用户名: 密码: 验证码:
空心微纳米碳材料的低温合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用二茂铁分别与多种无机铵盐反应合成了碳空心球、空心六臂碳颗粒、非晶态碳纳米管以及碳空心球包覆四氧化三铁或氮化铁的复合粉末。采用XRD、SEM、TEM、Raman光谱、FIB和热分析,系统研究了它们的微观组织结构与合成机理。
     研究发现,二茂铁和氯化铵在气压炉或密封的石英管中反应可以合成出直径分布在1~10μm,表面光滑的碳空心球。气压炉中初始气压与合成温度的提高有利于提高碳空心球的产量和纯度,初始气压为2MPa,温度为600℃时,碳空心球的产量和纯度基本达到最大值。在反应过程中伴随有Fe(NH_3)_2Cl_2、Fe(NH_3)_6Cl_2、(NH_4)_3FeCl_5和NH_4FeCl_3等铁铵络合物的生成,其中Fe(NH_3)_2Cl_2在高温下是液态球形液滴,碳在其表面沉积得到碳空心球。保持二茂铁和氯化铵质量比为2:1,通过加大原料量,可以增大碳空心球尺寸,原料总量为12.8、6.4和3.2g时,合成的碳空心球中值直径分别为6.4、4.4和3.4μm。提高氯化铵的相对含量,碳空心球中值直径有所增加,但在小直径范围内存在集中分布。而且,二茂铁与溴化铵或碳酸铵在密封石英管中500℃反应也可以合成非晶态碳空心球。采用氯化铵600℃合成的碳空心球在氩气保护下800~1200℃范围内进行热处理后出现少量4nm介孔,石墨化程度略有提高。热处理能改善以碳空心球为负极的锂离子电池循环性能,在800℃热处理后,电池的容量显著提高,首次容量可达357mA·h/g,经过40个循环后仍为303mA·h/g;热处理温度继续升高后,容量降低,但首次库仑效率由42.1%提高到65.4%。
     对气压炉中600℃合成地碳空心球粉末依次进行水解和热处理可以合成碳空心球包覆Fe3O4纳米颗粒的复合粉末。其中Fe3O4纳米颗粒质量百分数为13.24%。Fe3O4具有两种形貌,一种为等轴状颗粒,直径在15~90nm之间;另一种为针状颗粒,直径约为20nm,长度在120~450nm之间。碳空心球包覆Fe_3O_4的饱和磁化强度、剩余磁化强度和矫顽力分别为4.29emu/g,0.74emu/g和198.4Oe。对气压炉中500℃合成地碳空心球粉末进行适当酸洗可以得到碳空心球包覆Fe3N针状纳米颗粒的复合粉末。Fe3N针状纳米颗粒的质量百分数约为38.7%,直径约为100nm,长度在600~800nm之间。碳空心球包覆Fe_3N的饱和磁化强度、剩余磁化强度和矫顽力分别为10.61emu/g,0.67emu/g和180Oe。
     二茂铁和碳酸氢铵在密封石英管中500℃反应,自组装模板法可以合成碳包覆Fe3O4六臂颗粒和少量直径1~2.5μm的碳实心球。其中Fe_3O_4六臂颗粒的六个臂长度相等,约为4~6μm,且互相垂直,臂的生长方向为<100>。六臂颗粒具有鲱鱼骨状结构规则的楞。这种碳包覆Fe_3O_4颗粒经过浓盐酸清洗,变成空心六臂碳颗粒。
     首次采用二茂铁和氯化铵在空气中200℃下自组装合成了非晶态碳纳米管。纳米管均为开口结构,其直径分布均匀,外径约为100nm,内径约为50nm。其中还存在竹节状的碳纳米管。在真空中2200℃热处理后,仍然不能完全石墨化,但纳米管表面的碳原子倾向于有序排列。
Ferrocene and several inorganic ammonium salts were used to prepare hollow carbon spheres, hollow six-armed carbon particles, amorphous carbon nanotubes and hollow carbon spheres encapsulating Fe_3O_4 or Fe3N nanoparticles. The microstructures and formation mechanisms of the products were systematically investigated by XRD, SEM, TEM, Raman, FIB and thermal analysis.
