用户名: 密码: 验证码:
多功能聚乳酸微囊的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高分子微囊因其在药物传输、人工红细胞、超声造影等生物医学领域广泛的应用前景而倍受关注。包埋无机纳米颗粒后的高分子微囊,除了具有微型载体功能,还能兼备无机纳米颗粒的声、磁、光、热等优异性能。本文将超顺磁性的Fe_3O_4纳米颗粒分别复合在聚乳酸微囊的壳层和空腔中,不仅能使微囊具备磁共振造影的潜力,还能提高微囊的超声响应性,获得一种兼备磁共振造影和超声造影的多功能载体。
     首先,本文通过调节双乳化法的工艺参数,研究微囊粒径和内部结构的变化规律。鉴于空心结构对实现载体功能的重要性,我们提出了“空心率”和“空心程度”两个概念来半定量地表征微囊的空心结构。研究表明,第一次乳化水油比是影响微囊空心率的关键因素,太高或太低都不利于获得空心微囊;此外,合适的外水相乳化剂浓度是高空心率的保证;微囊的粒径与内水相液滴的尺寸关系密切,较低的第二次乳化能量能获得多腔结构的大粒径微囊。在深入理解微囊结构特征和粒径的影响机理后,我们成功地制得了平均粒径分别为12μm、10μm、8μm、6μm、5μm和4μm的高空心率单腔聚乳酸微囊。
     在上述工作的基础上,将热分解制得的油溶性Fe_3O_4纳米颗粒与聚乳酸大分子复合,通过双重乳液-溶剂蒸发法制得Fe_3O_4纳米颗粒复合在壳层中的磁壳聚乳酸微囊,磁含量为13 wt.%时对应的饱和磁化强度为4.6 emu/g。通过对壳结构的控制,首次发现了复合微囊壳结构的变化规律:随着第二次乳化转速的提高或时间的延长,微囊从蜂窝结构依次转变为多腔、同心、偏心、碗形和弹坑形,最后变成实心结构,并伴随着平均粒径的逐渐减小。
     本文还发明了一种新型的界面共沉淀联合双乳化法,实现了将Fe_3O_4纳米颗粒复合在聚乳酸微囊的空腔中。该法将铁盐水溶液作为内水相,二正丙胺溶于聚乳酸的二氯甲烷溶液作为油相,使生成水溶性Fe_3O_4纳米颗粒的界面共沉淀反应在双重乳液的油包水界面进行。Fe_3O_4纳米颗粒在油包水界面生成后,因其亲水性而转入内水相,内水相作为微囊空腔的前体,在冷冻干燥升华内水相后,Fe_3O_4纳米颗粒留在微囊的空腔中,从而成功地获得磁腔聚乳酸微囊。该法实现了磁性纳米颗粒的合成与磁性高分子微囊的制备同步进行,大大简化了复合微囊的制备流程。研究发现铁盐投料量和超声振荡时间是影响复合微囊磁含量和磁性能的关键因素,提高铁盐投料量和延长超声振荡时间能获得磁含量达38 wt.%、相应饱和磁化强度达22 emu/g磁腔聚乳酸微囊。通过对合成机理的探讨,认为是超声振荡促进了界面共沉淀反应的进行,使生成的Fe_3O_4纳米颗粒的饱和磁化强度达78 emu/g,最终提高了复合微囊的磁性能。
     最后,我们通过覆盖医学超声频率(0-10 MHz)的声衰减谱研究不同粒径、不同壳结构、不同复合结构及其磁含量的聚乳酸微囊的声学行为。发现:随着平均粒径的增大,微囊共振频率有所升高,而整个频率范围的声衰减变化不明显;同心微囊的共振频率和整个频率范围的声衰减均高于弹坑和多腔微囊,多腔微囊因其壳结构多孔疏松,共振频率最低;随着壳中磁含量从0 wt.%增大到13 wt.%,磁壳聚乳酸微囊的共振频率和声衰减逐渐升高,而当腔中磁含量从12 wt.%增大到38 wt.%时,微囊的共振频率几乎未变,整个频率范围的声衰减却有所下降;壳中磁含量和腔中磁含量的变化所带来的不同影响,反映出复合结构对微囊声学性能的影响。体外超声造影检查表明,磁含量13 wt.%的磁壳聚乳酸微囊的视频强度明显高于聚乳酸微囊,与它们声衰减的测量结果吻合。
Polymeric microcapsules have attracted increasing attention in recent years due to their wide application prospects in biomedical fields, such as drug delivery systems, blood substitutes, ultrasound contrast agents and so forth. On this basis, incorporation of different inorganic nanoparticles into polymeric microcapsules can provide the desired acoustic, magnetic, optical, thermal or other property to the microcapsules. Polymeric microcapsules incorporating superparamagnetic Fe_3O_4 nanoparticles in its shell or cavity can serve as a dual functional contrast agents both for magnetic resonance imaging (MRI) and ultrasound imaging. In this dissertation, poly(lactic acid) (PLA) was chosen to be the shell material for FDA’s approval of clinical use, and appropriate method was adopted to fabricate PLA microcapsules with controllable size, shell structures, composite structures and magnetite loading. Sound attenuation spectra covering the medical ultrasound frequency were used to investigate the sound attenuation and resonance frequency of the microcapsules.
