用户名: 密码: 验证码:
Fe~ⅡEDTA湿法络合脱硝液的再生及资源化初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe~ⅡEDTA湿法络合脱硝是二十世纪八十年代发展起来的一种高效烟气脱硝技术方法,但是由于烟气中氧气对吸收剂的消耗,导致处理成本高。本文针对这一缺陷,进行了脱硝剂再生及吸收液资源化初探,研究了Fe~ⅡEDTA络合吸收NO及其机理,Na_2SO_3还原再生的机理及反应动力学,在成本核算的基础上,形成了一套基于再生及资源化技术的、成本较低的Fe~ⅡEDTA湿法络合脱硝整体工艺。
     研究表明,还原剂还原吸收液和电解再生吸收液具有不同的机理。Fe~ⅡEDTA和Na_2SO_3共同吸收NO时,Na_2SO_3调节吸收液的pH值到弱碱性,使吸收更易进行;同时,SO_3~(2-)可将Fe~ⅢEDTA还原为Fe~ⅡEDTA。循环伏安法研究表明,采用Na_2SO_3还原再生吸收液Fe~ⅡEDTA时,SO_3~(2-)主要转化为S_2O_6~(2-)和SO_4~(2-)。电解法还原再生Fe~ⅡEDTA研究发现,Fe~ⅢEDTA的电化学还原过程是一个快速化学反应过程,伴随着一个电子转移。采用准稳态极化曲线和恒电位阶跃测试得到298K时Fe~ⅢEDTA在铂电极表面还原的标准速率常数为k~0为0.0263 cm s~(-1);扩散活化能为24.93 KJ mol~(-1),表观活化能为25.74 kJ mol~(-1),电子转移活化能为16.56kJmol~(-1);整个还原过程由扩散过程控制。理论计算说明加快传质过程能极大地提高电化学还原的整体速率,对Fe~ⅢEDTA电化学再生有重要的工程指导意义。
     研究络合脱硝后的废水资源化利用包括两个步骤。第一步,采用NaOH和H_2SO_4回收Fe~ⅡEDTA脱硝后废水中的EDTA,实验表明EDTA回收率达到67%;第二步,回收EDTA后的废液中加入水,可以生成铁肥、硝酸和硫酸等复合肥,实现脱硝废水的资源化利用。
     本研究可为湿法络合脱硝吸收液的再生和资源化提供有益的探索,推进了湿法络合脱硝技术的工程化应用。
The absorption of NO by Fe~ⅡEDTA was developed in1980s. Compared with other methods, wet process of NO by means of Fe~ⅡEDTA is highly efficient. The main issue this method confronts is high cost which prevents it from wide use in industry. In present paper the absorption and this drawback were discussed. The regeneration was realized by reduction methods with it kinetic studies also studied. Finally the resource utilization and cost accounting was investigated for the purpose of establishing a whole schematic diagram.
     Experiments showed that the regeneration mechanism of Fe~ⅡEDTA by Na_2SO_3 and by electrochemical reduction were not the same. When Na_2SO_3 was added into EDTA to absorb NO, Na_2SO_3 adjusted pH value of absorption solution toward weak alkaline and reduced the oxidized Fe~ⅡEDTA. In result the absorption easily ran. When there was SO_2 residual after FGD, SO_2 hydrolyzed and formed SO_3~(2-) which compensated the consumed Na_2SO_3. It was confirmed by cyclic voltammetry that the final reduction products formed from SO_3~(2-) were S_2O_6~(2-) and SO_4~(2-) when Na_2SO_3 was applied to reduce Fe~ⅡEDTA. Electrochemical reduction proved that Fe~ⅢEDTA reduction was a fast reversible process with one electron transferred on Pt electrode surface. Standard rate constant k~0 of Fe~ⅢEDTA reduction at 298 K was found to be 0.0263 cm s~(-1). According to the calculated diffusion activation energy of 24.93 kJ mol~(-1), apparent activation energy of 25.74 kJ mol~(-1) and the electron transfer activation energy of 16.56 kJ mol~(-1), the rate determining step for Fe~ⅢEDTA reduction was diffusion step.