     The experimental results show that hollow carbon spheres of 1~10μm in diameter and smooth surface can be prepared via the reaction of ferrocene and ammonium chloride in a gas pressure furnace or a sealed quartz tube. With increase of initial gas pressure and synthesis temperature, the yield of hollow carbon spheres is enhanced and reaches a maximum value at 600℃with an initial gas pressure of 2MPa. Several iron compounds, including Fe(NH_3)_2Cl_2, Fe(NH_3)_6Cl_2, (NH_4)_3FeCl_5 and NH_4FeCl_3, are formed in different temperature ranges and Fe(NH_3)_2Cl_2 has a low melting point and serves as the core templates for carbon enwrapping to form hollow carbon spheres. The median diameter increases with the total amount of the reactants with the same weight ratio of ferrocene to ammonium chloride. When the excessive ammonium chloride was used, the hollow carbon spheres of a bimodal diameter distribution are produced. However the median diameter is almost the same. It is also found that amorphous hollow carbon spheres can be prepared in a sealed quartz tube at 500℃via the reaction between ferrocene and ammonium bromide or ammonium carbonate. The graphitization of the as-prepared hollow carbon spheres is slightly improved by the heat treatment between 800~1200℃. The mesopores of 4nm are formed after the heat treatment. The discharge capacity of hollow carbon spheres as anode material in Lithium-ion batteries is improved after heat treatment at 800℃compared with the as-prepared hollow carbon spheres and has a maximum value of 357mA·h/g and still retains 303mA·h/g after 40 cycles. However, the discharge capacity decreases and the cycling performance is improved with the increase of heat treatment temperature. In addition, the coulomb efficiency is raised from 42.1 to 65.4%。
     Hollow carbon spheres encapsulating magnetite nanoparticles were obtained in high pressure argon at 600℃followed by a hydrolysis of Fe(NH_3)_2Cl_2 in the hollow interiors at room temperature and a heat treatment in argon at 450℃. The weight percent of magnetite nanoparticles is about 13.2%. The dimensions of the equiaxed magnetite nanoparticles range from 15 to 90nm while the acicular magnetite nanoparticles have diameters of ca. 20nm and lengths of 120~450nm. The saturation magnetization, remanent magnetization and coercivity of the hollow carbon spheres encapsulating magnetite nanoparticles are 4.29emu/g, 0.74emu/g and 198.4Oe, respectively. Hollow carbon spheres encapsulating Fe3N nanoparticles were obtained in high pressure argon at 500℃followed by a proper acid washing process. The weight percent of Fe3N nanoparticles is about 38.7%. The acicular Fe3N nanoparticles have diameters of ca. 100nm and lengths of 600~800nm. The saturation magnetization, remanent magnetization and coercivity of the hollow carbon spheres encapsulating Fe3N nanoparticles are 10.61emu/g, 0.67emu/g and 180Oe, respectively.
     Carbon encapsulated six-armed Fe3O4 particles and a few carbon spheres of 1~2.5μm in diameter are synthesized by the reaction of ferrocene and ammonium acid carbonate in a sealed quartz tube at 500℃. The six arms of the Fe3O4, which have a herringbone structure, grow along <100> and they are equal in length of 4~6μm and perpendicular to each other. Hollow six-armed carbon particles can be obtained after acid washing.
     Amorphous carbon nanotubes with open ends are prepared via the reaction of ferrocene and ammonium chloride in air at 200℃. The amorphous carbon nanotubes have an external diameter of about 100nm, an internal diameter of 50nm and a length of several micrometers, respectively. Some bamboo-like amorphous carbon nanotubes can also be found. The atoms on the surface of carbon nanotubes become ordered after heat treatment at 2200℃.
引文
1华瑞先.化学基础知识与题解3.安徽人民出版社, 1979:519.
    2 [日]炭素材料学会,碳术语辞典编辑委员会.碳术语辞典.成会明等译.化学工业出版社, 2005:275.
    3 P. Scharff. New carbon materials for research and technology. Carbon 1998, 36(5-6):481-486.
    4沈曾民.新型碳材料.化学工业出版社, 2003:32-48.
