehara, N., Aketagawa, J., Tanaka, S. and Shibata, Y., Relationship between conformation and biological response for (1→3)-β-D-glucans in the activation of coagulation Factor G from limulus amebocyte lysate and host-mediated antitumor activity. Demonstration of single-helix conformation as a stimulant, Carbohydrate Research 1991,217,181-190.
    [185]Sakurai, K. and Shinkai, S., Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide:Schizophyllan, Journal of the American Chemical Society 2000,122,4520-4521.
    [186]Sakurai, K., Uezu, K., Numata, M., Hasegawa, T., Li, C., Kaneko, K. and Shinkai, S., beta-1,3-glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles, Chemical Communications 2005,4383-4398.
    [187]Bae, A.-H., Lee, S.-W., Ikeda, M., Sano, M., Shinkai, S. and Sakurai, K., Rod-like architecture and helicity of the poly(C)/schizophyllan complex observed by AFM and SEM, Carbohydrate Research 2004,339,251-258.
    [188]Hasegawa, T., Fujisawa, T., Numata, M., Umeda, M., Matsumoto, T., Kimura, T., Okumura, S., Sakurai, K. and Shinkai, S., Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan, Chemical Communications 2004,2150-2151.
    [189]Cella, L. N., Chen, W., Myung, N. V. and Mulchandani, A., Single-Walled Carbon Nanotube-Based Chemiresistive Affinity Biosensors for Small Molecules:Ultrasensitive Glucose Detection, Journal of the American Chemical Society 2010,132,5024-5026.
    [190]Koumoto, K., Kimura, T., Kobayashi, H., Sakurai, K. and Shinkai, S., Chemical modification of curdlan to induce an interaction with poly(C), Chemistry Letters 2001, 908-909.
    [191]Brown, G., Taylor, P., Reid, D., Willment, J., Williams, D., Martinez-Pomares, L. Wong, S. and Gordon, S., Dectin-1 is a majorβ-glucans receptor on macrophages, Journal of Experimental medicine 2002,196,407.
    [192]Schorey, J. and Lawrence, C., The pattern recognition receptor Dectin-1:from fungi to mycobacteria, Current Drug Targets 2008,9,123-129.
    [193]Guimond, S. E., Rudd, T. R., Skidmore, M. A., Ori, A., Gaudesi, D., Cosentino, C., Guerrini, M., Edge, R., Collison, D., McInnes, E., Torri, G., Turnbull, J. E., Fernig, D. G. and Yates, E. A., Cations Modulate Polysaccharide Structure To Determine FGF-FGFR Signaling:A Comparison of Signaling and Inhibitory Polysaccharide Interactions with FGF-1 in Solution, Biochemistry 2009,48,4772-4779.
    [1]Sasaki T, Takasuka N. Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes, Carbohydr Res.,1976,47,99-104.
    [2]Zhang P, Zhang L, Cheng S. Chemical Structure and Molecular Weights of α-(1→3)-D-Glucan from Lentinus edodes, Biosci. Biotechnol. Biochem.1999,63, 1197-1202.
    [3]Jong SC, Birmingham JM. Medicinal benefits of the mushroom Ganoderma, Adv. Appl. Microbiol.1992,37,101-134.
    [4]Brauer D, Kimmons T, Effects of management on the yield and high-molecular weight polysaccharide content ofshiitake (Lentinulaedodes) mushrooms Phillips, M. J. Agric. Food Chem.2002,50,5333-5337.
    [5]Moradali M, Mostafavi, H, Ghods, S. International Immunopharmacology.2007,7, 701-724.
    [6]Zhang, L., Li, X., Xu, X., Zeng, F. Correlation between antitumor activity, molecular weight, and conformation of lentinan Carbohydr. Res.2005,340,1515.
    [7]Zhang L, Zhang X, Zhou Q, Zhang M, Li X. Triple helix of β-1,3-glucan from Lentinus edodes in 0.5M NaCl aqueous solution characterized by light scattering, Polym. J. 2001,33:317-321.
    [8]Wang X, Xu X, Zhang L. Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution, J. Phys. Chem. B.2008,112:10343-10351.
    [9]Wang X, Zhang Y, Zhang L. Multiple Conformation Transitions of Triple Helical Lentinan in DMSO/Water by Microcalorimetry, J. Phys. Chem. B.2009, 10.1021/jp811289y.
    [10]Zhang X, Zhang L, Xu X. Morphologies and conformation transition of lentinan in aqueous NaOH solution, Biopolymers,2004,75:187-195.
    [11]Xu X, Zhang X, Zhang L, Wu C. Collapse and association of denatured lentinan in water/dimethlysulfoxide solutions, Biomacromolecules,2004,5,1893-1898.
    [12]Sakurai K, Mizu M, Shinkai S. Polysaccharide-Polynucleotide Complexes.2. Complementary Polynucleotide Mimic Behavior of the Natural Polysaccharide Schizophyllan in the Macromolecular Complex with Single-Stranded RNA and DNA, Biomacromolecules,2001,2,641-650.
    [13]Sakurai K, Shinkai S. Molecular Recognition of Adenine, Cytosine, and Uracil in a Single-Stranded RNA by a Natural Polysaccharide:Schizophyllan. J. Am. Chem. Soc.2000, 122,4520-4521.
    [14]Mizu M, Koumoto K, Anada T, Matsumoto T, Numata M, Shinkai S, Nagasaki T, Sakurai K. A Polysaccharide Carrier for Immunostimulatory CpG DNAs To Enhance Cytokine Secretion, J. Am. Chem. Soc.2004,126,8372-8373.
    [15]Takeda Y, Shimada N, Kaneko K, Shinkai S, Sakurai K. Ternary complex consisting of DNA, polycation, and a natural polysaccharide of schizophyllan to induce cellular uptake by antigen presenting cells, Biomacromolecules,2007,8,1178-1186.
    [16]Yanaki, T.; Norisuye, T. Triple helix and random coil of scleroglucan in dilute solution, Polym J.1983,15,389.
    [17]Chen, W.l; Takahiro, S; Akio, Interfacial tension between coexisting isotropic and cholesteric phases for aqueous solutions of schizophyllan. Macromolecules,1999,32 (5), 1549-1553.
    [18]Feng, T; Steven, L; Bernasek. Two-Dimensional Self-Assembly of a Two-Component Molecular System:Formation of an Ordered and Homogeneous Molecular Mesh J. Am. Chem. Soc.2005,127,12750-12751.
    [19]Keitaro,Y; Seiichi, N; Masakazu, M; Norio, T. Use of Abasic Site-Containing DNA Strands for Nucleobase Recognition in Water, J. Am. Chem. Soc.2003,125,8982-8983.