     Recycle of EDTA and resource reuse include two steps. First, NaOH and H_2SO_4 were employed to recycle EDTA. The results showed that the recycle efficiency was 67%. And then ammonia was added into the recycled solution to make fertilizers.As a consequence, (NH_4)_2EDTA, NH_4NO_3 and (NH_4)_2SO_4 were produced. This method provided a new pathway to realizing wastes water resource reuse and harmless utilization of absorbents, meanwhile, promoting the industrialization of wet absorption of NO by Fe~ⅡEDTA.
引文
1. Qu z, Yan N Q, Jia J P, Wu D. Removal of dibenzothiophene from simulated petroleum by integrated γ-irradiation and Zr/alumina catalyst. Appl. Catal. B: Environ., 2007, 71: 108-115.
    2. Ye B M, Ji X L, Yang H Z. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmos. Environ., 2003, 37: 499-510.
    3. Liu J, Zhao Z, Xu C M, Duan A J, Zhang S J. Synthesis of nanopowder Ce-Zr-Pr oxide solid solutions and their catalytic performances for soot combustion. Catal. Commun., 2007, 8: 220-224.
    4. Niu J F, Chen J W, Martensc D, Henkelmann B, Quan X. The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce (Picea abies (L.) Karst.) needles. Sci Total Environ., 2004, 322:231-241.
    5. Zhao Y, Duan L, Larssen T, Hu L, Hao J M. Simultaneous Assessment of Deposition Effects of Base Cations, Sulfur and Nitrogen Using an Extended Critical Load Function for Acidification. Environ. Sci. Technol., 2007, 41(6): 1815-1820.
    6.郝吉明,马广大主编.大气污染控制工程.北京:高等教育出版社,2001.
    7. Yu Y B, Zhang X L, He H. Evidence for the formation, isomerization and decomposition of organo-nitrite and -nitro species during the NOx reduction by C_3H_6 on Ag/Al_2O_3. Appl. Catal.B, 2007, 758: 298-302.
    8.钟秦,陈迁乔.可再生半胧酸亚铁溶液同时脱除S02和NOx.南京理工大学学报,2000,5:441-445.
    9. Long X L, Xiao W D, Yuan W K. Removal of sulfur dioxide and nitric oxide using cobalt ethylenediamine solution. Ind. Eng. Chem. Res., 2005, 44: 686-691.
    10.曹锡章主编.无机化学.北京:高等教育出版社,1994.
    11. Pires M, Rossi M J, Ross D S. Kinetic and mechantic aspects of the NO oxidation by O_2 in aqueous phase. Int. J. Chem. Kinetics, 1994, 26:1207-1227.
    12. Littlejohn D, Hu K Y, Chang S G. Kinetics of the Reaction of Nitric Oxide with Sulfite and Bisulfite Ions in Aqueous Solution. Inorg. Chem., 1986, 25: 3131-3135.
    13.吴忠标主编.大气污染控制工程.北京:科学出版社,2002.
    14. Guo Y X, Liu Z Y, Li Y M. NH_3 regeneration of SO_2-captured V_2O_5/AC catalyst-sorbent for simultaneous SO_2 and NO removal. J. Fuel Chem. Technol., 2007, 35(3): 344-348.
    15. Zhang J E, YangY O, Ling D J. Impacts of simulated acid rain on cation leaching from the Latosol in south China. Chemosphere, 2007, 67: 2131-2137.
    16. Flanagan W P, Apel W A, Barnes J M, Lee B D. Development of gas phase bioreactors for the removal of nitrogen oxidesfrom synthetic flue gas streams. Fuel, 2002, 81:1953-1961.
    17. Chu H, Chien T W, Li S Y. Simultaneous absorption of SO_2 and NO from flue gas with KMnO/NaOH solutions. Sci. Total Environ., 2001, 275: 127-135.
    18. Lorenzini G, Grassi C, Nali C. Leaves of Pittosporum tobira as indicators of airborne trace element and PM 10 distribution in central Italy. Atmos. Environ., 2006, 40: 4025-4036.
    19. Shin M S, Kim H S, Jang D S. Numerical study on the SNCR application of space-limited industrial boiler. AppL Therm. Eng., 2007, 27: 2850-2857.
    20. Sang W, Bae S, Ah R. NO removal by reducing agents and additives in the selectivenon-catalytic reduction (SNCR) process. Chemosphere, 2006, 65: 170-175.