    5 M.S. Dresselhaus. New trends in intercalation compounds. Mater. Sci. Eng. B 1988, 1(3-4):259-277.
    6 J.E. Field. Properties of natural and synthetic diamond. Academic Press, New York, 1992:1-10.
    7郏其庚.活性炭的应用.华东理工大学出版社, 2002:3-10.
    8 E.W. Henderson, M.L. Gravley. Carbon blacks. US Patent 4540560, 1985.
    9 O.P. Bahl, L.M. Manocha. Effect of preoxidation conditions on the mechanical properties of carbon fibers. Carbon 1975, 13(4):297-300.
    10秦岩,周镇.碳纤维技术进展及应用前景.国外建材科技. 2003, 24(3):43-45.
    11 E. Hammel, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder, P. P?tschke. Carbon nanofibers for composite applications. Carbon 2004, 42(5-6):1153-1158.
    12 Y. Gogotsi. Carbon nanomaterials. CRC Press, 2006:1-28.
    13 S. Margadonna, K. Prassides. Recent advances in fullerene superconductivity. J. Solid State Chem. 2002, 168(2):639-652.
    14 G.A. Hughes. Nanostructure-mediated drug delivery. Dm-Dis. Mon. 2005, 51(6):342-361.
    15 D.M. Guldi, M. Prato. Excited-state properties of C60 fullerene derivatives. Acc. Chem. Res. 2000, 33(10):695-703.
    16 S. Iijima. Helical microtubules of graphitic carbon. Nature 1991, 354(6348): 56-58.
    17 M.S. Dresselhaus. Carbon nanotubes: synthesis, structure, properties, and applications. Springer, 2001:1-8.
    18 R.S. Ruoff, D.C. Lorents. Mechanical and thermal properties of carbon nanotubes. Carbon 1995, 33(7):925-930.
    19 J.P. Issi, L. Langer, J. Heremans, C.H. Olk. Electronic properties of carbon nanotubes: experimental results. Carbon 1995, 33(7):941-948.
    20 P.G. Collins, A. Zettl. A simple and robust electron beam source from carbon nanotubes. Appl. Phys. Lett. 1996, 69(13):1969-1971.
    21 E. Yoo, T. Habe, J. Nakamura. Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials. Sci. & Tech. Adv. Mater. 2005, 6(6):615-619.
    22 Y. Zhang, X.G. Zhang, H.L. Zhang, Z.G. Zhao, F. Li, C. Liu, H.M. Cheng. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim. Acta 2006, 51(23):4994-5000.
    23 G.L. Hwang, K.C. Hwang. Carbon nanotube reinforced ceramics. J. Mater. Chem. 2001, 11(6):1722-1725.
    24 S. Garibaldi, C. Brunelli, V. Bavastrello, G. Ghigliotti, C. Nicolini. Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology, 2006, 17(2):391-397.
    25 H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon, 2004, 42(1):191-197.
    26冯学珠,魏芳弟,于俊生.纳米微粒的化学制备.化学世界, 2003, 6:331-334.
    27 C.R. Martin. Nanomaterials: a membrane-based synthetic approach. Science, 1994, 266(5193):1961-1966.
    28 P.V. Braun, P. Osenar, S.I. Stupp. Semiconducting superlattices templated by molecular assemblies. Nature, 1996, 380(6572):325-328.
    29 Y.D. Xia, R. Mokaya. Ordered mesoporous carbon hollow spheres nanocast using mesoporous silica via chemical vapor deposition. Adv. Mater. 2004, 16(11):886-891.
    30 F.B. Su, X.S. Zhao, Y. Wang, L.K. Wang, J.Y. Lee. Hollow carbon spheres with a controllable shell structure. J. Mater. Chem. 2006;16(45):4413-4419.
    31 S.B. Yoon, K. Sohn, J.Y. Kim, C.H. Shin, J.S. Yu, T. Hyeon. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures.Adv. Mater. 2002, 14(1):19-21.
    32 M. Yang, J. Ma, S. Ding, Z. Meng, J. Liu, T. Zhao, L Mao, Y. Shi, X. Jin, Y. Lu, Z. Yang. Phenolic resin and derived carbon hollow spheres. Macromol. Chem. Phys. 2006, 207(18):1633-1639.