    [20]Tatiana, G; Stefano, L; Paolo, M. Supramolecular Helices via Self-Assembly of 8-Oxoguanosines, J. Am. Chem. Soc.2003,125,14741-14749.
    [21]Manasi, P; Bhate, J.C; Manish, A.M. Solvation and Hydrogen Bonding in Alanine-and Glycine-Containing Dipeptides Probed Using Solution- and Solid-State NMR Spectroscopy, J. Am. Chem. Soc.2009,10.1021/ja902917s.
    [22]Ken, C.F; Fraser S., Supramolecular self-assembly of dendronized polymers. Reversible control of polymer architectures through acid-base reactions, J. Am. Chem. Soc.2006,128,10707-10715.
    [23]Kenneth, E.M; Eric, G; Thierry, M; James, D.W. Engineering Hydrogen-Bonded Molecular Crystals Built from Derivatives of Hexaphenylbenzene and Related Compounds, J. Am. Chem. Soc.2007,129,4306-4322
    [24]Daniel, J; Mandell, I.C. Strengths of Hydrogen Bonds Involving Phosphorylated Amino Acid Side Chains, J. Am. Chem. Soc.2007,129,820-827.
    [25]Dong, H; Sergey, E; Paramonov, L. Self-Assembly of Multidomain Peptides: Balancing Molecular Frustration Controls Conformation and Nanostructure, J. Am. Chem. Soc.2007,129,12468-12472.
    [26]Shiki,Y; Shun, K; Yoshihiro K. Reversible Transformation between Rings and Coils in a Dynamic Hydrogen-Bonded Self-Assembly, J. Am. Chem. Soc.2009,131, 5408-5410.
    [27]Lin, S. C.; Lee, W. I.; Schurr, J. M. Brownian motion of highly charged poly (L-lysine). Effects of salt and polyion concentration, Biopolymers 1978,17,1041.
    [28]Mathiez, P.; Mouttet, C.; Weisbuch, G. Quasi-elastic light- scattering study of polyadenylic acid solutions, Biopolymers,1981,20,2381
    [29]Newman, J; Tracy, John; Pecora, R. Dynamic light scattering from monodisperse 2311 base pair circular DNA:ionic strength dependence, Macromolecules 1994,27, 6808-6811.
    [30]Borsali, R; Nguyen, H; Pecora, R. Small-angle neutron scattering and dynamic light scattering from a polyelectrolyte solution:DNA, Macromolecules 1998,31,1548-1555.
    [31]Klucker, R.; Munch, J. P.; Schosseler, F. Combined Static and Dynamic Light Scattering Study of Associating Random Block Copolymers in Solution, Macomolecules 1997,30,3839.
    [32]Buhler, E.; Munch, J. P.; Candau, S. J. Dynamical properties of wormlike micelles-A light scattering study, J. Phys. Ⅱ Fr.1995,5,765.
    [33]Tanahatoe, J. J.; Kuil, M. E. Light Scattering on Semidilute Polyelectrolyte Solutions:Molar Mass and Polyelectrolyte Concentration Dependence, J. Phys. Chem. B 1997,101,9233.
    [34]Forster, S; Schmidt, M; Antonietti, Static and dynamic light scattering by aqueous polyelectrolyte solutions:effect of molecular weight, charge density and added salt, M. Polymer,1990,31,781-792.
    [35]Sedlak, M. Structure and dynamics of polyelectrolyte solutions by light scattering.Physical Chemistry of Poly electrolytes, Radeva, T., Ed.; 2001, pp 1-58.
    [36]Sedlak, M. Dynamic light scattering from binary mixtures of polyelectrolytes. Ⅱ. Appearance of the medium polyelectrolyte mode upon mixing and comparison with experiments on binary mixtures of neutral polymers, J. Chem. Phys.1997,107,10805.
    [37]Sedlak, M. What Can Be Seen by Static and Dynamic Light Scattering in Polyelectrolyte Solutions and Mixtures? Langmuir.1999,15,4045-4051.
    [38]Wu,C; Siddiq, M;and Woo, K F. Laser Light-Scattering Characterization of a Polymer Mixture Made of Individual Linear Chains and Clusters, Macromolecules.1995, 28,4914-4919.
    [39]Cummins, H. Z.; Pike, E. R. Laser Light Scattering, Plenum Press:New York, 1974.
    [40]Provencher, S. W. Direct determination of molecular weight distributions of polystyrene in cyclohexane with photon correlation spectroscopy, J. Chem. Phys.1978,69, 4273.
    [41]Brochard, F; de Gennes,P.G. Dynamical scaling for polymers in theta solvents, Macromolecules 1977,10,1157-1161.
    [42]Rinaudo, M. Structural and Dynamical Properties of Semirigid Polyelectrolyte Solutions:A Light-Scattering Study, Macromolecules 2000,33,2098-2106
    [43]Ngai, T.; Wu, C.; Chen, Y. Origins of the Speckles and Slow Dynamics of Polymer Gels, J. Phys. Chem.B 2004,108 (18),5532-5540
    [44]Esquenet, C; Buhler, E. Aggregation behavior in semidilute rigid and semirigid polysaccharide solutions, Macromolecules,2002,35 (9),3708-3716
    [45]Onuma, K; Kubota, T; Dynamic light scattering investigation in aqueous solutions of bcl-complex membrane protein, J. Phys. Chem. B 2002,106,4318-4324
    [46]Esquenet,C; Buhler,E. Phase behavior of associating polyelectrolyte polysaccharides. 1. Aggregation process in dilute solution, Macromolecules 2001,34,5287-5294.
    [47]Jin, F; Wu, Chi. Slow Relaxation Mode in Mixtures of Water and Organic Molecules:Supramolecular Structures or Nanobubbles? J. Phys. Chem. B 2007,111, 2255-2261
    [48]Teraoka, I. Polymer Solution,2002, John Wiley & Sons, Inc:New York,.
    [49]Liu, T.B; Rulkens, R. Laser Light Scattering Study of a Rigid-Rod Polyelectrolyte, Macromolecules,1998,31,6119-6128.
    [50]Wu, C; Siddiq, M. Laser Light-Scattering Characterization of a Polymer Mixture Made of Individual Linear Chains and Clusters, Macromolecules,1995,28,4914-4919.
    [51]Burchard, W. Solution properties of branched macro-molecules, Adv. Polym. Sci. 1999,143,113-194.
    [52]Burchard, W. Theory of cyclic macromolecules. In Cyclic polymers; Semlyen, J. A., Ed.; Elsevier Applied Science Publishers:London and New York,1986; pp 43-84.