    21. Hueso J L, Gonza'lez-Elipe A R, Cotrino J. Plasma chemistry of NO in complex gas mixtures excited with a surfatron launcher. J. Phys. Chem. A, 2005, 109, 4930-4938.
    22.钟秦主编.燃煤烟气脱硫技术及工程实例.北京:化学工业出版社,2002.
    23. Mutsuo A, Hiroyuka T, Hiroshi K. Simultaneous absorption of NO and NO_2 into alkaline solutions. J chem.Eng. Jpn., 1982, 15(5): 362-367.
    24. Giorgio C. Role of HNO_2 in the absorption of nitrogen oxides in alkaline solutions. Ing. Eng. Chem. Fundam., 1984, 23(2): 260-264.
    25. Kramers H, Blind M P, Snoeck E. Absorption of nitrogen tetroxide by water jets. Chem. Eng. Sci., 1961, 14: 115-123.
    26.佘颖,容桂安.NO_x制取亚硝酸钙的研究.氮肥设计,1992,3(6):23-26.
    27. Kameoka Y, Pigford R L. Absorption of nitrogen dioxide into water, sulfuric acid,sodium hydroxide, and alkaline sodium sulfite aqueous solutions. Ind. Eng. Chem. Fundam., 1977, 16(1): 163-169.
    28. Vchida S, Kobayashi T, Kageyama S. Absorption of nitrogen monoxide into aqueous KMnO_4/NaOH and Na_2SO_3/FeSO_4 solutions. Ind. Eng. Chem. Proc. Des. Dev., 1983, 22: 323-329.
    29. Chien T W, Chu H. Removal of SO_2 and NO_x from flue gas by wet scrubbing using an aqueous NaClO_2 solution. J. Hazard. Mater., 2000, 80: 43-57.
    30. Wang Z H, Zhou J H, Zhu Y Q. Simultaneous removal of NOx, SO_2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Process. Technol. 2007, 88: 817-823.
    31. Chu H, Chien T W, Twu B W. The absorption kinetics of NO in NaClO_2/NaOH solutions. J. Hazard. Mater., 2001, 84: 241-252.
    32. Sada E, Kumazawa H. Absorption of Lean NO in aqueous solutions of NaClO_2 and NaOH. Ind.Eng. Chem. Proc. Des. Dev., 1979, 18 (2): 275-278.
    33. Sada E, Kumazawa H, Yamanaka Y. Kinetics of absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide. Chem. Eng. Jpn., 1978, 11 (4): 276-282.
    34. Okamoto M. SO_2 separation by liquid reactive membranes. Sep. Purif Technol., 1994, 11: 795-802.
    35. Ni S, Takeuchi H. Removal of CO_2 and/or SO_2 for mass streams by a membrane absorption method. Gas Sep. Purif., 1994, 8 (2): 107-114.
    36.童志权,陈焕新主编.工业废气污染控制与利用.北京:化学工业出版社,89.
    37. Littlejohn D, Chang S G. Kinetic study of ferrous nitrosyl complexes. J. Phys. Chem., 1982, 86: 537-540.
    38. Gambardella F, Alberts M S, Winkelman J G M, Heeres E J. Emperimental and modeling studies on the absorption of NO in aqueous ferrous EDTA solutions. Ind. Eng. Chem.Res., 2005, 44: 4234-4242.
    39. Hishinuma N Y, Kaji R, Akimoto H. Reversible binding of NO to Fe(II)EDTA. Bull. Chem. Soc. Jpn., 1979, 52: 2863-2865.
    40. Long X L, Xin Z L, Chen M B, Xiao W D, Yuan W K. Nitric oxide absorption into cobalt ethylenediamine solution. Sep. Purif. Technol., 2007, 55: 226-231.
    41. Wubs H J, Antonie A C M B. Kinetics of the oxidation of ferrous chelates of EDTA and HEDTA in aqueous solution. Ind, Eng. Chem. Res., 1993, 32: 2580-2594.
    42. Chang S G, Littlejohn D, Liu, D K. Use of ferrous chelates of SH-containing amino acid and peptides for the removal of NOx and SO_2 from flue gas. Ind, Eng. Chem. Res., 1988, 27: 2156-2161.