    33 K.T. Lee, Y.S. Jung, S.M. Oh. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125(19):5652-5653.
    34吴会军,朱冬生,向兰.有机溶剂热法合成纳米材料的研究与发展.化工新型材料, 2005, 8:1-4.
    35董敏,苗鸿雁,谈国强.溶剂热合成纳米材料技术及其进展.材料导报, 2005, 19(5):27-29.
    36 J. Liu, M. Shao, Q. Tang, X. Chen, Z. Liu, Y. Qian. A medial-reduction route to hollow carbon spheres. Carbon, 2003 41(8):1682-1685.
    37 L. Xu, W. Zhang, Q. Yang, Y. Ding, W. Yu, Y. Qian. A novel route to hollow and solid carbon spheres. Carbon 2005, 43(5):1090-1092.
    38 L. Shi, Y. Gu, L. Chen, Z. Yang, J. Ma, Y. Qian. Synthesis of carbon hollow spheres by a reaction of hexachlorobutadiene with sodium azide. Chem. Lett. 2004, 33(5):532-533.
    39 C. Wu, X. Zhu, L. Ye, C. OuYang, S. Hu, L. Lei, Y. Xie. Necklace-like hollow carbon nanospheres from the pentagon-including reactants: synthesis and electrochemical properties. Inorg. Chem. 2006, 45(21):8543-8550.
    40 G. Hu, D. Ma, M. Cheng, L. Liu, X. H. Bao. Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach. Chem. Commun. 2002, (17):1948-1949.
    41 P. Cai, Y. Zhang, L. Feng. The preparation of hollow carbon spheres by thermal decomposition of poly(tetrafluoroethylene). B. Chem. Soc. Jap. 2006, 79(18):1312-1313.
    42 M.M. Titirici, A. Thomas, M. Antonietti. Replication and coating of silica templates by hydrothermal carbonization. Adv. Funct. Mater. 2007, 17(6):1010-1018.
    43 J.C. Yu, X. Hu, Q. Li, Z. Zheng, Y. Xu. Synthesis and characterization of core-shell selenium/carbon colloids and hollow carbon capsules. Chem-Eur. J. 2005, 12(2):548-552.
    44 Z.L. Wang, J.S. Yin. Graphitic hollow carbon calabashes. Chem. Phys. Lett. 1996, 289(1-2):189-192.
    45 H. Hou, A.K. Schaper, F. Weller, A. Greiner. Carbon nanotubes and spheres produced by modified ferrocene pyrolysis. Chem. Mater. 2002, 14(9):3990-3994.
    46许宗祥,林敬东,欧延,廖代伟.催化裂解C2H2制备碳空心球.物理化学学报, 2003, 19(11):1035-1038.
    47 E.U. Garrote, D.á. Brande, N.A. Katcho, A.G. Herrero, A.R.L. Cánovas, L.C.O. Díaz. Amorphous carbon nanostructures from chlorination of ferrocene. Carbon 2005, 43(5):978-985.
    48 K. Niwase, T. Homae, K.G. Nakamura, K. Kondo. Generation of giant carbon hollow spheres from C60 fullerene by shock-compression. Chem. Phys. Lett. 2002, 362(1-2):47-50.
    49 H. Zeng, L. Zhu, G. Hao, R. Sheng. Synthesis of various forms of carbon nanotubes by AC arc discharge. Carbon 1998, 36(3):259-261.
    50 M. Terrones. Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications. Int. Mater. Rev. 2004, 49(6):325-377.
    51 Y.N. Liu, X.L. Song, T.K. Zhao, J.W. Zhu, M. Hirscher, F. Philipp. Amorphous carbon nanotubes produced by a temperature controlled DC arc discharge. Carbon 2004, 42(8-9):1852-1855.
    52 C.N.R. Rao, R. Sen, B.C. Satishkumar, A. Govindaraj. Large aligned-nanotube bundles from ferrocene pyrolysis. Chem. Commun. 1998, 15:1525-1526.
    53 N.Q. Zhao, C.N. He, X.W. Du, C.S. Shi, J.J. Li, L. Cui. Amorphous carbon nanotubes fabricated by low-temperature chemical vapor deposition. Carbon 2006, 44(9):1859-1862.