    [53]Sletmoen, M; Geissler, E; Stokke, B.T. Determination of molecular parameters of linear and circular scleroglucan coexisting in ternary mixtures using light scattering, Biomacromolecules 2006,7,858-865.
    [54]Gawronski, M; Park, J.T; Magee, A.S; Microfibrillar structure of PGG-glucan in aqueous solution as triple-helix aggregates by small angle x-ray scattering, Conrad, H. Biopolymers,1999,50,569-578.
    [55]Theresa, M; McIntire; David, A.B. Observations of the (1→3)-β-D-Glucan Linear Triple Helix to Macrocycle Interconversion Using Noncontact Atomic Force Microscopy, J.Am. Chem. Soc.1998,120,6909-6919.
    [56]Hansma, H. G Atomic force microscopy ofbiomolecules, J. Vac. Sci. Technol. B. 1996,14,1390-1394.
    [57]Tamayo, J; Garacia, R. Deformation, contact time, and phase contrast in tapping mode scanning force microscopy, Langmuir.1996,12,4430-4435.
    [1]Dubin, P., Bock, J., Davies, R. M., Schulz, D. N., Thies, C. Macromolecular Complexes in Chemistry and Biology. Berlin:Springer,1994.
    [2]Glass JE. Associating Polymers in Aqueous Media. Washington, DC:Am Chem Soc, ACS Symp Ser 765,2001.
    [3]Nishirari, K., Takahashi, R. Interaction in polysaccharide solutions and gels. Curr Opin Colloid and Interface Sci.2003; 8:396-400.
    [4]Lundin, L., Hermansson, A.M. Supermolecular aspects of xanthan-locust bean gum gels based on rheology and electron microscopy. Carbohydr. Polym.1995; 26:129-140.
    [5]Mannion, R. O., Melia C. D., Launay, B., Cuvelier, G., Hill, S. E., Harding, S. E., Mitchell, J. R. Xanthan/locust bean gum interactions at room temperature. Carbohydr. Polym.1992,19,91-97.
    [6]Tako, M., Asato, A., Nakamura, S. Rheological aspects of the intermolecular interaction between xanthan and locust bean gum in aqueous media. Agricultural Biological Chemistry,1984,48,2995-3000.
    [7]Zhan, D. F., Ridout, M. J., Brownsey, G. J., Morris, V. J. Xanthan-locust bean gum interactions and gelation. Carbohydr. Polym.1993,21,53-58.
    [8]Nishinari, K., Zhang, H., Ikeda, S. Hydrocolloid gels of polysaccharides and proteins. Curr Opin Colloid Interface Sci,2000,5,195-201.
    [9]Flory PJ. Principles of Polymer Chemistry. Ithaca, NY:Cornel University Press, 1953.
    [10]Stockmayer, W. H. (a) Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers,1943,11,45-55. (b) Theory of Molecular Size Distribution and Gel Formation in Branched Polymers Ⅱ. General Cross Linking. J. Chem. Phys,1944, 12,125-131.
    [11]de Gennes PG. Scaling Concepts in Polymer Physics. Ithaca, NY:Cornel University Press,1979.
    [12]Martin, J. E., Adolf, D., Wilcoxon, J. P. Viscoelasticity of Near-Critical Gels. Phys. Rev. Lett,1988,61,2620-2623.
    [13]Martin, J. E., Adolf, D. The Sol-Gel Transition in Chemical Gels. Annu. Rev. Phys. Chem.1991,42,311-319.
    [14]Li, L., Uchida, H., Aoki, Y., Yao, M. L. Rheological Images of Poly(vinyl chloride) Gels.2. Divergence of Viscosity and the Scaling Law before the Sol-Gel Transition. Macromolecules,1997,30,7842-7848.
    [15]Chambon, F., Winter, H. H. Stopping of crosslinking reaction in a PDMS polymer at the gel point. Polym. Bull,1985,13,499-503.
    [16]Winter, H.H., Chambon, F. Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point. J. Rheol,1986,30,367-382.
    [17]Chambon, F., Winter, H. H. Linear Viscoelasticity at the Gel Point of a Crosslinking PDMS with Imbalanced Stoichiometry. J. Rheol,1987,31,683-697.
    [18]Scanlan, J. C., Winter, H. H. Composition dependence of the viscoelasticity of end-linked poly(dimethylsiloxane) at the gel point. Macromolecules,1991,24,47-54.
    [19]Zhang, L., Zhang, X., Zhou, Q., Zhang, P., Zhang, M., and Li, X. Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering.Polym. J,2001,33,317-321.
    [20]Li, L., Aoki, Y. Rheological Images of Poly(vinyl chloride) Gels.1. The Dependence of Sol-Gel Transition on Concentation. Macromolecules,1997,30,7835-7841.
    [21]Izuka, A., Winter, H. H., Hashimoto, T. Molecular weight dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules,1992,25,2422-2428.
    [22]Mours, M., Winter, H. H. Relaxation Patterns of Nearly Critical Gels. Macromolecules,1996,29,7221-7229.
    [23]Li, L., Aoki, Y. Rheological Images of Poly(vinyl chloride) Gels.3. Elasticity Evolution and the Scaling Law beyond the Sol-Gel Transition. Macromolecules,1998,31, 740-745.
    [24]Zhang, L., Li, X., Zhou, Q., Zhang, X., Chen R. Transition from Triple Helix to Coil of Lentinan in Solution Measured by SEC, Viscometry, and 13C NMR. Polym. J.,2002, 34,443-449.
    [25]Berry, G. C. Thermodynamic and Conformational Properties of Polystyrene. I. Light Scattering Studies on Dilute Solutions of Linear Polystyrenes. J.Chem. Phys.,1966,44, 4550-4564.
    [26]Nakata, M. Novel analysis of static light scattering data. Polymer,1997,38,9-13.
    [27]Evans, J. M. Manipulation of Light Scattering Data. In:Huglin MB. Eds. Light Scattering from Polymer Solutions, Chapter 5. London and New York:Academic Press, 1972. pp.123.
    [28]Burchard, W. Solution properties of branched macromolecules. Adv. Polym.Sei., 1999,143,113-194.
    [29]Gelade, E., Goderis, B., Koster, C., Meijerink, N., Benthem, R., Fokkens, R., Nibbering, N. Molecular structure characterization of hyperbranched polyesteramides. Macromolecules,2001,34,3552-3558.
    [30]Clark, A. H., Ross-Murphy, S. B. Structural and Mechanical Properties of Biopolymer Gels. Adv Polym. Sci.,1987,83,57-192.