    43. Shi Y, Wang H, Chang S G. Kinetics of NO absorption in iron(II) thiochelate solution. Environ. Prog., 1997,16: 301-306.
    44. Pham E K, Chang S G Removal of NO from flue gases by absorption to an iron(II) thiochelate complex and subsequent reduction to ammonia. Nature, 1994, 369(12):139-141.
    45. Schneppensieper T, Stefan F, Almut C. Tuning the reversible binding of NO to iron (II) aminocarbocylate and related complexes in aqueous solution. European. J. Inorg. Chem., 2001: 491-501.
    46. Kustin K, Taub I A, Weinstock E. A kinetic study of the formation of the ferrous-nitric oxide complex. Inorg. Chem., 1966, 5: 1079-1082.
    47. Hikita H, Asai S, Ishikawa H. Kinetics of absorption of nitric oxide in aqueous acidic solutions of ferrous sulfate. J. Chem. Eng. Jpn., 1977, 10: 120-124.
    48. Teramoto M, Hiramine S, Shimada Y. Absorption of dilute nitric monoxide in aqueous solutions of Fe(II)-EDTA and Na_2SO_3. J. Chem. Eng. Jpn., 1978, 11: 450-457.
    49. Sada E, Kumazawa H, Konda T. Individual and simultaneous absorption of dilute NO and SO_2 in aqueous slurries of MgSO_3 with Fe (II) EDTA. Ind. Eng. Chem. Pro. Des. Dev., 1980, 19 (3): 377-382.
    50. Lin N, Littlejohn D, Chang S G Thermodynamics and kinetics of the coordination of NO to Fe(II)NTA in aqueous solutions. Ind. Chem. Proc. Des. Dev., 1982, 21(4): 725-728.
    51. Sada E, Kumazawa H, Takada Y. Chemical reactions accompanying absorption of NO into aqueous mixed solutions of Fe(II)-EDTA and Na_2SO_3. Ind. Eng. Chem. Fundam., 1984, 23: 60-64.
    52. Weisweiler W, Blumhofer R, Estermann W T. Absorption of nitrogen monoxide in aqueous solutions containing sulfite and transition-metal chelates such as Fe(II)-EDTA, Fe(II)-NTA, Co(II)-Trien and Co(II)-Treten. Chem. Eng. Proc, 1986,20:155-166.
    53. Sada E, Kumazawa H, Machida H. Oxidation kinetics of Fe(II)-EDTA and Fe(II)-NTA chelates by dissolved oxygen. Ind. Eng. Chem. Res., 1987, 26: 1468-1472.
    54. Yih S M, Lii C W. Absorption of NO and SO_2 in Fe(II)-EDTA solutions in a double stirred vessel. Chem. Eng. Commun., 1988, 73: 43-53.
    55. Li H S, Fang W C. Kinetics of absorption of nitric oxide in aqueous FeII-EDTA solution. Ind. Eng. Chem. Res., 1988, 27: 770-774.
    56. Zang V, Eldik R. Influence of the polyamino carboxylate chelating ligand ( L ) on the kinetics and mechanism of the formation. Inorg. Chem., 1990, 29: 4462-4468.
    57. Nymoen H, Velzen D, Langenkamp H. Absorption of NO in aqueous solutions of Fe(II)-EDTA: determination of the equilibrium constant. Chem. Eng. Proc, 1993, 32: 9-12.
    58. Hofele J, Velzen D, Langenkamp H, Schaber K. Absorption of NO in aqueous solutions of Fe(II)-NTA: determination of the equilibrium constant. Chem. Eng. Proc, 1996, 35: 295-300.
    59. Shi Y, Littlejohn D, Chang S G Kinetics of NO absorption in aqueous solutions of Bis(2,3-dimercapto-l-propanesulfonate) solutions using a stirred reactor. Ind. Eng. Chem. Res., 1996, 35: 1668-1672.
    60. Schneppensieper T, Alicja W, Grazyna S. Ligand effects on the kinetics of the reversible binding of No to selected aminocarboxylato complexs of iron( II) in aqueous solution. Euro. J. Inorg. Chem., 2001: 2317-2325.
