用户名: 密码: 验证码:
家用搅拌机控制系统的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单相交流串励电机的输出转矩大,转速高,控制电路简单,因而在家电产品中应用广泛。目前,单相交流串励电机主要应用在控制要求不高的场合,但随着生活品质的提高,对交流串励电机控制性能的要求也在提高。本文针对单相交流串励电机的特点,设计了单相串励电机的转速控制系统,结合在不确定性负载的条件下的应用,对搅拌机系统的速度控制策略和电磁兼容问题进行了深入的研究。
     本文首先介绍了单相交流串励电机工作原理和调速原理,在硬件设计上,针对搅拌机系统功能要求,设计家用搅拌机各个子系统模块,并分析了各模块的工作原理,说明参数选择原则。同时,对搅拌机系统设计过程中涉及的EMC和EMI问题进行分析和解决。
     其次,针对系统的不确定性负载的特性,提出了模糊自适应整定PID控制策略,分析了在不同的系统误差和误差变化下,对PID控制参数变化的要求,在Matlab中,建立PID参数整定的模糊规则,经模糊推理,解模糊后得到三个关于PID参数的模糊查询表。系统运行中,MCU根据误差和误差变化趋势直接在线查表获得调整参数,代入整定公式得到控制器的输出。根据搅拌机的调速范围大的特点,提出了变论域的思想,通过调整模糊控制器的因子来适应系统的动态变化,实现控制性能的改善。
     最后具体设计了家用搅拌机系统的硬件和软件部分,给出实际试验数据和波形,说明系统的响应时间,超调量和稳态误差等均满足设计要求,实现了对搅拌机速度的较好的控制,验证了模糊自适应整定PID对带有不确定负载的串励电机速度控制的可行性。
Single-phase AC series excited motor is increasingly used in household electrical appliances, for its large torque output, high rotation speed and simple control circuits. For the present, this motor is applied in the situation which do not need high control demand. With the improvement of standard of people’s living, precise control is demand for reducing the load disturb, the noise pollution and the power consume. The dissertation designs the control system of the blender, studies the control strategy EMI analysis in cognizance of Single-phase AC series excited motor characteristic with uncertain load.
     Firstly, The dissertation introduces the working principle and machine characteristic of the motor. In hardware, design the intelligent blender’s subsystems by the its functional request, and analyze the principle of subsystems and illuminate the parameters’selecting criteria in detail.Simultaneity, analysis for the related EMC and EMI are discussed, and solution is given in the design of system.
     Secondly, for the uncentain load, bring up self-adaptive fuzzy PID control.the dissertation studies how the PID controller’s performance is influenced by the PID parameters, the fuzzy rulers are built based on the expert’s experience, after fuzzy reasoning and deblurring, then the rulers are change into an inquiry form. during system running, MCU adjusts the parameters according to the deviation between the expected system output and real system output measured on line. By finding the deviation tendency, determine the adjusting factor and substituting it into the fuzzy self-adaptive formula, then derive the output of the controller. Because of the great variety of system speed, put forward the idea of variable field, by adjusting the coefficient of fuzzy controller, adapt the dynamic variety of the blender system, and realize the advance of control performance.
     Finally, the dissertation constitutes the harware and software of the blender control systemExperiment data and response waveform provided, from the analysis of the result, it can be seen that the reaction time and overshoot is satisfy the demand, and take a good effect on the speed control of blender, verify the fuzzy PID authenticity.
引文
1晓月.中国小家电市场观察.电器.2007, 8(3):42~43
    2刘美俊.智能家电现状及其发展趋势.电器.2006, 5(2):60~62
    3韩峻峰,李玉惠.模糊控制技术.重庆大学出版社, 2003: 29~56
    4陶永华.新型PID控制及其应用.机械工业出版社, 2003:4~15
    5 He.S.Z, Tan.S. Fuzzy Self-tuning of PID Controllers. Fuzzy Sets and Systems, 1997, (56):37~46
    6汪国梁.单相串激电机.陕西科学技术出版社, 1992:19~28
    7郭海鸥.新型串励电动机设计参数的试验确定法.电机技术. 1999, (2):30~33
    8 J. B. Wang, K. Atallah, D. Howe. Optimal Torque Control of Fault-tolerant Permanent Magnet Brushless Machines. IEEE Trans. Magn. 2003, 35(2): 29~62
    9 Albus J.S. A new approach to manipulator control: the cerebellar model articulation controller(CMAC)Journal of Dynamic Symtems.Meauremen tand Control. 1997, 220~227
    10胡包钢,应浩.模糊PID控制技术研究发展回顾及其面临的若干重要问题.自动化学报. 2001, 27(4):567~584
    11诸静.模糊控制理论与系统原理.机械工业出版社, 2005, 12-18, 207~287
    12 Lordon.L. Tuning of PID Controller by the Non-symmetrical Optimum Method. Automatica. 1997, 33(1):103~107