     Firstly, poly(lactic acid) microcapsules with controllable average size were fabricated by the improved double emulsion– solvent evaporation technique. Considering the importance of hollow structure to the function of microcarrier, we introduced the concept of“hollow ratio”and“hollow degree”to semi-quantitatively evaluate the hollow structure of the microcapsules. It was demonstrated that the W1/O volume ratio in the first emulsification process was of vital significance to the hollow ratio, and a too high or too low W1/O volume ratio was not favorable to the output of hollow microcapsules. Moreover, a suitable concentration of emulsifier in the outer aqueous phase can guarantee a high hollow ratio. It was also found that the size of inner aqueous droplets has great effect on the size of the microcapsules, and lower energy input of the second emulsification process could obtain bigger microcapsules with multicavities. With a good comprehension of the mechanism on structure formation and size variation, we successfully fabricated poly(lactic acid) microcapsules with high hollow ratio, single cavity and adjustable average size of 12μm, 10μm, 8μm, 6μm, 5μm and 4μm. On the basis of the work mentioned above, oil-soluble Fe_3O_4 nanoparticles synthesized by thermal decomposition were compounded with poly(lactic acid) macromolecular by double emulsion– solvent evaporation method to obtain magnetic poly(lactic acid) microcapsules with Fe_3O_4 nanopartilces composited in the shell. When the magnetite loading was 13 wt.%, the corresponding saturation magnetization was 4.6 emu/g. Through carefully adjusting the parameters in the second emulsification, the regularity in the transformation of shell structures was firstly explored. With the increase of the energy or the time of the second emulsification, the composite microcapsules transformed from honeycomb gradually to multicavity, concentric, eccentric, bowl, crater and finally to solid structures, accompanied by the decrease of average size. The variation of shell structure caused the change of surface morphology. The concentric microcapsules had smooth and tight surface, which had no difference from that of solid microspheres. While eccentric and multicavity microcapsules had holes on the surface which led to the inner cavities.
     In order to obtain the magnetic poly(lactic acid) microcapsules with Fe_3O_4 nanoparticles composited in the cavity, a novel interfacial coprecipitation joint double emulsification method was designed and verified. In this method, iron salts aqueous solution served as the inner aqueous phase, di-n-propylamine was dissolved in PLA/dichloromethane solution and served as the oil phase. The interfacial coprecipitation which generated water-soluble Fe_3O_4 nanoparticles performed at the water in oil (W1/O) interface of double emulsion. After Fe_3O_4 nanoparticles generated at the water in oil (W1/O) interface, they would transfer into the inner aqueous phase due to their hydrophilicity. The inner aqueous phase was the precursor of cavities, so the Fe_3O_4 nanoparticles remained in the cavities after the inner aqueous phase was sublimated by freeze drier, and poly(lactic acid) microcapsules with magnetic cavity were obtained finally. This approach realized the simultaneous synthesis of magnetic nanoparticles and polymeric microcapsules and greatly simplified the fabrication process of magnetic composite microcapsules. It was demonstrated that increasing the input of iron salts and prolonging the time of ultrasonic vibration could obtain magnetic poly(lactic acid) microcapsules with a magnetite loading of 38 wt.% and a relevant saturation magnetization of 22 emu/g. Through investigating the mechanism of synthesis, we considered that the ultrasonic vibration accelerated the performance of interfacial coprecipitation and caused the saturation magnetization of the generated Fe_3O_4 nanoparticles to achieve 78 emu/g, and finally enhanced the magnetic properties of composite microcapsules.
     Sound attenuation spectra covering the medical ultrasound frequency (0-10 MHz) were used to investigate the influence of size, shell structure, composite structure and magnetite loading on the sound attenuation and resonance frequency of the poly(lactic acid) microcapsules. With the average size increased, the resonance frequency improved accordingly, but the sound attenuation did not change obviously. The resonance frequency and the sound attenuation in the entire spectrum of concentric microcapsules were higher than that of crater and multicavity. Microcapsules with multicavities had the lowest resonance frequency due to their porous and loose shell structures. With the magnetite loading in shell improved from 0 wt.% to 13 wt.%, the resonance frequency and sound attenuation improved gradually. When the magnetite loading in cavity increased from 12 wt.% to 38 wt.%, the resonance frequency had no variation, but the sound attenuation in the entire spectrum decreased. The different influence of magnetite loading in shell and magnetite loading in cavity reflected the influence of composite structures on the acoustical properties of microcapsules. In vitro ultrasonography demonstrated that poly(lactic acid) microcapsules with 13 wt.% magnetite loading in shell had higher video intensity than pure poly(lactic acid) microcapsules, which was consistent with the measured results of their sound attenuation.
引文
[1] Blomley, M. J. K., Cooke, J. C., Unger, E. C., et al. Microbubble contrast agents: a new era in ultrasound [J]. BMJ, 2001, 322: 1222-1225.
    [2] Kang, J., Schwendeman, S. P. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(D,L-lactide-co-glycolide) implants [J]. Biomaterials, 2002, 23: 239-245.
    [3] Benga, A. K. Delivery of protein therapeutics [J]. Business Briefing: Pharmatech, 2003, 198-201.
    [4] Han, K., Lee, K. D., Gao, Z. G., et al. Preparation and evaluation of poly(L-lactic acid) microspheres containing rhEGF for chronic gastric ulcer healing [J]. J. Control. Release, 2001, 75: 259-269.
    [5] Sturesson, C., Artursson, P., Chaderi, R., et al. Encapsulation of ratavirus into poly(lactide-co-glycolide) microspheres [J]. J. Control. Release, 1999, 59: 377-389.