    61. Zang V, Eldik R. Kinetics and mechanism of the autoxidation of iron(I1) induced through chelation by ethylenediaminetetraacetate and related ligands. Inorg. Chem., 1990, 29: 1705-1711.
    62. Brown E R, Mazzarella J D. Mechanism of oxidation of ferrous polydentate complexes by dioxygen. J. Electroanal. Chem., 1987, 222: 173-192.
    63. Bull C, Mclune G J, Fee J A. The mechanism of Fe-EDTA catalyzed superoxide dismutation. J. Am. Chem. Soc, 1983,105: 5290-5300.
    64. Travin S O, Urlatov S K, Yu I. Kinetics and mechanism of the reaction of iron(II) ethylenediaminetetracetate (Fe~(II)EDTA) with molecular oxygen in the presence of ligands. Russ. J. Phys. Chem., 1981, 55: 815-818.
    65. Purmal A P, Skurlatov Yu I, Travin S O. Formation of an intermediate oxygen complex in autoxidation of Fe(II)-ethylenediamine tetraacetate. Bull. Acad. USSR, Diu. Chem. Sci., 1980,29: 319-320.
    66. Kurimura Y, Kuriyama H. The kinetics of the autoxidation of ferrous ions in aqueous tripolyphosphate solutions. Bull. Chem. Soc. Jpn., 1969,42: 2238-2242.
    67. Stumm W, Lee G F. Oxygenation of ferrous ion. Ind. Eng. Chem., 1961, 53: 143-146.
    68. Huffman R E, Davidson N. Kinetics of ferrous iron-oxygen reaction in sulfuric acid solution. J. Am. Chem. Soc, 1956, 78: 4836-4842.
    69. Cher M, Davidson N. The kinetics of the oxygenation of ferrous iron in phosphoric acid solution. J. Am. Chem. Soc, 1955, 77: 793-798.
    70. Lamb A B, Elder L W J. The electromotive activation of oxygen. J. Am. Chem. Soc, 1931, 53: 137-163.
    71. Sada E, Kumazawa H, Hikosaka H. A kinetic study of absorption of dilute NO of Na_2SO_3 with FeII-EDTA. Ind. Eng. Chem. Proc. Fundam., 1986, 25:386-390.
    72. Maas P, Gambardella F, Kumaraswamy R. Integrated phisico-chemical and biological NO_x removal from flue gases. Air & Waste Management Association 95th Annual Meeting & Exhibition. U.S.A. 2002, 23-27.
    73. Lee B D, Apel W A, Smith W A. Oxygen effects on thermophilic microbial populations in biofilters treating nitric oxide containing off-gas streams. Environ. Prog., 2001,20 (3): 157-166.
    74. Mass P, Sandt T, Klapwijk B. Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions. Biotechnol. Prog., 2003,19 (4): 1323-1328.
    75. Okuno K, Hirai M, Sugiyama M. Microbial removal of nitrogen monoxide (NO) under aerobic conditions. Biotechnol. Lett., 2000,22 (1): 77-79.
    76. Chou M S, Lin J H. Biotrickling filtration of nitric oxide. J. Air Waste Manage. Assoc, 2000, 50 (4): 502-508.
    77. Manconi I, Maas P, Lens P N L. Effect of sulfur compounds on biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions. Nitric Oxide, 2006,15: 40-49.
    78. Li W, Wu C Z, Zhang S H, Evaluation of microbial reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NO_x removal system. Environ. Sci. Technol., 2007,41: 639-644.
    79. Xu X H, Chang S G Removing nitric oxide from flue gas using iron(II) citrate chelate absorption with microbial regeneration. Chemosphere, 2007, 67: 1628-1636.
    80. Termoto M, Hiramine S I, Shimada Y. Absorption of dilute monoxide in aqueous solutions of Fe(II)EDTA and mixed solutions of Fe(II)EDTA and Na_2SO_3. J. Chem. Eng. Jpn., 1978, 11, 450-455.
    81.Suchecki T T, Kumazawa H. Application of hydrazine to regeneration of post-absorption solutions in combined SO_2/NO_x removal from flue gases by a complex method. Separation Technol., 1994,4: 763-770.