    [31]Cui, S. W. Polysaccharide Gums from Agricultural Products:Processing, Structure and Functionality. Lancaster:Technomic Publishing Company,2001.
    [32]Morris, E. R. Rheology of hydrocolloids. In:Phillips GO, Wedlock DJ, Williams PA, eds. Gums and Stabilizer for the Food Industry, Vol.2. Oxford and New York:Pergamon Press,1982. pp.57-77.
    [33]Te Nijenhuis, K. Viscoelastic properties of thermoreversible gels. In:Burchard W, Ross-Murphy SB, Eds. Physical Networks:Polymers and Gels. London:Elsevier Applied Science,1990. pp.15-33.
    [34]Rinaudo, M. Relation between the molecular structure of some polysaccharides and original properties in sol and gel states. Food Hydrocolloids,2001,15,433-440.
    [35]Ikeda, S., Nishinari, K. "Weak Gel"-Type Rheological Properties of Aqueous Dispersions of Nonaggregated κ-Carrageenan Helices. J. Agric. Food. Chem.,2001,49, 4436-4441.
    [36]Ross-Murphy, S., Morris, V. and Morris, E., Molecular viscosity of xanthan polysaccharide, Faraday Symposium of Chemical Society 1983,18,115-129.
    [37]Chronakis, I. S., Piculell, L., Borgstrom, J. Rheology of kappa-carrageenan in mixtures of sodium and cesium iodide:two types of gels. Carbohydr. Polym.,1996,31(4), 215-225.
    [38]Bromberg, L. Scaling of rheological properties of hydrogels from associating polymers. Macromolecules,1998,31,6148-6156.
    [39]Tuinier, R., Oomen, C. J., Zoon, P, Cohen Stuart, M. A., de Kruif, C. G. Viscoelastic Properties of an Exocellular Polysaccharide Produced by a Lactococcus lactis. Biomacromolecules,2000,1,219-223.
    [40]Kobayashi, K., Huang, Ching-I., Lodge, T. P. Thermoreversible Gelation of Aqueous Methylcellulose Solutions. Macromolecules,1999,32,7070-7077.
    [41]Ferry, J. D. Viscoelastic Properties of Polymers,3rd ed. New York:John Wiley & Sons,1980.
    [42]Doi, M., Edwards, S. F. The theory of polymer dynamics. Oxford:Clarendon Press, 1984.
    [43]Desbrieres, J. Viscosity of Semiflexible Chitosan Solutions:Influence of Concentration, Temperature, and Role of Intermolecular Interactions. Biomacromolecues, 2002,3,342-349.
    [44]Aoki, Y., Li, L., Uchida H, Kakiuchi M, Watanabe H. Rheological Images of Poly(vinyl chloride) Gels.5. Effect of Molecular Weight Distribution. Macromolecules, 1998,31,7472-7478.
    [45]Aoki, Y., Li, L, Kakiuchi M. Rheological Images of Poly(vinyl chloride) Gels.6. Effect of Temperature. Macromolecules,1998,31,8117-8123.
    [46]Nitta, Y., Kim, B. S., Nishinari, K, Shirakawa M, Yamatoya K, Oomoto T, Asai I. Synergistic Gel Formation of Xyloglucan/Gellan Mixtures as Studied by Rheology, DSC, and Circular Dichroism. Biomacromolecules,2003,4,1654-1660.
    [47]Fang, Y. P., Nishinari, K. Gelation behaviors of schizophyllan-sorbitol aqueous solutions. Biopolymers,2004,73,44-60.
    [1]Chihara, G., Hamuro, J., Maeda, Y. Y., Arai, Y., Fukuoka, F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res.,1970,30, 2776-2781.
    [2]Chihara, G., Maeda, Y., Hamuro, J., Sasaki, T., Fukuoka, F. Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) Sing. Nature,1969,222, 687-688.
    [3]Saito, H., Ohki, T., Sasaki, T. A 13C-nuclear magnetic response study of polysaccharide gels. Molecular architecture in the gels consisting of fungal, branched (1→3)-β-D-glucans (lentinan and schizophyllan) as manifested by conformational changes induced by sodium hydroxide. Carbohydr. Res.,1979,74,227-240.
    [4]Saito, H., Ohki, T., Takasuka, N., Sasaki, T. A 13C-NMR spectral study of a gel-forming, branched (1→3)-β-D-glucan, (lentinan) from Lentinus edodes, and its acid-degraded fraction. Structure and dependence of conformation on the molecular weight. Carbohydr. Res.,1977,58,293-305.
    [5]Sasaki, T., Takasuka, N. Further study of the structure of lentinan, an antitumor polysaccharide from Lentinus edodes. Carbohydr. Res.1976,47,99-104.
    [6]Freunhauf, J. P., Bonnard, G. D., Heberman, R. B. The effect of lentinan on production of interleukin-1 by human monocytes. Immunopharmacology,1982,5,65-74.
    [7]Gergely, P., Vallent, K., Bodo, I., Feher, J., Kaneko, Y. Effects of lentinan on cytotoxic functions of human lymphocytes. Immunopharmacol. Immunotoxicol.,1988,10, 157-163.
    [8]Hamuro, J., Rollinghoff, M., Wagner, H. Induction of cytotoxic peritoneal exudate cells by T cell immune adjuvants of β-(1→3) glucan type Lentinan and its analogous. Immunology,1980,39,551-559.
    [9]Ladanyi, A., Timar, J., Lapis, K. Effect of lentinan on macrophage cytotoxicity against metastatic tumor cells. Cancer Immunol. Immunother.,1993,36,123-126.
    [10]Maeda, Y. Y., Chihara, G. The effects of neonatal thymectomy on the antitumor activity of lentinan, carboxymethyl pacymaran and Zymosan and their effects on various immune response. Int. J. Cancer,1973,11,153-161.
    [11]Zhang, L., Zhang X., Zhou, Q., Zhang, P., Zhang, M., Li, X. Triple helix of β-D-glucan from lentinus edodes in 0.5 M NaCl aqueous solution characterized by light scattering. Polym. J.,2001,33,317-321.
    [12]Zhang, L., Zhang X., Zhou, Q., Zhang, P., Zhang, M., Li, X. Triple helix of β-D-glucan from lentinus edodes in 0.5 M NaCl aqueous solution characterized by light scattering. Polym. J.,2001,33,317-321.
    [13]Annable, P., Williams, P. A., Nishinari, K. Interaction in Xanthan-Glucomannan Mixtures and the influence of electroplyte. Macromolecules,1994,27,4204-4211.
