用户名: 密码: 验证码:
热爆法制备纳米氧化物及其稀土配合物晶体培养
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学研究的深入和发展,纳米材料引起了人们广泛的兴趣,并且得到了迅速发展。由于其具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应,因而具有各种奇异的力、电、光、磁、热效应以及化学活性。其中纳米稀土氧化物更是具有传统固体不具有的许多特殊性质和用途,例如氧化钕等。本文报道了通过配合物简单的热分解得到高纯度的纳米级氧化铁和氧化钕的方法,并对所制得的纳米级氧化铁和氧化钕的性质进行了表征。进一步针对稀土氧化物制备过程的中间体配合物,在一定的条件下得到了单晶,并对得到的晶体的性质进行了表征。
     (1)纳米级氧化铁和氧化钕的制备与表征。
     以邻硝基苯甲酸和铁的硝酸盐为原料,调节pH值使之产生相应的沉淀,以一定的温度焙烧此沉淀,可得到高纯度纳米氧化铁。讨论了不同焙烧温度对纳米氧化铁粒度和比表面积的影响。通过透射电子显微镜(TEM)观察,所制得的纳米氧化铁尺寸在10~45nm范围内,并且分散性很好。通过X-射线衍射(XRD)和比表面积测定(BET)的表征也进一步证明了此纳米粒子的尺寸。同时,XRD表征结果显示,此法制备的纳米氧化铁的纯度较高。通过比表面积测定得知,纳米氧化铁的比表面积可以达到65.44 m~2·g~(-1)。实验还得出,加入阴离子表面活性剂在纳米级氧化铁的制备中起到了非常重要的作用,并对其影响做了讨论。
     以邻硝基苯甲酸和钕的硝酸盐为原料,调节pH值使之产生相应的沉淀,以一定的温度焙烧此沉淀,可得到纳米级氧化钕。通过TEM观察,所制得的纳米稀土氧化钕尺寸在20~40mm范围内,并且分散性很好,而且随着焙烧温度的升高粒子的粒径变大。
     (2)稀土配合物[Nd(o-NO_2-C_6H_4COO)_3(DMF)_2]_2和[In(o-NO_2-C_6H_4COO)_3(DMF)_2]_2(Ln=Ce,Sm)的制备与表征。
     合成了两种新的双核倒反中心的稀土配合物[Nd(o-NO_2-C_6H_4COO)_3(DMF)_2]_2和[Ln(o-NO_2-C_6H_4COO)_3(DMF)_2]_2(Ln=Ce,Sm)。通过元素分析(EA)和傅立叶红外光谱(FT-IR)对配合物进行了表征,利用热重分析(TGA)研究了配合物的热稳定性,用X射线单晶衍射法(SCXRD)测定了其晶体结构。
     钕配合物[Nd(o-NO_2-C_6H_4COO)_3(DMF)_2]_2晶体属三斜晶系,空间群P-1,晶胞参数a=1.18652(12)mm,b=1.24784(13)nm,c=1.29958(13)nm,α=64.220(1)°,β=66.306(1)°,γ=71.825(1)°,V=1.5645(3)nm~3,D_c=2.167 mg·m~(-1),Z=2,μ=3.415 mm~(-1),F(000)=986。配合物中每个Nd(Щ)被4个邻硝基苯甲酸根桥联,Nd(Щ)的配位数为8,配位原子分别来自于5个邻硝基苯甲酸羧酸根的6个氧原子和2个DMF的羰基氧原子。配合物中的氢键和π…π堆积作用使其成为三维立体结构。同时发现了标题配合物固体具有光致发光现象,发光性能测试表明该配合物具有很好的荧光性质。
     稀土铈和钐配合物[Ln(o-NO_2-C_6H_4COO)_3(DMF)_2]_2(Ln-Ce,Sm)晶体属三斜晶系,空间群P-1,晶胞参数a=1.18284(6)nm,b=1.25082(7)nm,C=1.30203(7)nm,α=63.965(10)°,β=66.390(10)°,γ=71.738(10)°,V=1.5637(14)nm~3,D_c=1.688 mg·m~(-1),Z=2,μ=1.954 mm~(-1),F(000)=794。配合物中每个In(Щ)被4个邻硝基苯甲酸根桥联,Ln(Щ)的配位数为8,配位原子分别来自于5个邻硝基苯甲酸羧酸根的6个氧原子和2个DMF的羰基氧原子。配合物中的氢键和π…π堆积作用使其成为三维立体结构。同时发现了标题配合物固体具有光致发光现象,发光性能测试表明该配合物具有很好的荧光性质。
With the development of science research, nanometer scale materials have recently attracted a lot of research interests and developed very rapidly. Nanometer scale materials have unique properties, such as force, electricity, light, magnetism and heat effect due to their superficial effect, bulk effect, quantum dimension effect and macrocosmic quantum tube effect, especially nanometer scale rare earth oxide such as neodymium oxide. Here, we report preparation of the nanometer-scale iron oxide and rare earth oxide particles via an easy thermo-decomposition method of their complexes. The complexes are obtained by reaction of their corresponding nitrate with o-nitro-benzoic acid. The characterization of the complexes and oxide particles are presented.