    82. Beunger C W, Bedell S A, Kirby L H. Iron redox chemistry in H_2S removal. 1987 GRI radian corporation stretford conference, Austin, Texas, 1987.
    83. Theis T L, Singer P C. Complexation of iron (II) by organic matter and its effect on iron (II) oxygenation. Environ.Sci. Technol, 1974, 8 (6): 569-573.
    84. Mendelsohn M H, Harkness J B L. Enhanced flue-gas denitrification uing ferrous EDTA and a polyphenolic compound in an aqueous scrubber system. Energy & Fuels, 1991, 5: 244-248.
    85. Tomasz T B, Suchecki M, Hidehiro K. Kinetic study of ambient-temperature reduction of Fe~Ⅲ edta by Na_2S_2O_4. Ind. Eng. Chem. Res., 2005, 44: 4249-4253.
    86.马乐凡,章志权.液相络合铁屑还原法酸吸收回收法脱除烟气中的NO_x.环境化学,2006,25(6):761-764.
    87. Harriott P, Smith K. Simultanous removal of NO and SO_2 in spray towers. Environ. Prog., 1993, 12:110-113.
    88. Kleifges K H, Juzeliunas E, Juttner K. Electrochemical study of direct and indirect NO reduction with complexing agents and redox mediator. Electrochim. Acta, 1997, 42: 2947-2953.
    89. Long X L, Xiao W D, Yuan W K. Simultaneous absorption of NO and SO_2 into hexamminecobalt(Ⅱ)/iodide solution. Chemosphere, 2005, 59, 811-817.
    90.龙湘犁.SO_2和NO同时吸收过程研究.华东理工大学博士学位论文,2001,11.
    91. Liu D K, Frick L P, Chang S G. A ferrous cysteine based recyclable process for the combined removal of NO_x and SO_2 from flue gas. Environ. Sci. Technol., 1988, 22, 219-223.
    92.中国标准出版社第二编辑室.大气质量分析方法国家标准汇编.北京:中国标准出版社,1997.
    93. Harvey A E, Smart Jr F A, Aims E S. Simultaneous spectrophotometric determination of iron (Ⅱ) and total iron with 1, 10-Phenenthroline. Anal. Chem., 1955, 27: 26-29.
    94.国家环保局.水和废水监测分析方法.北京:中国环境科学出版社,1989.
    95.赵藻藩主编.分析化学.北京:高等教育出版社,1982.
    96. Wang L, Zhao W R, Guan B H, Wu Z B. Characteristics of Fe~Ⅱ((EDTA)) solution in the process of NO absorption, The 231st ACS National Meeting, Atlanta, GA, March26-30, 2006.
    97. Wang L, Zhao W R, Guan B H, Wu Z B. The effects of Na_2SO_3 on absorption of NO in Fe~Ⅱ((EDTA)) solution, The 231st ACS National Meeting, Atlanta, GA, March26-30, 2006.
    98. Wang L, Zhao W R, Wu Z B. Simultaneous absorption of NO and SO_2 by Fe~ⅡEDTA combined with Na_2SO_3 solution. Chem. Eng. J., 2007, 132: 227-232.
    99. Ogura K, Ozeki T. Nitrosylmetallochelates-I. Mechanism of FeNO-EDTA complex formation and its oxidation. Electrochimica Acta, 1981, 26: 877-882.
    100. Littlejohn D, Chang S G. Reaction of ferrous complex nitrosyl complexes with sulfite and bisulfite ions. Ind. Eng. Chem. Res., 19911, 29: 10-14.
    101. Siddiqi M A, Petersen J. A study of the effect of nitrogen dioxide on the absorption of sulfur dioxide in wet flue gas cleaning processes. Ind. Eng. Chem. Res., 2001, 40:2116-2127.
    102. Siddiqi M A, Petersen J, Lucas K. Influence of nitrogen monoxide on the complex phase and chemical equilibria in wet flue gas gleaning processes. Ind. Eng. Chem. Res., 2003, 42: 1406-1413.
    103. Wu Z B, Wang L, Zhao W R. Kinetic study on regeneration of Fe~ⅡEDTA in the wet process of NO removal. Chem. Eng. J., in press.
    104.刘建.洗炉废液中EDTA的碱法回收和利用.河南纺织房等专科学校学报,2005,22(3):21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700