    54 A.H. Lu, W. Schmidt, S.D. Tatar, B. Spliethoff, J. Popp, W. Kiefer, F. Schuüth. Formation of amorphous carbon nanotubes on ordered mesoporous silica support. Carbon 2005, 43(8):1811-1814.
    55 Z.D. Hu, Y.F. Hu, Q. Chen, X.F. Duan, L.M. Peng. Synthesis and characterizations of amorphous carbon nanotubes by pyrolysis of ferrocene confined within AAM templates. J. Phys. Chem. B 2006, 110(16):8263-8267.
    56 J.T. Chen, K. Shin, J.M. Leiston-Belanger, M. Zhang, T.P. Russell.Amorphous carbon nanotubes with tunable properties via template wetting. Adv, Funct. Mater. 2006, 16(11):1476-1480.
    57 H. Nishino, C. Yamaguchi, H. Nakaoka, R. Nishida. Carbon nanotube with amorphous carbon wall:α-CNT. Carbon 2003, 41(11):2165-2167.
    58 Y. Xiong, Y. Xie, X. Li, Z. Li. Production of novel amorphous carbon nanostructures from ferrocene in low-temperature solution. Carbon 2004, 42(8-9):1447-1453.
    59李景虹.先进电池材料.化学工业出版社, 2004:219-220.
    60 K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi. The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. J. Electrochem. Soc. 1995, 142(3):716-720.
    61 K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough. LixCoO2 (0    62 M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough. Lithium insertion into manganese spinels. Mat. Res. Bull. 1983, 18(4):461-472.
    63 D. Guérard, A. Hérold. New method for the preparation of the lithium insertion compounds in graphite. C.R. Acad. Science 1972, 275:571-572.
    64 S. Basu. Ambient temperature rechargeable battery. US patent 4423125.
    65 M. Mohri, N. Yanagisawa, Y. Tajiama, H. Tanaka, T. Mitate, S. Nakajima, M. Yoshida, Y. Yoshimoto, T. Suzuki, H. Wada. Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. J. Power Sources 1989, 26(1-2):545-551.
    66 T. Nagaura, K. Tozawa. Lithium ion rechargeable battery. Progress in batteries and solar cells 1990, 9:209-217.
    67赖琼钰,邹宏如.摇椅锂离子二次电池及其嵌入式电极材料.化学研究与应用, 1998, 10(1):21-26.
    68郭炳焜.锂离子电池,中南大学出版社, 2002:146-147.
    69米常焕,曹高勋,赵新兵.锂离子蓄电池负极材料最新研究进展. 2004, 28(3):180-183.
    70 J. Schoonman. Nanostructured materials in solid state ionics. Solid State Ionics 2000, 135(1-4):5-19.
    71 Z.H. Yang, H.Q. Wu. Electrochemical intercalation of lithium into carbon nanotubes. Solid State Ionics 2001, 143(2):173-80.
    72 H. Shi. Coke vs. graphite as anodes for lithium-ion batteries. J. Power Sources 1998;75(1):64-72.
    73 M. Nishizawa, R. Hashitani, T. Itoh, T. Matsue, I. Uchida. Measurements of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads using a microelectrode. Electrochem. Solid St. 1998, 1(1):10-12.
    74 P.J.F. Harris. Structure of non-graphitising carbons. Int. Mater. Res. 1997, 42: 206-18.
    75 A. Oberlin. High-resolution TEM studies of carbonization and graphitization. Chem. Phys. Carbon 1989, 22:1-143.
    76 Z.H. Yi, Y.G. Liang, X.F. Lei, C.W. Wang, J.T. Sun. Low-temperature synthesis of nanosized disordered carbon spheres as an anode material for lithium ion batteries. Mater. Lett. 2007, 61(19-20):4199-4203.
    77 M. Inaba, H. Tomiyasu, A. Tasaka, S.K. Jeong, Z. Ogumi. Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures. Langmuir. 2004, 20(4):1348-1355.
    78 T. Zheng, J.R. Dahn. Lithium insertion in high capacity carbonaceous materials. J. Electrochem. Soc. 1995, 142:2581-2590.