    [6] Li, X. H., Zhou, S. B., Wu, X. R., et al. Poly-DL-lactide-poly(ethylene glycol) microspheres as oral and parenteral delivery systems for Hepatitis B surface antigen [J]. J. Appl. Polym. Sci., 2002, 83: 850-856.
    [7] Wang, D. Q., Robinson, D. R., Kwon, G. S., et al. Encapsulation of plasmid DNA in biodegradable poly(D,L-lactide-co-glycolic acid) microspheres as a novel approach for immunogene delivery [J]. J. Control. Release, 1999, 57: 9-18.
    [8] Woo, B. Y., Fink, B. F., Page, R., et al. Enhancement of bone growth by sustained delivery of recombinant human bone morphogenetic protein-2 in a polymeric matrix [J]. Pharm. Res., 2001, 18: 1747-1753.
    [9] Tobio, M., Sanchez, A., Vila, A., et al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration [J]. Colloid. Surface. B, 2000, 18: 315-323.
    [10] Yamaguchi, Y., Takenaga, M., Kitagawa, Y., et al. Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives [J]. J. Control. Release, 2002, 81: 235-249.
    [11] http://www.eurobloodsubstitutes.com/typesSubs.htm
    [12] Meng, F. T., Zhang, W. Z., Ma, G. H., et al. The preparation and characterization of monomethoxy-poly(ethylene glycol)-b-poly-DL-lactide microcapsules containing bovine hemoglobin [J]. Artif. cell. Blood Sub., 2003, 31(3): 281-295.
    [13] Sakai, S. Synthesis and transport characterization of alginate/aminopropyl silicate/alginate microcapsule: application to bioartificial pancreas [J]. Biomaterials, 2001, 22: 2827.
    [14] Sakai, S. Permeability of alginate/sol-gel synthesized aminopropyl-silicate/ alginate membrane templated by calcium-alginate gel [J]. J. Membrane Sci., 2002, 205: 183.
    [15] Sakai, S. In vitro and in vivo evaluation of alginate/sol-gel synthesized aminopropyl-silicate/alginate membrane for bioartificial pancrese [J]. Biomaterials, 2002, 23: 4177.
    [16] De Vos, P. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets [J]. Biomaterials, 2003, 24: 305.
    [17] Chang, P. L. The in vivo delivery of heterologous proteins by microencapsulated recombinant cells [J]. Trends Biotechnol., 1999, 17: 78.
    [18] Orive, G. Cell microencapsulation technology for biomedical purposes: novel insights and challenges [J]. Trends Pharmacol. Sci., 2003, 24: 207.
    [19] Sakai, S. Control of molecular weight cut-off for immunoisolation by multilayering glycol chitosan-alginate polyion complex on alginate-based microcapsules [J]. J. Microencapsul., 2000, 17: 691.
    [20] Chen, J. P. Microencapsulation of islets in PEG-amine modified alginate-poly(L-Lysine)-alginate microcapsules for constructing bioartificial pancreas [J]. J. Fermentation Bioengineering, 1996, 86: 185.
    [21] Wheatley, M. A., Shrope, B., Shen, P. Contrast agents for diagnostic microbubbles [J]. Biomaterials, 1990, 11: 713-717.
    [22] Schneider, M., Bussat, P., Barrau, M. B., et al. Polymeric microballons as ultrasound contrast agents: Physical and ultrasound properties compared with sonicated albumin [J].Invest. Radiol., 1992, 27: 134-139.
    [23] Church, C. C. The acoustical response of AI-700 in vitro [J]. J. Am. Soc. Echocardiogr., 2001, 14(5): 457.
    [24] Schutt, E. G., Klein, D. H., Mattrey, R. M., et al. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals [J]. Angew. Chem. Int. Edit., 2003, 42: 3218-3235.
    [25] Picard, M., Pandian, N., Morcerf, F., et al. The effects of AI-700TM echo-contrast perfusion and/or wall motion imaging on detection of perfusion defects in patients with coronary artery disease [J]. J. Am. Soc. Echocardiogr., 2001, 14(5): 457.
    [26] Weissman, N., Grayburn, P., Klein, A., et al. Comparison of myocardial contrast echo to 99mtc MIBI spect in patients with myocardial perfusion defects: a phase 2 study of AI-700TM. Acusphere Inc website publication.
    [27] Church, C. C. The acoustical response of AI-700 in vitro [J]. J. Am. Soc. Echocardiogr., 2001, 14(5): 45.
    [28] Weissman, N., Grayburn, P., Klein, A., et al. Comparison of myocardial contrast echo to 99mtc MIBI spect in patients with myocardial perfusion defects: a phase 2 study of AI-700TM. Acusphere Inc website publication.
    [29] Forsberg, F. J., Lathia, D., Merton, D. A. Effect of shell type on the in vivo backscatter from polymer encapsulated microbubbles [J]. Ultrasound Med. Biol., 2003, 29(5): Suppl I S96.
    [30] Schneider, M., Bussat, P., Barrau, M. B., et al. Polymeric microballons as ultrasound contrast agents: Physical and ultrasound properties compared with sonicated albumin [J]. Invest. Radiol., 1992, 27: 134-139.
    [31] Herrmann, J., Bodmeier, R. Somatostatin containing biodegradable microspheres prepared by a modified solvent evaporation method based on W/O/W-multiple emulsion [J]. Int. J. Pharm., 1995, 126: 129-138.