    13 Kim.J.H. Kim.K.C, Chong.K.P. Fuzzy Precompensated PID Controllers IEEE Transactions on Control Systems Technology. 1995, (2):406-411
    14田保峡.工业PID控制器及其参数整定方法研究.浙江大学博士论文. 2001:35~37
    15 Smith.M.L. Appliance Control and Fuzzy Logic. IEEE Trans. On Industry Application. 2000:305~309
    16王立新.模糊系统与模糊控制.清华大学出版社, 2003:44~54
    17刘金琨.先进PID控制及其Matlab仿真.电子工业出版社, 2003:100-123
    18梁志荣.微控制器应用系统抗干扰技术.现代电子技术. 2003, (24):32~34
    19陶永华. PID控制原理和自整定策略.工业仪表和自动化装置. 1997,
    4:10~64
    20 Hang.C.C, Sin.K.K. A Comparative Performance Study of PID Auto-tuners. IEEE Control System Magazine, 1991:41~47
    21 Wang.Q.G, Zou.B. Auto-tuning of Multivariable PID Controllers from Decentralized Relay Feedback. IEEE Trans. Ind Electron. 1999, 46(1):139~149
    22 Ying.H. Fuzzy Control and Modeling: Analytical Foundation & Application. IEEE Press. 2000:312~315
    23 Bristol.E.H. Simple Adaptive System for Industrial Control. Instrumentation Technology. 1998, 45(5):24~30
    24顾绳谷,汪木兰.模糊控制的回顾和发展趋势.工业仪表与自动化装置. 1994, (1):3~6
    25李祖欣,张榆锋.一种基于模糊规则切换的Fuzzy-PID控制器.工矿自动化. 2003, (1):3~7
    26景征骏,许家民,吴访升.基于专辑知识库的模糊控制的研究.控制系统. 2007, 23:31-33
    27 Tae-Hyung Kim, Byung-Kulk Lee, Mehrdad Ehsani. Sensorless control of the BLDC motors from near zero to high speed. Proceeding from Applied Power Electronics Conference and Exposition 18th Annual IEEE. 2003:306~312
    28李洪兴.变论域自适应模糊控制器.中国科学. 1999, 1:32-39
    29黄冬梅,程树康,李军.变论域自组织模糊PID控制在逆变电源中的应用电力自动化设备. 2007, (11):45-47
    30王顺晃,舒迪前.智能控制系统及其应用.机械工业出版社, 1998:3~15
    31 J. D. Ede, K. Atallah, J. B. Wang, et al. Effect of Optimal Torque Control on Rotor Loss of Fault-tolerant Permanent-magnet Brushless Machines. IEEE Trans. Magn. 2002, 38(5): 3291-3293
    32 D. Kastha, B. K. Bose. Investigation of Fault Modes of Voltage-fed Inverter System for Induction Motor Drive. IEEE Trans. Ind. Applicat. 1994, 30(4):1028~1038
    33 SONG Hailong, Yu Yong. A Hybrid Adaptive Fuzzy Variable Structure Speed Controller for Brushless DC Motor. The 28th Annual Conference of the IEEE, IECON 02, Industrial Electronics Society. 2002, Sevilla, Spain: 2126~2130
    34 F. J. Li, K. K. Shyu, Y. S. Lin. Variable Structure Adaptive Control for PM Synchronous Servo Motor Drive. IEE Proceedings: Electric Power Applications. 1999, 146(2): 173~185
    35 Y. Yang, W. G. Wang. A Fuzzy Parameters Adaptive PID Controller Design of Digital Positional Servo System. Proceedings of 2002 International Conference on Machine Learning and Cybernetics. Beijing, 2002: 310~314
    36 S. E. Lyshevski, Electromechanical Flight Actuators for Advanced Flight Vehicles, IEEE Trans. Aerospace and Electr. Sys. 35(2), Apr. 1999: 511~518
    37 S. E. Lyshevski, High-performance Electromechanical Direct-drive Actuators for Flight Cehicles. Proc. Of the ACC, Arlington, June 2001: 1345~1350
    38王伟,张晶涛,柴天佑. PID参数先进整定方法.自动化学报. 2000, 26:347~355
    39 Q. D. Guo. Completely Digital PMSM Servo System Based on New Self-Turning PID Algorithm and DSP, IEEE Int. Conf. On Industrial Technology, 1996: 71~73
    40 C. M. Stephens. Fault Detection and Management System for Fault Tolerant SR Motor Drives. IEEE Trans. Ind. Applicat. 1991, 27(6): 1098~1102
    41 J. A. Momoh, X. W. Ma, K. Tomsovic. Overview and Literature Survey of Fuzzy Set Theory in Power Systems. IEEE Transactions on Power Systems. 1995, 10(3): 1676~1690
    42何继爱,田亚菲.模糊自适应整定PID控制及其仿真.甘肃科学学报. 2004, 3:63~64
    43何信龙,李雪银. PIC16c7x入门与应用范例.清华大学出版, 2002:13~17
    44杜坤梅,李铁才.电机控制技术.哈尔滨工业大学出版社, 2002:13~16
    45陈伯时.电力拖动自动控制系统.机械工业出版社. 2001, 103~108
    46李成斌,胡生清.单片机系统的电磁兼容设计.自动化与仪器仪表. 2000, 5:52~55
    47徐文广.串激电机的电磁兼容.家电科技, 2003, (8):75~77
    48胡学芝.电源滤波器和电磁干扰滤波模块及应用.低电压器. 2000, (6):53~55
    49柴瑜,沙斐.电磁兼容设计在印制电路板中的应用.微电子与基础产品. 2002, (1):54~57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700