    79 W. Xing, J.R. Dahn. Correlation between lithlum intercalation capacity and microstructure in hard carbons. J. Electrochem. Soc. 1996, 143:3482-3491.
    80 Y. Wang, F.B. Su, J.Y. Lee, X.S. Zhao. Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: synthesis and performance in reversible Li-ion storage. Chem. Mater. 2006, 18(5):1347-53.
    81尹朝辉,曾汉民.阻尼材料的应用.化工新型材料, 2004, 32(11):43-47.
    82王海侨,姜志国,黄丽,袁海宾,李效玉.阻尼材料研究进展.高分子通报, 2006, 3:24-30.
    83张友南,杨军,贺才春,唐先贺.阻尼材料的研究与应用.噪声与振动控制, 2006, 4:38-41.
    84崔升,沈晓冬,高志强,袁正.高阻尼材料的研究进展.材料导报, 20(3):33-36.
    85刘楚明,纪仁峰,周海涛,陈明安.镁及镁合金阻尼特性的研究进展.中国有色金属学报, 2005, 15(9):1319-1325.
    86 J. Zhang, R.J. Perez, E.J. Lavernia. Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials. J. Mater. Sci. 1993, 28(9):2395-2404.
    87 P.K. Rohatgi, D. Nath, S.S. Singh, B.N. Keshavaram. Factors affecting the damping capacity of cast aluminium-matrix composites. J. Mater. Sci. 1994, 29(22):5975-5984.
    88顾敏,顾金海,王西科,沈宁福,张迎元,乐永康.高阻尼6061Al/SiCp/Gr复合材料中的内耗峰及其阻尼机制.材料科学与工程, 2002, 20(3):321-324.
    89顾金海,张小农,顾明元.纤维增强AZ91镁基复合材料的阻尼性能.航空材料学报, 2004, 24(6): 29-33.
    90 G.H. Wu, Z.Y. Dou, L.T. Jiang, J.H. Cao. Damping properties of aluminum matrix–fly ash composites. Mater. Lett. 2006, 60(24):2945-2948.
    91 J. C. Bokros. Carbon biomedical devices. Carbon 1977, 15(6):353-371.
    92 S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin. The biocompatibility of carbon nanotubes. Carbon 2006, 44(6):1034-1047.
    93 S. Garibaldi, C. Brunelli, V. Bavastrello, G. Ghigliotti, C. Nicolini. Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology 2006, 17(2):391-397.
    94 R. Asmatulu, M.A. Zalich, R.O. Claus, J.S. Riffle. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J. Magn. Magn. Mater. 2005, 292:108-119.
    95 Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36(13):R167-181.
    96 L. Shao, D. Caruntu, J.F. Chen, C.J. O'Connor, W.L. Zhou. Fabrication of magnetic hollow silica nanospheres for bioapplications. J. Appl. Phys. 2005, 97(10):10Q908.
    97 J. Connolly, T.G. St Pierrea, J. Dobson. Experimental evaluation of the magnetic properties of commercially available magnetic microspheres. Bio-Med. Mater. Eng. 2005, 15(6):421-431.
    98周永国,杨越冬,郭学民,齐印阁,白继海.磁性壳聚糖微球的制备、表征及其靶向给药研究.应用化学, 2002 , 19(12):1178-1182.
    99 C. Jhunu, H. Yousef, C.C. Jen. Polyethylene magnetic nanoparticle: a new magnetic material for biomedical applications. J. Magn. Magn. Mater. 2002, 246(3):382-391.
    100 C. Grüttner, J. Teller. New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications. J. Magn. Magn. Mater. 1999, 194(1-3):8-15.
    101赵强,庞小峰.磁性纳米生物材料研究进展及其应用.原子与分子物理学报, 2005, 22(2):222-225.
    102周玉.陶瓷材料学.哈尔滨工业大学出版社, 1995:283-300.
    103沈军,张法明,孙剑飞.陶瓷/碳纳米管复合材料的制备、性能及韧化机理.材料科学与工艺, 2006, 14(2):165-170.