    [14]Fang, Y., Nishinari, K. Gelation behavior of schizophyllan-sorbitol aqueous solutions. Biopolymers,2004,73(1),44-60.
    [15]Aasprong, E., Smidsr(?)d, O., Stokke, B. T. Scleroglucan gelation by in situ neutralization of the alkaline solution. Biomacromolecules,2003,4,914-921.
    [16]Clark, A. H.,& Ross-Murphy, S. B. Structural and mechanical properties of biopolymer gels, Advances in Polymer Science,1987,83,57-192.
    [17]Ross-Murphy, S. B. Rheological methods. In H. W.-S. Chan (Ed.), Biophyical methods in food research.1984, Palo Alto, CA:Blackwell.
    [18]Kobayashi, K., Huang, C. I., Lodge, T. P. Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules,1999,32,7070-7077
    [19]Li, L., Aoki, Y. Rheological images of poly(vinyl choride) gels.1. The dependence of sol-gel transition on concentration. Macromolecules,1997,30,7835-7841.
    [20]Morris, E. R. Rheology of hydrocolloids. In:Phillips, G. O., Wedlock, D. J., Wedlock, & P. A. Williams (Eds.). Gums and Stabilizers for the Food Industry.1982,2, pp.57-77. Oxford and New York:Pergamon Press.
    [21]Richardson, P. H., Norton, I. T. Gelation behavior of concentrated locust bean gum solutions. Macromolecules,1998,31,1575-1583
    [22]Cui, S. W. Polysaccharide Gums from Agricultural Products:Processing, Structure and Functionality. Lancaster:Technomic Publishing Company,1944.
    [23]Nijenhuis, K. Viscoelastic properties of thermoreversible gels. In:Burchard W, Ross-Murphy SB, Eds. Physical Networks:Polymers and Gels. London:Elsevier Applied Science,1990, pp.15-33.
    [24]Chronakis, I. S., Piculell, L., Borgstrom, J. Rheology of k-carrageenan in mixtures of sodium and cesium iodide:two types of gels. Carbohydr. Polym.,1996,31(4),215-225.
    [25]Ikeda. S, Nishinari. K. "Weak gel"-type rheological properties of aqueous dispersions of nonaggregated kappa-carrageenan helices. J. Agric. Food. Chem.,2001,49, 4436-4441.
    [26]Ross-murphy, S. B., Morris, V. J., Morris, E. R. Molecular viscoelasticity of xanthan polysaccharide. Faraday Symp. Chem. Soc.,1983,18,115-129.
    [27]Bromberg, L. Scaling of rheological properties of hydrogels from associating polymers, Macromolecules,1998,31,6148-6156.
    [28]Chambon, F., Winter, H. H. Linear viscoelasticity at the gel point of a cross-linking PDMS with imbalanced stoichiometry. J. Rheol.,1987,31,683-697.
    [29]Tuinier R, Oomen CJ, Zoon P, Cohen Stuart MA, de Kruif CG. Viscoelastic properties of en exocellular polysaccharides produced by a Lactococcus lactis, Biomacromolecules,2000; 1:219-223.
    [30]de Gennes, P. G. Scaling Concepts in Polymer Physics. Ithaca, NY:Cornel University Press.1979.
    [31]Flory, P. J. Principles of Polymer Chemistry. Ithaca, NY:Cornel University Press. 1953.
    [32]Stockmayer, W. H. Theory of Molecular size distribution and gel formation in branched polymers II. General cross linking. J. Chem. Phys.,1943,11,45-55.
    [33]Stockmayer, W. H. Theory of Molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys.,1944,12,125-131.
    [34]Scanlan, J. C., Winter, H. H. Composition Dependence of the Viscoelasticity of End-Linked Poly (dimethylsiloxane) at the Gel Point. Macromolecules.1991,24,47-54.
    [35]Winter, H. H., Chambon, F. Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J. Rheol..1986,30,367-382.
    [36]Li. L., Aoki, Y. Rheological images of poly(vinyl choride) gels.3. Elasticity evolution and the scaling law beyond the sol-gel transition. Macromolecules.1998,31, 740-745.
    [37]Aoki, Y., Li, L., Kakiuchi, M. Rheological images of poly(vinyl choride) gels.6. Effect of temperature. Macromolecules.1998,31,8117-8123.
    [38]Chambon, F., Winter, H. H. Stopping of crosslinking reaction in a PDMS polymer at the gel point. Polym. Bull. (Berlin).1985,13,499-503.
    [39]Izuka, A., Winter, H. H., Hashimoto, T. Molecular Weight Dependence of Viscoelasticity of Polycaprolactone Critical Gels. Macromolecules.1992,25,2422-2428.
    [40]Mours, M., Winter, H. H. Relaxation Patterns of Nearly Critical Gels. Macromolecules,1996,29,7221-7229.
    [41]Koike, A., Nemoto, N., Watanabe, Y., Osaki, K. Dynamic Viscoelasticity and FT-IR Measurements of End-Crosslinking a, α,ω-Dihydroxyl Polybutadiene Solutions near the Gel Point in the Gelation Process. Polym. J.1996,28,942-950.
    [42]Williams, P. A., eds. Gums and Stabilizers for the Food Industry, Vol.2. Oxford and New York:Pergamon Press, pp.57-77.
    [43]Schwittay, C., Mours, M., Winter, H. H. Rheological expression of physical gelation in polymers. Faraday Discuss.1995,101,93-104.
    [44]Nishinari, K., Takahashi, R. Interaction in polysaccharide solutions and gels. Curr. Opin. Colloid Interface Sci.2003,8,396-400.
    [1]Zhang, L.; Zhang, X.; Zhou, Q.; Zhang, P.; Zhang, M.; Li, X. Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering. Polym J.2001,33,317-321.
    [2]Zhang, L.; Li, X.; Zhou, Q.; Zhang, X.; Chen, R. Transition from Triple Helix to Coil of Lentinan in Solution Measured by SEC, Viscometry, and 13C NMR, Polym J.2002,34, 443-449.
    [3]Wang, X. H., Xu, X. J. and Zhang, L., Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution, Journal of Physical Chemistry B 2008, 112,10343-10351.
    [4]Zhang, X.; Zhang, L.; Xu, X. Morphologies and conformation transition of lentinan in aqueous NaOH solution, Biopolymers 2004,75,187-195.
    [5]Fang, Y.; Nishinari, K. Rheological characterization of schizophyllan aqueous solutions after denaturation-renaturation treatment. Biopolymers 2004,73,44-60.
    [6]Marcotte, M.; T Hoshahili, Ali R.; Ramaswamy, H. S. Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res Int 2001, 34,695-703.