    [32] Deng, X. M., Li, X. H., Yuan, M. L., et al. Optimization of preparative conditions for poly-DL-lactide-polyethylene glycol microspheres with entrapped Vibrio Choleraantigens [J]. J. Control. Release, 1999, 58: 123-131.
    [33] Pistel, K. F., Kissel, T. Effects of salt addition on the microencapsulation of proteins using W/O/W double emulsion technique [J]. J. Microencapsul., 2000, 17: 467-483.
    [34] Herrmann, J., Bodmeier, R. The effects of particle microstructure on the somatostatin release from poly(lactide) microspheres prepared by a W/O/W solvent evaporation method [J]. J. Control. Release, 1995, 36: 63-71.
    [35] Rojas, J., Pinto-Alphandary, H., Leo, E., et al. A polysorbate-based non-ionic surfactant can modulate loading and release ofβ-lactoglobulin entrapped in multiphase poly(DL-lactide-co-glycolide) microspheres [J]. Pharm. Res., 1999, 16: 255-260.
    [36] Freytag, T., Dashevsly, A., Tillman, L., et al. Improvement of the encapsulation efficiency of oligonucleotide-containing biodegradable microspheres [J]. J. Control. Release, 2000, 69: 197-207.
    [37] Yeh, M. K. Stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethyl glycol [J]. J. Microencapsul., 2000, 17: 743-756.
    [38] De Rosa, G., Iommelli, R., La Rotonda, M. I., et al. Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres [J]. J. Control. Release, 2000, 69: 283-295.
    [39] Nam, Y. S., Park, T. G. Protein loaded biodegradable microspheres based on PLGA-protein bioconjugates [J]. J. Microencapsul., 1999, 16: 625-637.
    [40] Sah, H., Chien, Y. W. Degradability and antigen-release characteristics of polyester microspheres prepared from polymer blends [J]. J. Appl. Polym. Sci., 1995, 58: 197-206.
    [41] Bezemer, J. M., Radersma, R., Grijpma, D. W., et al. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers 2: Modulation of release rate [J]. J. Control. Release, 2000, 67: 249-260.
    [42] Ruan, G., Feng, S. S., Li, Q. T. Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process [J]. J. Control. Release, 2002, 84: 151-160.
    [43] Chen, X. Q., Yang, Y. Y., Wang, L., et al. Effects of inner water volume on the peculiarsurface morphology of microspheres fabricated by double emulsion technique [J]. J. Microencapsul., 2001, 18, 637-649.
    [44] Bouillot, P., Ubrich, N., Sommer, F., et al. Protein encapsulation in biodegradable amphiphilic microspheres [J]. Int. J. Pharm., 1999, 181: 159-172.
    [45] Bezemer, J. M., Radersma, R., Grijpma, D. W., et al. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers 1: Influence of preparation techniques on particle characteristics and protein delivery [J]. J. Control. Release, 2000, 67: 233-248.
    [46] Yeh, M. K., Coombes, A. G. A., Jenkins, P. G., et al. A novel emulsification-solvent extraction techniques for production of protein loaded biodegradable microparticles for vaccine and drug delivery [J]. J. Control. Release, 1995, 33: 437-445.
    [47] Blanco, D., Alonso, M. J. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants [J]. Eur. J. Pharm. Biopharm., 1999, 45: 285-294.
    [48] Crotts, G., Park, T. G. Stability and release of bovine serum albumin encapsulated within poly(D,L-lactide-co-glycolide) microparticles [J]. J. Control. Release, 1997, 44: 123-134.
    [49] Morlock, M., Koll, H., Winter, G., et al. Microencapsulation of rh-erythropoietin using biodegradable poly(D,L-lactide-co-glycolide): protein stability and the effects of stabilizing excipients [J]. Eur. J. Pharm. Biopharm., 1997, 43:19-36.
    [50] Sah, H. Stabilization of proteins against methylene chloride/water interface-induced denaturation and aggregation [J]. J. Control. Release, 1999, 58: 143-151.
    [51] Van de Weert, M. The effects of a water/organic solvent interface on the structural stability of lysozyme [J]. J. Control. Release, 2000, 68: 351-359.
    [52] Ghaderi, R., Carlfors, J. Biological activity of lysozyme after entrapment in poly(d,l-lactide-co-glycolide)-microspheres [J]. Pharm. Res., 1997, 14: 1556-1562.
    [53] Sturesson, C., Carlfors, J. Incorporation of protein in PLG-microspheres with retention of bioactivity [J]. J. Control. Release, 2000, 67: 171-178.
    [54] Meng, F. T., Zhang, W. Z., Ma, G. H., et al. The preparation and characterization of monomethoxy-poly(ethylene glycol)-b-poly-DL-lactide microcapsules containing bovinehemoglobin [J]. Artif. cell. Blood Sub., 2003, 31(3): 281-295.
    [55] Meng, F. T., Ma, G. H., Qiu, W., et al. W/O/W double emulsion technique using ethyl acetate as organic solvent: effect of its diffusion rate on the characterization of microparticles [J]. J. Control. Release, 2003, 91: 407-416.
    [56] Nihant, N., Schugens, C., Grandfils, C., et al. Polylactide microparticles prepared by double emulsion/evaporation technique. I. Effect of primary emulsion stability [J]. Pharm. Res., 1994, 11: 1479-1484.