     (1) Nanometer-scaleα-Fe_2O_3 particles (10~45 nm) have been synthesized by the thermo-decomposition of a new Fe~(3+) complexes taking o-nitro-benzoic acid as ligand. Structure and properties of the Fe~(3+) complexes have been confirmed by XRD, FT-IR and DSC-TGA. And theα-Fe_2O_3 powders have been characterized by XRD, TEM, VSM and BET. Theα-Fe_2O_3 powders exhibit a specific surface area of 65.44 m~2·g~(-1). Control over the particle size, surface area, yield, and state of agglomeration could be achieved through variation of the experimental conditions.
     The nanometer-scale Nd_2O_3 particles (20~40 nm) have been synthesized by the thermo-decomposition of a new Nd~(3+) complexes taking o-nitro-benzoic acid as ligand. Structure and properties of the Nd~(3+) complexes have been confirmed by XRD, FT-IR and TGA. The Nd_2O_3 powders have been characterized by XRD and TEM.
     (2) [Nd(o-NO_2-C_6H_4COO)_3(DMF)_2]_2 and [Ln(o-NO_2-C_6H_4COO)_3(DMF)_2]_2 (Ln=Ce, Sm) are synthesized, and the crystal structure of the complexes is characterized by the methods of FT-IR, ~1H NMR, UV, elemental analysis, fluorescent emission spectra and X-ray single crystal diffraction.
     The first complex resides on an inversion center. The results show that the complex crystallizes in a triclinic system, space group P-1 with cell parameters a=1.18652(12) nm, b=1.24784(13) nm, c=1.29958(13) nm,α=64.220(1)°,β=66.306(1)°,γ=71.825(1)°, V=1.5645(3) nm~3, D_c=2.167 mg·m~(-1), Z=2,μ=3.415 mm~(-1), F(000)= 986. Each Nd (Ⅲ) atom is bridged by four o-nitrobenzoates and chelated by one o-nitrobenzoate. The Nd (Ⅲ) atom is eight-coordinated by six oxygen atoms from five o-nitrobenzoates and two oxygen atoms from two DMF molecules. Hydrogen bonds and aromaticπ…πstacking interactions assemble the title complex into a three dimensional network. Luminescence measurement shows that the complex emits fluorescence.
     The second complex also resides on an inversion center. The results show that the complex crystallizes in a triclinic system, space group P-1 with cell parameters a=1.18284(6) nm, b=1.25082(7) nm, c=1.30203(7) nm,α=63.965(10)°,β=66.390(10)°,γ=71.738(10)°, V=1.5637 (14) nm~3, D_c=1.688 mg·m~(-1), Z=2,μ=1.954 mm~(-1), F(000)=794. Each Ln (Ⅲ) atom is bridged by four o-nitrobenzoates and chelated by one o-nitrobenzoate. The Ln (Ⅲ) atom is eight-coordinated by six oxygen atoms from five o-nitrobenzoates and two oxygen atoms from two DMF molecules. Hydrogen bonds and aromaticπ…πstacking interactions assemble the title complex into a three dimensional network. Luminescence measurement shows that the complex emits fluorescence.
引文
[1] Dormano J. L., Fiorani D., Magnetic Properties of Fine Particles, Amsterden: North-Holland, 1991, 309-423.
    [2] Robert C., CRC Handbook of Chemistry and Physics, Cleveland: The Chemical Rubber CO, 1980, 301-302.
    [3] 都有为,罗河烈,磁记录材料,北京:电子工业出版社,1992.
    [4] 章吉良,磁记录原理与技术,上海:上海交通大学出版社,1990.
    [5] 杨宗志,效应颜料在涂料中应用的进展,现代涂料与涂装,1987,4,28-31.
    [6] 张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001,503-508.
    [7] 马振叶,李凤生,崔平等,纳米Fe_2O_3的制备及其对高氯酸铵热分解的催化性能,催化学报,2003,24(10),795-798.
    [8] 徐宏,刘剑洪,陈沛等,纳米氧化铁的制备及其对吸收药热分解催化作用的研究,火炸药学报,2002,3,51-52.