    [7]Lapasin R.; Pricl, S. Rheology of industrial polysaccharides; Theory and applications, Blackie Academic and Professional:Great Britain, London,1995.
    [8]Mitchell, J.R. Polysaccharides in Foods; Fakenham Press Limited:Great Britain, London,1979; 51-72pp.
    [9]Graessley, W.W. The Entanglement Concept in Polymer Physics. Adv Polym Sci 1974, 16,1-179.
    [10]Whitcomb P.J.; Macosko, C.W. Rheology of xanthan gum. J Rheol 1978,22, 493-505.
    [11]Kapoor, V.P.; Taravel, F.R.; J.P Joseleau, Milas, M.; Chanzy, H.; Rinaudo, M. Cassia spectabilis DC seed galactomannan:structural, crystallographical and rheological studies. Carbohydr Res 1998,306,231-241.
    [12]Ndjouenkeu, R.; Goycoolea, F.M.; Morris E.R.; Akingbala, J.O. Rheology of okra (Hibiscus esculentus L.) and dika nut (Irvingia gabonensis) polysaccharides. Carbohydr Polym,1996,29,263-269.
    [13]Enomoto, H.; Einaga, Y.; Teramoto, A. Viscosity of aqueous solutions of a triple-helical polysaccharide schizophyllan. Macromolecules,1984,17,1573-1577.
    [14]Zhang, H.; Yoshimura, M.; Nishinari, K.; Williams, M. A. K.; Foster, T. J.; Norton, I. T. Gelation behaviour of konjac glucomannan with different molecular weights. Biopolymers,2001,59,38-50.
    [15]Richardson, R. K.; Goycoolea, F. M. Rheological measurement of к-carrageenan during gelation. Carbohydr Polym,1994,24,223-225.
    [16]Itou, T.; Teramoto, A.; Matsuo, T.; Suga, H. Ordered structure in aqueous polysaccharide. V:Cooperative order-disorder transition in aqueous schizophyllan. Macromolecules,1986,19,1234-1240.
    [17]Asakawa, T.; Van, K.; Teramoto, A. A Thermal Transition in a Cholesteric Liquid Crystal of Aqueous Schizophyllan. Mol Cryst Liq Cryst,1984,116,129-139.
    [18]Itou, T.; Teramoto, A.; Matsuo, T.; Suga, H. Isotope effect on the order-disorder transition in aqueous schizophyllan. Carbohydr Res,1987,160,243-257.
    [19]Kitamura, S.; Hirano, T.; Takeo, K.; Fukada, H.; Takahashi, K.; Falch, B Berit, H.; Stokke, T. Conformational transitions of schizophyllan in aqueous alkaline solution. Biopolymers,1998,39,407-416.
    [20]Hayashi, Y.; Shinyashiki, N.; Yagihara, S.; Yoshiba, K.; Teramoto, A.; Nakamura, N.; Miyazaki, Y.; Sorai, M.; Wang, Q. Ordering in Aqueous Polysaccharide Solutions. I. Dielectric Relaxation in Aqueous Solutions of a Triple-Helical Polysaccharide schizophyllan. Biopolymers,2002,63,21-31.
    [21]Yoshiba, K.; Ishino, T.; Teramoto, A.; Nakamura, N.; Miyazaki, Y.; Sorai, M.; Wang, Q.; Hayashi, Y.; Shinyashiki, N.; Yagihara, S. Ordering in aqueous polysaccharide solutions. Ⅱ. Optical rotation and heat capacity of aqueous solutions of a triple-helical polysaccharide schizophyllan. Biopolymers,2002,63,370-381.
    [22]Hirao, T.; Teramoto, A.; Matsuo, T.; Suga. H. Solvent effects on the cooperative order-disorder transition of aqueous solutions of schizophyllan, a triple-helical polysaccharide Contribution. Biopolymers,1990,29,1867-1876.
    [23]Takahashi, Y.; Kobatake, T.; Suzuki, H. Triple helical structure of schizophyllan, Rep Prog Polym Sci,1984,28,767-768.
    [24]Kitamura, S.; Oazwa, M.; Tokioka, H.; Hara, C.; Ukai, S.; Kuge, T. A differential scanning calorimetric study of the conformat ional transitions of several kinds of (1→6) branched (1→3)-β-d-glucans in a mixture of water and dimethylsulfoxide. Thermochimca Acta 1990,163,89-96.
    [1]Wang, X. H., Zhang, Y. Y., Zhang, L. N. and Ding, Y. W., Multiple Conformation Transitions of Triple Helical Lentinan in DMSO/Water by Microcalorimetry, Journal of Physical Chemistry B 2009,113,9915-9923.
    [2]Takatsuki, F., Miyasaka, Y, Kikuchi, T., Suzuki, M. and Hamuro, J., Improvement of erythroid toxicity by lentinan and erythropoietin in mice treated with chemotherapeutic agents, Exp Hematol 1996,24,416-422.
    [3]Hu, C., Kitamura, S., Tanaka, A. and Sturtevant, J., Differential scanning calorimetric study of the thermal unfolding of mutant forms of phage T4 lysozyme, Biochemistry 1992,31,1643.
    [4]Armstrong, J., Chowdhry, B., Mitchell, J., Beezer, A. and Leharne, S., Effect of cosolvents and cosolutes upon aggregation transitions in aqueous solutions of the Poloxamer F87 (Poloxamer P237):a high sensitivity differential scanning calorimetry study, J. Phys. Chem 1996,100,1738-1745.
    [5]Grinberg, V., Dubovik, A., Kuznetsov, D., Grinberg, N., Grosberg, A. and Tanaka, T., Studies of the thermal volume transition of poly (N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry.2. Thermodynamic functions, Macromolecules 2000,33,8685-8692.
    [6]Ding, Y, Ye, X. and Zhang, G., Microcalorimetric investigation on aggregation and dissolution of poly (N-isopropylacrylamide) chains in water, Macromolecules 2005,38, 904-908.
    [7]Tang, Y., Ding, Y. and Zhang, G., Role of Methyl in the Phase Transition of Poly (N-isopropylmethacrylamide), J. Phys. Chem.B 2008,112,8447-8451.
    [8]Ding, Y, Ye, X. and Zhang, G., Can Coil-to-Globule Transition of a Single Chain Be Treated as a Phase Transition?, The Journal of Physical Chemistry B 2008,112, 8496-8498.
    [9]Tiktopulo, E. I., Bychkova, V. E., Ricka, J. and Ptitsyn, O. B., Cooperativity of the Coil-Globule Transition in a Homopolymer:Microcalorimetric Study of Poly(N-isopropylacrylamide), Macromolecules 1994,27,2879-2882.