    [57] Straub, J. A., Chickering, D. E., Church, C. C., et al. Porous PLGA microparticles: AI-700, an intravenously administered ultrasound contrast agent for use in echocardiograph [J]. J. Control. Release, 2005, 108: 21-32.
    [58] Bittner, B., Kissel, T. Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres [J]. J. Microencapsul., 1999, 16: 325-341.
    [59] Lam, M. L., Duenas, E. T., Cleland, J. L. Encapsulation and stabilization of nerve growth factor into poly(lactide-co-glycolic) acid microspheres [J]. J. Pharm. Sci, 2001, 90: 1356-1365.
    [60] Bittner, B., Morlock, M., Koll, H., et al. Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics [J]. Eur. J. Pharm. Biopharm., 1998, 45: 295-305.
    [61] Witschi, C., Doelker, E. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactide-co-glycolide acid) degradation during in vitro testing [J]. J. Control. Release, 1998, 51: 327-341.
    [62] Zambaux, M. F., Bonneaux, F., Gref, R., et al. Protein C-loaded monomethoxypoly (ethylene oxide)-poly (lactic acid) nanoparticles [J]. Int. J. Pharm., 2001, 212: 1-9.
    [63] Quellec, P., Gref, R., Perrin, L., et al. Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization [J]. J. Biomed. Mater. Res., 1998, 42: 45-54.
    [64] Zambaux, M. F., Bonneaux, F., Gref, R., et al. MPEO-PLA nanoparticles : effect of MPEO cintent on some of their surface properties [J]. J. Biomed. Mater. Res., 1999, 44: 109-115.
    [65] Blanco, M., D., Alonso, M. J. Development and characterization of protein-loaded poly(lactide-co-glycolide) nanoparticles [J]. Eur. J. Pharm. Biopharm., 1997, 43: 287-294.
    [66] Kawashima, Y., Yamamoto, H., Takeuchi, H., et al. Properties of a peptide containing DL-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods [J]. Eur. J. Pharm. Biopharm., 1998, 45: 41-48.
    [67] Liu, R., Ma, G. H., Meng, F. T., et al. Preparation of uniform-sized PLA microcapsules by combining Shirasu Porous Glass membrane emulsification technique and multiple emulsion-solvent evaporation method [J]. J. Control. Release, 2005, 103: 13-43.
    [68] Gomez-Lopera, S. A., Plaza, R. C., Delgado, A. V. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles [J]. J. Colloid Interf. Sci., 2001, 240: 40-47.
    [69] Okassa, L. N., Marchais, H., Douziech-Eyrolles, L., et al. Development and characterization of sub-micron poly(D,L-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles [J]. Int. J. Pharm., 2005, 302: 187-196.
    [70] Zhao, H., Gagnon, J., Hafeli, U. O. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres [J]. BioMagnetic Res. Tech., 2007, 5: 2-12
    [71] Wassel, R. A., Grady, B., Kopke, R. D., et al. Dispersion of super paramagnetic iron oxide nanoparticles in poly(D,L-lactide-co-glycolide) microparticles [J]. Colloid. Surface. A, 2007, 292: 125-130.
    [72] Hamoudeh, M. Faraj, A. A., Canet-Soulas, E., et al. Elaboration of PLLA-based superparamagnetic nanoparticles : Characterization, magnetic behavior study and in vitro relaxivity evaluation [J]. Int. J. Pharm., 2007, 338: 248-257.
    [73] Wang, Y. Ng, Y. W., Chen, Y., et al. Formulation of superparamagnetic iron oxides bynanoparticles of biodegradable polymers for magnetic resonance imaging [J]. Adv. Funct. Mater., 2008, 18: 308-318.
    [74] Koo, H. Y., Chang, S. T., Choi, W. S., et al. Emulsion-based synthesis of reversibly swellable, magnetic nanoparticle-embedded polymer microcapsules [J]. Chem. Mater., 2006, 18: 3308-3313.
    [75] Yang, S., Liu, H. R., Zhang, Z. C. Fabrication of novel multihollow Superparamagnetic magnetite/polystyrene nanocomposite mcirospheres via water-in-oil-water double emulsions [J]. Langmuir, 2008, 24: 10395-10401.
    [76] Yang, W. C., Xie, R., Pang, X. Q., et al. Preparation and characterization of dual stimuli-responsive microcapsules with a Superparamagnetic porous membrane and thermo-responsive gates [J]. J. Membrane Sci., 2008, 321: 324-330.
    [77] Liu, H. X. Wang, C. Y., Gao, Q. X., et al. One-pot fabrication of magnetic nanocomposite microcapsules [J]. Mater. Lett., 2009, 63: 884-886.
    [78] Cong, Y. H., Wang, G. L., Xiong, M. H., et al. A facile interfacial reaction route to prepare magnetic hollow spheres with tunable shell thickness [J]. Langmuir, 2008, 24: 6624-6629.
    [79] Townsend, D. W. Multimodality imaging of structure and function [J]. Phys. Med. Biol., 2008, 53: 1-39.
    [80] Cai, W., Chen, X. Nanoplatforms for targeted molecular imaging in living subjects [J]. Small, 2008, 3(11): 1840-1854.
    [81] Yang, F., Li, Y. X., Chen, Z. P., et al. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging [J]. Biomaterials, 2009, 30: 3882-3890.
    [82] Yang, F., Gu, A. Y., Chen, Z. P., et al. Multiple emulsion microbubbles for ultrasound imaging [J]. Mater. Lett., 2008, 62: 121-124.