    104 R.W. Siegel, S.K. Chang, B.J. Ash. Mechanical behavior of polymer and ceramic matrix nanocomposites. Scripta Mater. 2001, 44(8-9):1472-1475.
    105 G.D. Zhan, J.D. Kuntz, J.L. Wan, A.K. Mukherjee. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat. Mater. 2003, 2(1):38-42.
    106 G.D. Zhan, J.D. Kuntz, J.E. Garay. Electrical properties of nanoceramics reinforced with ropes of single walled carbon nanotubes. Appl. Phys. Lett. 2003, 83(6):1228-1230.
    107 C. Balazsi, Z. Konya, F. Weber, L.P. Biro, P. Arato. Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Mat. Sci. Eng. C-Bio. S. 2003, 23(6-8):1133-1137.
    108 L.J. Ci, B.Q. Wei, C.L. Xu, J. Liang, D.H. Wu, S. Xie, W.Y. Zhou, Y.B. Li, Z.Q. Liu, D.S. Tang. Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. J. Cryst. Growth 2001, 233(4): 823-828.
    109 H. Nishino, R. Nishida, K. Okimi, Y. Yokomichi, T. Matsui, I. Mochida. Structural change ofα-carbon nanotube through annealing. Chem. Lett. 2004, 33(2):162-163.
    110房永彬,严新焕,孙军庆.碳纳米管在催化载体中的应用.化工进展, 2004, 23(12):1296-1301.
    111 J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 1994, 116(17):7935-7936.
    112 C. Pham-Huu, N. Keller, L.J. Charbonniere, R. Ziessle, M.J. Ledoux. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C=C bonds. Chem. Commun. 2000, 19:1871-1872.
    113 C. Pham-Huu, N. Keller, G. Ehret, L.J. Charbonniere, R. Ziessle, M.J. Ledoux. Carbon nanofiber supported palladium catalyst for liquid-phase reactions-an active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. J. Mol. Catal. A-Chem. 2001, 170(1-2):155-163.
    114 R. Giordano, P. Serp, P. Kalck, Y. Kihn, J. Schreiber, C. Marhic, J. Duvail. Preparation of rhodium catalysts supported on carbon nanotubes by a surface mediated organometallic reaction. Eur. J. Inorg. Chem. 2003, 4:610-617.
    115 Y. Zhang, H.B. Zhang, G.D. Lin, P. Chen, Y.Z. Yuan, K.R. Tsai. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst. Appl. Catal. A-Gen. 1999, 187(2):213-224.
    116 G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher. Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 1999, 15(3):750-758.
    117 [日]进藤等合著.材料评价的分析电子显微方法.刘安生译.冶金工业出版社, 2001:72-75.
    118 S. Urbonaite, S. Wachtmeister, C. Mirguet, E. Coronel, W.Y. Zou, S. Csillag, G. Svensson. EELS studies of carbide derived carbons. Carbon 2007, 45(10):2047-2053.
    119孙景,翟琪,杜海燕,江雷,雷贻文,杨星,杜希文.碳原料结构对激光法合成纳米金刚石的影响.纳米技术与精密工程, 2006, 4(3):217-220.
    120 E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, A.A. Martin, C. Veríssimo. Comparative study of first- and second-order Raman spectra ofMWCNT at visible and infrared laser excitation. Carbon 2006, 44(11):2202-2211.
    121 M.S. Dresselhausa,G. Dresselhaus, R. Saito, A. Jorio. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 109(2):47-99.
    122 N. Nakao, K. Kitagawa, M. Sasaki, T. Hirai. High-pressure chemical-vapor-deposition for preparation of carbon. Carbon 1995, 33(2):183-191.
    123 A. Barreiro, S. Hampel, M.H. Rümmeli, C. Kramberger, A. Grüneis, K. Biedermann, A. Leonhardt, T. Gemming, B. Büchner, A. Bachtold, T. Pichler. Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources. J. Phys. Chem. B 2006, 110(42):20973-20977.
    124 A. Leonhardt, S. Hampel, C. Müller, I. M?nch, R. Koseva, M. Ritschel, D. Elefant, K. Biedermann, B. Büchner. Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes. Chem. Vapor. Depos. 2006, 12(6):380-387.