    [10]Teraoka, I. in Polymer Solution, Vol. John Wiley & Sons, Inc, New York,2002.
    [11]Wang, X. H., Xu, X. J. and Zhang, L., Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution, Journal of Physical Chemistry B 2008, 112,10343-10351.
    [12]Kitamura, S. and Kuge, T., A differential scanning calorimetric study of the conformational transitions of schizophyllan in mixtures of water and dimethylsulfoxide, Biopolymers 2004,28,639-654.
    [13]Yoshiba, K., Ishino, T., Teramoto, A., Nakamura, N., Miyazaki, Y., Sorai, M., Wang, Q., Hayashi, Y., Shinyashiki, N. and Yagihara, S., Ordering in aqueous polysaccharide solutions. Ⅱ. Optical rotation and heat capacity of aqueous solutions of a triple-helical polysaccharide schizophyllan, Biopolymers 2002,63,370-381.
    [14]Kitamura, S., Ozasa, M., Tokioka, H., Hara, C., Ukai, S. and Kuge, T., A differential scanning calorimetric study of the conformat ional transitions of several kinds of (1→6) branched (1→3)-[beta]-d-glucans in a mixture of water and dimethylsulfoxide, Thermochimica Acta 1990,163,89-96.
    [15]Cummins, H. Z. in Photon correlation and light beating spectroscopy; [proceedings] Edited by H. Z. Cummins and E. R. Pike, Vol. Eds.:H. Z. e. Cummins and E. R. e. Pike), Plenum Press, New York,1974.
    [16]Provencher, S. W., Hendrix, J., De Maeyer, L. and Paulussen, N., Direct determination of molecular weight distributions of polystyrene in cyclohexane with photon correlation spectroscopy, J. Chem. Phys.1978,69,4273-4276.
    [17]Brochard, F. and de Gennes, P. G., Dynamical Scaling for Polymers in Theta Solvents, Macromolecules 1977,10,1157-1161.
    [18]Yoshiba, K., Teramoto, A., Nakamura, N., Shikata, T., Miyazaki, Y., Sorai, M., Hayashi, Y. and Miura, N., Water Structures of Differing Order and Mobility in Aqueous Solutions of Schizophyllan, a Triple-Helical Polysaccharide as Revealed by Dielectric Dispersion Measurements, Biomacromolecules 2004,5,2137-2146.
    [19]Yoshiba, K., Teramoto, A., Nakamura, N., Kikuchi, K., Miyazaki, Y. and Sorai, M., Static Water Structure Detected by Heat Capacity Measurements on Aqueous Solutions of a Triple-Helical Polysaccharide Schizophyllan, Biomacromolecules 2003,4,1348-1356.
    [20]Asakawa, T., Van, K. and Teramoto, A., A Thermal Transition in a Cholesteric Liquid Crystal of Aqueous Schizophyllan Molecular Crystals and Liquid Crystals 1984,116, 129-139.
    [21]Itou, T., Teramoto, A., Matsuo, T. and Suga, H., Ordered structure in aqueous polysaccharide.5. Cooperative order-disorder transition in aqueous schizophyllan, Macromolecules 1986,19,1234-1240.
    [22]Itou, T., Teramoto, A., Matsuo, T. and Suga, H., Isotope effect on the order-disorder transition in aqueous schizophyllan, Carbohydrate Research 1987,160,243-257.
    [23]Kitamura, S., Kuge, T., A differential scanning calorimetric study of the conformational transitions of schizophyllan in mixtures of water and dimethylsulfoxide, Biopolymers 1989,28,639-654.
    [24]Hirao, T., Sato, T., Teramoto, A., Matsuo, T. and Suga, H., Solvent effects on the cooperative order-disorder transition of aqueous solutions of schizophyllan, a triple-helical polysaccharide, Biopolymers 1990,29,1867-1876.
    [25]Teramoto, A., Gu, H., Miyazaki, Y, Sorai, M. and Mashimo, S., Dielectric study of the cooperative order-disorder transition in aqueous solutions of schizophyllan, a triple-helical polysaccharide,Biopolymers 1995,36,803-810.
    [26]Sato, T., Norisuye, T. and Fujita, H., Triple helix of Schizophyllum commune polysaccharide in dilute solution.5. Light scattering and refractometry in mixtures of water and dimethyl sulfoxide, Macromolecules 1983,16,185-189.
    [27]Kitamura, S. and Sturtevant, J. M., A scanning calorimetric study of the thermal denaturation of the lysozyme of phage T4 and the Arg 96.fwdarw. His mutant form thereof, Biochemistry 1989,28,3788-3792.
    [28]Connelly, P., Ghosaini, L., Hu, C.-Q., Kitamura, S., Tanaka, A. and Sturtevant, J. M., A differential scanning calorimetric study of the thermal unfolding of seven mutant forms of phage T4 lysozyme, Biochemistry 1991,30,1887-1891.
    [29]Tiktopulo, E. I., Uversky, V. N., Lushchik, V. B., Klenin, S. I., Bychkova, V. E. and Ptitsyn, O. B., "Domain" Coil-Globule Transition in Homopolymers, Macromolecules 1995,28,7519-7524.
    [30]Burchard, W. in Solution Properties of Branched Macromolecules,1999, pp. 113-194.
    [31]Burchard, W. in Theory of cyclic macromolecules, Vol. (Ed. J. A. Semlyen), Elsevier Applied Science Publishers, London and New York,1986, pp.43-84.
    [32]Sletmoen, M., Geissler, E. and Stokke, B. T., Determination of Molecular Parameters of Linear and Circular Scleroglucan Coexisting in Ternary Mixtures Using Light Scattering, Biomacromolecules 2006,7,858-865.
    [1]Tada, T., Matsumoto, T. and Masuda, T., Structure of molecular association of curdlan at dilute regime in alkaline aqueous systems, Chemical Physics 1998,228,157-166.
    [2]Zhang, L., Wang, C., Cui, S., Wang, Z. and Zhang, X., Single-Molecule Force Spectroscopy on Curdlan:Unwinding Helical Structures and Random Coils, Nano letters 2003,3,1119-1124.
    [3]Kitamura, S., Hirano, T., Takeo, K., Fukada, H., Takahashi, K., Falch, B. and Stokke, B., Conformational transitions of schizophyllan in aqueous alkaline solution, Biopolymers 1998,39,407-416.
    [4]Tabata, K., Ito, W. and Kojima Shozo, T., Ultrasonic degradation of schizophyllan, an antitumor polysaccharide produced by Schizophyllum commune Fries, Carbohydrate Research 1981,89,121-135.