    [83] Yang, F., Li, L., Li, Y. X., et al. Superparamagnetic nanoparticles-inclusion microbubbles for ultrasound contrast agnets [J]. Phys. Med. Biol., 2008, 53: 6129-6141.
    [84] Rittich, B. J. Chromatogr. B, 2002, 774: 25-31.
    [85] Arica, M. Y., Yavuz, H., Patir, S., et al. Immobilization of glucoamylase onto spacerarm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor [J]. J. Mol. Catal. B: Enzym., 2000, 11: 127-138.
    [86] Roy, I. Magnetic alginate microparticles for purification ofα-amylase [J]. J. Biotechnol., 2003, 105: 255-260.
    [87] Goodwin, S. Magnetic targeted carriers offer site-specific drug delivery [J]. Oncol News Int, 2000, 9: 22.
    [88] Jordan, A., Scholz, R., Maier-Hauff, K. Preparation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia [J]. J. Magn. Magn. Mater., 2001, 225: 118-126.
    [89] Moroz, P., Jones, S. K., Gray, B. N. Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model [J]. J. Surg. Oncol., 2002, 80: 149-156.
    [1] Klibanov, A. L. Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging [J]. Adv. Drug Deliver. Rev., 1999, 37: 139-157.
    [2] Unger, E. C., Hersh, E., Vannan, M., et al. Gene delivery using ultrasound contrast agents [J]. Echocardiography, 2001, 18(4): 355-361.
    [3] Mayer, C. R., Bekeredjian, R. Ultrasonic gene and drug delivery to the cardiovascular system [J]. Adv. Drug Deliver. Rev., 2008, 60(10): 1177-1192.
    [4] Van Liew, H. D., Burkard, M. E. Bubbles in circulating blood: stabilization and simulations of cyclic changes of size and content [J]. J. Appl. Physiol., 1995, 79: 1379-1385.
    [5] Van Liew, H. D., Raychaudhuri, S. Stabilized bubbles in the body: pressure-radius relationships and the limits to stabilization [J]. J. Appl. Physiol., 1997, 82: 2045-2053.
    [6] Sukhorukov, G. B., Rogach, A. L., Zebli, B., et al. Nanoengineered polymer capsules: tools for detection, controlled delivery, and site-specific manipulation [J]. Small, 2005, 1(2): 194-200.
    [7] Sboros, V. Response of contrast agents to ultrasound [J]. Adv. Drug Deliver. Rev., 2008, 60: 1117-1136.
    [8] Borden, M. A., Zhang, H., Gillies, R. J., et al. A stimulus-responsive contrast agent for ultrasound molecular imaging [J]. Biomaterials, 2008, 29(5): 597-606.
    [9] Blomley, M. J. K., Cooke, J. C., Unger, E. C., et al. Science, medicine, and the future: microbubbles contrast agents: a new era in ultrasound [J]. Brit. Med. J., 2001, 322: 1222-1225.
    [10] Pisani, E., Tsapis, N., Paris, J., et al. Polymeric nano/microcapsules of liquid perfluorocarbons for ultrasonic imaging: physical characterization [J]. Langmuir, 2006, 22(9): 4397-4402.
    [11] Ophir, J., Parker, K. J. Contrast agents in diagnostic ultrasound [J]. Ultrasound Med. Biol., 1989, 15: 319-325.
    [12] Andrew, P. M., Navin, C. N. Contrast echicardiograph: new agents [J]. Ultrasound Med. Biol., 2004, 30: 425-434.
    [13] Cui, W. J., Bei, J. Z., Wang, S. G., et al. Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography [J]. J. Biomed. Mater. Res. B, 2005, 73: 171-178.
    [14] El-Sherif, D. M., Wheatley, M. A. Development of a novel method for synthesis of apolymeric ultrasound contrast agent [J]. J. Biomed. Mater. Res. A , 2003, 66: 347-355.
    [15] Straub, J. A. Porous PLGA microparticles: AI-700, an intravenously administered ultrasound contrast agent for use in echocardiography [J]. J. Control. Release, 2005, 108(1): 21-32.
    [16] Cui, W. Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography [J]. J. Biomed. Mater. Res. B, 2005, 73(1): 171-178.
    [17] Cheng, S., Dy, T. C., Feinstein, S. B. Contrast echocardiography: review and future direction [J]. Am. J. Cardiol., 1999, 81(21): 41-48.
    [18] Mor, A. V., Robinson, K., Schroff, S. Stability of Albunex microsphere under ultrasonic irradiation: an in vivo study [J]. J. Am. Soc. Echocardiogr., 1994, 7: 29.
    [19] Uhich, K. E., Cannizzaro, S. M., Langer, R. S., et al. Polymeric systems for controlled drug release [J]. Chem. Rev., 1999, 99: 3181-3198.
    [20] Klibanov, A. L. Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging [J]. Adv. Drug Deliver. Rev., 1999, 37: 139-157.
    [21] Yeo, Y., Back, N., Park, K. Microencapsulation methods for delivery of protein drugs [J]. Biotechnol. Bioprocess Eng., 2001, 6: 213-230.
    [22] Jain, R. A. The manufacturing techniques of various drug-loaded biodegradable poly(lactide-co-glycolide) (PLGA) devides [J], Biomaterials, 2000, 21: 2475-2490.