    125 S. Bremm, G. Meyer. Reactivity of ammonium halides: action of ammonium chloride and bromide on iron and iron (III) chloride and bromide. Z. Anorg. Allg. Chem. 2003, 629(10):1875-80.
    126 M. Amit, A. Zodkevitz, J. Makovsky. Preparation and crystal structure of NH4MnCl3 and NH4FeCl3. Israel J. Chem. 1970, 8(4):737-740.
    127 R. E?mann, G. Kreiner, A. Niemann, D. Rechenbach, A. Schmieding, T. Sichla, U. Zachwieja, H. Jacobs. Isotype Strukturen einiger Hexaamminmetall(II)-halogenide von 3d-Metallen: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2 und [Ni(NH3)6]Cl2. Z. Anorg. Allg. Chem. 1996, 622(7):1161-1166.
    128 M. Amit, A. Horowitz, E. Ron, J. Makovsky. Preparation and crystal structures of some compounds of A3BX5 type (A=Cs, Tl, NH4, B=Mn, Fe, Co, X=Cl, Br). Israel J. Chem. 1973, 11 (6):749-763.
    129 G. Thiele, D. Honert, H. Rotter. Synthese und Charakterisierung von Tetrabromoferraten(III) AFeBr4 mit einwertigen Kationen A=Cs, Rb, Tl, NH4, K, Na, Li, Ag. Z. Anorg. Allg. Chem. 1992, 616(10):195-200.
    130 F.Y. Cao, C.L. Chen, Q. Wang, Q.W. Chen. Synthesis of carbon-Fe3O4 coaxial nanofibres by pyrolysis of ferrocene in supercritical carbon dioxide.Carbon 2007, 45(4):727-731.
    131 L.Q. Xu, J.W. Liu, J. Du, Y.Y. Peng, Y.T. Qian. A self-assembly template approach to form hollow hexapod-like, flower-like and tube-like carbon materials. Carbon 2005, 43(7):1560-1562.
    132 K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57(4):603-620.
    133 M.C. Suh, S.C. Shim. Preparation and characterization of nitrogen and oxygen containing graphite-like pyropolymers from 5-(2-Pyridyl)-2,4-pentadiyn-1-ol. Chem. Mater. 1997, 9(1):192-200.
    134 M.C. Suh, Y. Jung, J. Kwak, S.C. Shim. Microstructure and electrochemical properties of some synthetic carbons. Synthetic. Met. 1999, 100(2):195-204.
    135 H.Y. Wang, M. Yoshio. Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery. J. Power Sources 2001, 93(1-2):123-129.
    136 J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270(5236):590-593.
    137 A.A. Olowe, D. Rezel, J.M.R. Génin. Mechanism of formation of magnetite from ferrous hydroxide in aqueous corrosion processes. Hyperfine Interact. 1989, 46(1-4):429-436.
    138 T. Misawa, K. Hashimoto, S. Shimodaira. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corros. Sci. 1974, 14(2):131-149.
    139 M.G. SilesDotor, Bokhimi, A. Morales, M. Benaissa, A. CabralPrieto. Synthesis of nanostructured goethite and magnetite particles from the oxidation of Fe(OH)2 in a high-oxygen-flow-rate medium. Nanostruct. Mater. 1997, 8(6):657-673.
    140 P. Kaushik, R.J. Fruehan. Behavior of direct reduced iron and hot briquetted iron in the upper blast furnace shaft: part I. fundamentals of kinetics and mechanism of oxidation. Metall. Mater. Trans. B 2006, 37(5):715-25.
    141 J.H. Chen, A.A. Mohamed, H.E. Abdou, J.A.K. Bauer, J.P. Fackler, Jr., A.E. Bruce, M.R.M. Bruce. Novel metallamacrocyclic gold(I) thiolate clustercomplex: structure and luminescence of [Au9(μ-dppm)4(μ-p-tc)6](PF6)3. Chem. Commun. 2005, 12:1575-1577.
    142 S. Delpeux-Ouldriane, K. Szostak, E. Frackowiak, F. Béguin. Annealing of template nanotubes to well-graphitized multi-walled carbon nanotubes. Carbon 2006, 44(4):814-818.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700