    [5]Ohno, N., Miura, N. N., Chiba, N., Adachi, Y. and Yadomae, T., Comparison of the immunopharmacological activities of triple and single-helical schizophyllan in mice, Biological & Pharmaceutical Bulletin 1995,18,1242-1247.
    [6]Yadomae, T. and Ohno, N., Structure-activity relationship of immunomodulating (1→3)-beta-d-glucans, Recent Res. Dev. Chem. Pharm. Sci 1996,1,23-33.
    [7]Miura, N., Ohno, N., Adachi, Y, Aketagawa, J., Tamura, H., Tanaka, S. and Yadomae, T., Comparison of the blood clearance of triple-and single-helical schizophyllan in mice, Biological and Pharmaceutical Bulletin 1995,18,185-189.
    [8]Young, S., Dong, W. and Jacobs, R., Observation of a partially opened triple-helix conformation in 1 3-beta-glucan by fluorescence resonance energy transfer spectroscopy, Journal of Biological Chemistry 2000,275,11874.
    [9]Kitamura, S. and Sturtevant, J. M., A scanning calorimetric study of the thermal denaturation of the lysozyme of phage T4 and the Arg 96.fwdarw. His mutant form thereof, Biochemistry 1989,28,3788-3792.
    [10]Yanaki, T., Tabata, K. and Kojima, T., Melting behaviour of a triple helical polysaccharide schizophyllan in aqueous solution, Carbohydrate Polymers 1985,5, 275-283.
    [11]Sakurai, K., Mizu, M. and Shinkai, S., Polysaccharide- Polynucleotide Complexes.2. Complementary Polynucleotide Mimic Behavior of the Natural Polysaccharide Schizophyllan in the Macromolecular Complex with Single-Stranded RNA and DNA, Biomacromolecules 2001,2,641-650.
    [12]Egholm, M., Buchardt, O., Nielsen, P. E. and Berg, R. H., Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone, Journal of the American Chemical Society 1992,114,1895-1897.
    [13]Dervan, P. and Burli, R., Sequence-specific DNA recognition by polyamides, Current Opinion in Chemical Biology 1999,3,688-693.
    [14]Bettinger, T., Remy, J.-S. and Erbacher, P., Size Reduction of Galactosylated PEI/DNA Complexes Improves Lectin-Mediated Gene Transfer into Hepatocytes, Bioconjugate Chemistry 1999,10,558-561.
    [15]Goula, D., Benoist, C., Mantero, S., Merlo, G., Levi, G and Demeneix, B. A., Polyethylenimine-based intravenous delivery of transgenes to mouse lung, Gene Ther 1998,5,1291-1295.
    [16]Walter, F., Vicens, Q. and Westhof, E., Aminoglycoside-RNA interactions, Current Opinion in Chemical Biology 1999,3,694-704.
    [17]Sakurai, K. and Shinkai, S., Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide:Schizophyllan, Journal of the American Chemical Society 2000,122,4520-4521.
    [18]Takeda, Y., Shimada, N., Kaneko, K., Shinkai, S. and Sakurai, K., Ternary Complex Consisting of DNA, Polycation, and a Natural Polysaccharide of Schizophyllan to Induce Cellular Uptake by Antigen Presenting Cells, Biomacromolecules 2007,8,1178-1186.
    [19]Zhang, P., Zhang, L. and Cheng, S., Chemical structure and molecular weights of β-(1 3)-glucan from Lentinus, Biosci. Biotechnol. Biochem 1999,63,1197-1202.
    [20]Zhang, L., Zhang, X., Zhou, Q., Zhang, P., Zhang, M. and Li, X., Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering, Polymer Journal 2001,33,317-321.
    [21]Zhang, L., Li, X., Zhou, Q., Zhang, X. and Chen, R., Transition from Triple Helix to Coil of Lentinan in Solution Measured by SEC, Viscometry, and 13C NMR, Polymer Journal 2002,34,443-449.
    [22]Zhang, L., Xu, X., Er, N. and Li, X. in Triple-helix lentinan as anticancer drugs and its preparation, Vol.2004-10060850.7 2005.
    [23]Zhang, X., Zhang, L. and Xu, X., Morphologies and conformation transition of lentinan in aqueous NaOH solution, Biopolymers 2004,75,187-195.
    [24]Zhang, L., Li, X. L., Xu, X. J. and Zeng, F. B., Correlation between antitumor activity, molecular weight, and conformation of lentinan, Carbohydrate Research 2005,340, 1515-1521.
    [25]Wang, X. H., Xu, X. J. and Zhang, L., Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution, Journal of Physical Chemistry B 2008, 112,10343-10351.
    [26]Wang, X. H., Zhang, Y. Y., Zhang, L. N. and Ding, Y. W., Multiple Conformation Transitions of Triple Helical Lentinan in DMSO/Water by Microcalorimetry, Journal of Physical Chemistry B 2009,113,9915-9923.
    [27]Koumoto, K., Kimura, T., Kobayashi, H., Sakurai, K. and Shinkai, S., Chemical modification of curdlan to induce an interaction with poly(C), Chemistry Letters 2001, 908-909.
    [28]Cummins, H. Z. in Photon correlation and light beating spectroscopy; [proceedings] Edited by H. Z. Cummins and E. R. Pike, Vol. Eds.:H. Z. e. Cummins and E. R. e. Pike), Plenum Press, New York,1974.
    [29]Provencher, S. W., Hendrix, J., De Maeyer, L. and Paulussen, N., Direct determination of molecular weight distributions of polystyrene in cyclohexane with photon correlation spectroscopy, J. Chem. Phys.1978,69,4273-4276.
    [30]Brochard, F. and de Gennes, P. G., Dynamical Scaling for Polymers in Theta Solvents, Macromolecules 1977,10,1157-1161.
    [31]Nakanishi, T. and Norisuye, T., Thermally Induced Conformation Change of Succinoglycan in Aqueous Sodium Chloride, Biomacromolecules 2003,4,736-742.
    [32]Miyoshi, K., Uezu, K., Sakurai, K. and Shinkai, S., Polysaccharide-Polynucleotide Complexes. Part 32. Structural Analysis of the Curdlan/Poly(cytidylic acid) Complex with Semiempirical Molecular Orbital Calculations, Biomacromolecules 2005,6,1540-1546.
    [33]Miyoshi, K., Uezu, K., Sakurai, K. and Shinkai, S., Proposal of a New Hydrogen-Bonding Form to Maintain Curdlan Triple Helix, Chemistry & Biodiversity 2004,1,916-924.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700