    [23] Zhu, H. G., McShane, M. J. Synthesis and functionalization of monodisperse poly(ethylene glycol) hydrogel microspheres within polyelectrolyte multilayer microcapsules [J]. Chem. Commun., 2006, 153-155.
    [24] Vrancken, N. M., Clays, A. D. US Patent 3,526,906, 1970.
    [25] Jaeger, C. N., Trvernier, H. B. British Patent 1,405,108, 1971.
    [26] Ogawa, Y., Yamamoto, M., Takada, S., et al. Controlled- release of leuprolide acetate from polylactic acid or co-poly(lactic/glycolic) acid microparticles: influence of molecular weight and copolymer ratio of polymer [J]. Chem. Pharm. Bull., 1998, 36: 1502-1507.
    [27] Liu, R., Huang, S. S., Wan, Y. H., et al. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro [J]. Colloid. Surface. B, 2006, 51: 30-38.
    [28] Koo, H. Y., Chang, S. T., Choi, W. S., et al. Emulsion-based synthesis of reversibly swellable, magnetic nanoparticle-embedded polymer microcapsules [J]. Chem. Mater., 2006, 18(14): 3308-3313.
    [29] Cheng, J. J., Teply, B. A., Sherifi, I., et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeded drug delivery [J]. Biomaterials, 2007, 28: 869-876.
    [30] Xie, S. Y., Wang, S. L., Zhao, B. K., et al. Colloid. Surface. B, 2008: 67, 199.
    [31] Cavalieri, F., Hamassi, A. E., Chiessi, E., et al. Stable polymeric microballoons as multifunctional device for biomedical uses: synthesis and characterization [J]. Langmuir, 2005, 21: 8758-8764.
    [32] Gong, Y. J., Zhang, D., Gong, X. F., et al. The viscoelasticity of lipid shell and the hysteresis of subharmonic in liquid containing microbubbles [J]. Chinese Phys., 2006, 15(7): 1526-1531.
    [33] Lu, R., Dou, H. J., Sun, K. Preparation of ultrasound contrast microbubbles via double emulsion / solvent evaporation process [J]. Chem. J. Chinese U., 2008, 29: 1176-1180.
    [34] van der Graaf, S., Schroen, C. G. P. H., Boom, R. M. Preparation of doulbe emulsion by membrane emulsification– a review [J]. J. Membrane Sci., 2005, 251: 7-15.
    [35] Lassalle, V., Ferreira, M. L. PLA nano- and microparticles for drug delivery: an overview of the method for preparation [J]. Macromol. Biosci., 2007, 7: 767-783.
    [36] Liu, R., Ma, G. H., Meng, F. T., et al. Preparation of uniform-sized PLA microcapsules by combining Shirasu porous glass membrane emulsification technique and multiple emulsion-solvent evaporation method [J]. J. Control. Release, 2005, 103: 31-43.
    [37] Kanouni, M., Rosano, H. L., Naouli, N. Preparation of a stable double emulsion (W1/O/W2): role of the interfacial films on the stability of the system [J]. Adv. Colloid Interface, 2002, 99: 229-254.
    [1] Yang, F., Li, L., Li, Y. X., et al. Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents [J]. Phys. Med. Biol., 2008, 53: 6129-6141.
    [2] Yang, F., Gu, A., Chen, Z. P., et al. Multiple emulsion microbubbles for ultrasound imaging [J]. Mater. Lett., 2008, 62: 121-124.
    [3] Yang, F., Li, Y. X., Chen, Z. P., et al. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging [J]. Biomaterials, 2009, 30: 3882-3890.
    [4] Okassa, L. N., Marchais, H., Douziech-Eyrolles, L., et al. Development and characterization of sub-micron poly(D,L-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles [J]. Int. J. Pharm., 2005, 302: 187-196.
    [5] Tao, K., Dou, H. J., Sun, K. Facile interfacial coprecipitation to fabricate hydrophilic amine-capped magnetite nanoparticles [J]. Chem. Mater., 2006, 18: 5273-5278.
    [6] Park, J., An, K., Hwang, Y., et al. Ultra-large-scale syntheses of monodisperse nanocrystals [J]. Nat. Mater., 2004, 3: 891-895.
    [7] Cavalieri, F., Hamassi, A. E., Chiessi, E., et al. Stable polymeric microballoons as multifunctional device for biomedical uses: synthesis and characterization [J]. Langmuir, 2005, 21(19): 8758-8764.
    [8] Garti, N. Progress in stabilization and transport phenomena of double emulsions in food applications [J]. Lebensm.-Wiss. u.-Technol., 1997, 30: 222-235.
    [9] Kanouni, M., Rosano, H. L., Naouli, N. Preparation of a stable double emulsion (W1/O/W2): role of the interfacial films on the stability of the system [J]. Adv. Colloid Interfac., 2002, 99(3): 229-254.
    [10] Rosca, I. D., Watari, F., Uo, M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation [J]. J. Control. Release, 2004, 99: 271–280.
    [11] Simamora, P., Chern, W. Poly-L-lactic acid: an overview [J]. J. Drug. dermatology, 2006, 5(5): 436-440.
    [12] Minami, H., Kobayashi, H., Okubo, M. Preparation of hollow polymer particles with a single hole in the shell by SaPSeP£[J]. Langmuir, 2005, 21: 5655-5658.
    [13] Liu, X., Kaminski, M. D., Guan, Y., et al. Preparation and characterization of hydrophobic superparamagnetic magnetite gel [J]. J. Magn. Magn. Mater., 2006, 306: 248–253.
    [14] Paragkumar, I. N. T., Edith, D., Six, J. L. Surface characteristics of PLLA and PLGA films [J]. Appl. Surf. Sci., 2006, 253: 2758–2764.
    [15] Okassa, L. N., Marchais, H., Douziech-Eyrolles, L., et al. Development and characterization of sub-micron poly(d,l-lactide-co-glycolide) particles loaded withmagnetite/maghemite nanoparticles [J]. Int. J. Pharm., 2005, 302: 187–196.
    [16] Dou, H. J., Xu, B., Tao, K., et al. The one-pot synthesis of dextran-based nanoparticles and their application in in-situ fabrication of dextran-magnetite nanocomposites [J]. J. Mater. Sci.: Mater. M., 2008, 19: 2575–2580.
    [17] Jolivet, J. P., Chaneac, C., Tronc, E. Iron oxide chemistry from molecular clusters to extended solid networds [J]. Chem. Commun., 2004, 481-487.
    [18] Kim, D. K., Mikhaylova, M., Zhang, Y., et al. Protective coating of superparamagnetic iron oxide nanoparticles [J]. Chem. Mater., 2003, 15: 1617-1627.
    [19] Kondo, A., Fukuda, H. Preparation of thermo-sensitive magnetic microspheres and their application to bioprocesses [J]. Colloid. Surface. A, 1999, 153: 435-438.
    [20] Willard, M. A., Kurihara, L. K., Carpenter, E. E., et al. Chemically prepared magnetic nanoparticles [J]. Int. Mater. Rev., 2004, 49: 125-170.
    [21] Suslick, K. S., Price, G. J. Applications of ultrasound to materials chemistry [J]. Annu. Rev. Mater. Rev, 1999, 29: 295-326.
    [22] Wu, W., He, Q. G., Chen, H., et al. Sonochemical gold coating of Fe3O4 nanoparticles and its characterizations [J]. Acta. Chim. Sinica., 2007, 13: 1273-1279.
    [23] Vijayakumar, R., Koltypin, Y., Felner, I., et al. [J]. Mater. Sci. Eng. A, 2000, 286: 101-105.
    [24] Liu, Z. L., Liu, Y. J., Yao, K. L., et al. Syntheisis and magnetic properties of Fe3O4 nanoparticles [J]. Mater. Synth. Process, 2002, 10(2): 83-87.
    [25] Bodnarchuk, M. I., Kovalenko, M. V., Groiss, H., et al. Exchange-coupled bimagnetic wustite/metal ferrite core/shell nanocrystals: size, shape, and compositional control [J]. Small, 2009, 5(20): 2247-2252.
    [1] Bouakaz, A., De Jong, N., Cachard, C. Standard properties of ultrasound contrast agents [J]. Ultrasound Med. Biol., 1998, 24: 469-472.
    [2] Raisinghani, A., DeMaria, A. D. Physical principle of microbubble ultrasound contrast agents [J]. Am. J. Cardiol., 2002, 90(l): 3-7.
    [3] Zhang, D., Gong, X. F., Liu, J. H., et al. The experimental investigation of ultrasonic properties for a sonicated contrast agent and its application in biomedicine [J]. Ultrasound Med. Biol., 2000, 26(2): 347-351.
    [4] Greis, C. Technology overview: SonoVue (Bracco, Milan) [J]. Eur. Radiol. Suppl., 2004, 14(8): 11-15.
    [5] Grishenkov, D., Pecorari, C., Brismar, T. B., et al. Characterization of acoustic properties of PVA-shelled ultrasound contrast agents: linear properties (Part 1) [J]. Ultrasound Med. Biol., 2009, 35(7): 1127-1138.
    [6] Gong, Y. J., Zhang, D., Gong, X. F., et al. The viscoelasticity of lipid shell and the hysteresis of subharmonic in liquid containing microbubbles [J]. Chinese Phys., 2006, 15(7): 1526-1531.
    [7] Miller, A. P., Nanda, N. C. Contrast echocardiography: new agents [J]. Ultrasound Med. Biol., 2004, 30: 425-434.
    [8] Straub, J. A. Porous PLGA microparticles: AI-700, an intravenously administered ultrasound contrast agent for use in echocardiography [J]. J. Control. Release, 2005, 108(1): 21-32.
    [9] Olbrich, C., Hauff, P., Scholle, F., et al. The in vitro stability of air-filled polybutylcyanoacrylate microparticles [J]. Biomaterials, 2006, 27: 3549-3559.
    [10] Klibanov, A. L. Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging [J]. Adv. Drug Deliver. Rev., 1999, 37: 139-157.
    [11] Church, C. C. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles [J]. J. Acoust. Soc. Am., 1995, 97(3): 1510-1521.
    [12] Hoff, L., Sontum, P. C., Hovem, J. M. Oscillations of polymeric microbubbles: effect of the encapsulating shell [J]. J. Acoust. Soc. Am., 2000, 107(4): 2272-2280.
    [13] Oh, J., Feldman, M. D., Kim, J., et al. Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound [J]. Nanotechnology, 2006, 17: 4183-4190
    [14] Lindner, J. R. Microbubbles in medical imaging: current applications and future directions [J]. Nat. Rev. Drug Discov., 2004, 3: 527-532.
    [15] Sboros, V. Response of contrast agents to ultrasound [J]. Adv. Drug Deliver. Rev., 2008, 60: 1117-1136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700