    [9] 张立德,纳米材料,北京:化学工业出版社,2000,127-138.
    [10] 廖工铁,靶向给药制剂.四川:四川科学技术出版社,1997.163-166.
    [11] 向娟娟,朱诗国,吕红斌等,用氧化铁磁性纳米颗粒作为基因载体的研究,癌症,2001,20(10),1009-1014.
    [12] 朱文会,徐甲强,眭勤等,α-Fe_2O_3粉体材料的制备与气敏性能研究,郑州轻工业学院学报,1995,10(1),67-70.
    [13] 赵克辉,承权,闫涛等,纳米Fe_2O_3的制备与气敏性质的研究,化工进展,2002,21(8),579-582.
    [14] 杨学宏,史佩红,马子川等,透明氧化铁颜料的应用及发展现状,河北师范大学学报,2004,28(5),505-509.
    [15] 尾崎义治,贺集诚一郎,超微颗粒导论,武汉:武汉工业大学出版社,1991;203.
    [16] 贺蕴秋,解庆红,溶胶—凝胶法合成氧化铁系统陶瓷,功能材料,1999,30(2),166-169.
    [17] 范我,杨凯,钱建华等,~(59)Fe示踪法测定纳米级磁性氧化铁在小鼠体内的分布,同位素,2001,14(1),31-35.
    [18] 陈潜,何得昌,徐更光,超细氧化铁对TNT炸药爆热的影响,爆炸与冲击,2004,24(3),278-280.
    [19] Pitzer U., Highly transparent, yellow iron oxide pigments, process for the production thereof and use thereof, US Patent, 5885545, 1999.
    [20] Pitzer U., Very highly transparent yellow iron oxide pigments, a process for their production and their use, US Patent, 5879441, 1999.
    [21] Peter H., Lauff V., Fabian W., et al., Manufacture of easily dispersed transparent iron oxide pigments, US Patent, 4063957, 1977.
    [22] 黄光斗,贾泽宝,胡兵等,透明氧化铁黄颜料的制备,无机盐工业,1999,31(5),12-15.
    [23] 曹宏明,吴秋芳,陈杰等,纺锤形透明氧化铁颜料的制备及表面处理,无机盐工业,2000,32(5),7-10.
    [24] 黄仁和,高登征,刘世忠,生产氧化铁黄工艺改进研究,化学世界,1996,37(7),352-354.
    [25] Patil, Arcind S. Netherton, Lowell E. et al., Iron oxide pigments with improved color strength, US Patent, 4256508, 1981.
    [26] 姜继森,高濂,杨燮龙等,α-Fe_2O_3纳米微粒的制备及其Mossbauer谱研究,物理化学学报,2000,16(4),312-316.
    [27] 邱春喜,姜继森,赵振杰等,固相法制备纳米α-Fe_2O_3粒子,无机材料学报,2001,16(5),957-960.
    [28] 喻德忠,蔡汝秀,潘祖亭,纳米级氧化铁的合成及其对六价铬的吸附性能的研究,武汉大学学报(理学版),2002,48(2),136-138.
    [29] 李大成,付云德,胡鸿飞等,胶溶相转移法制备超微细透明氧化铁颜料的研究,四川大学学报(工程科学版),2000,32(1),37-40.
    [30] 杨隽,张启超,胶体化学法制备氧化铁超微粉体,无机盐工业,2000,32(1),16-17.
    [31] Sugimoto T. D., Wang Y. S., Itoh H., et al., Systematic control of size, shape and internal structure of monodisperse α-Fe_2O_3 particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134, 265-279.
    [32] 牛新书,徐荭,溶胶-凝胶法制备α-Fe_2O_3纳米晶,应用化学,2000,17(6),611-614.
    [33] 曹维良,张敬畅,石锦华等,超微粒子氧化铁的制备研究,应用科学学报,2000,18(2),171-174.
    [34] 许国花,李先国,冯丽娟,溶胶-凝胶法与冷冻干燥技术结合制备纳米氧化铁,青岛科技大学学报(自然科学版),2003,24(4),354-357.
    [35] Kajiyama A., Nakamura T., Hydrothermal synthesis of β-FeO(OH) rod-like particles with uniform size distribution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 163, 301-308.
    [36] 李艳玲,李先国,冯丽娟等,中国海洋大学2004届,硕士论文.
    [37] Wei Y., Liu H., Preparation of nano-needle hematite particles in solution, Materials Research Bulletin, 1999, 34, 1227-1231.
    [38] 魏雨,贺会兰,郑学忠等,均分散纺锤形α-Fe_2O_3的制备研究,应用科学学报,1997,15(4),494-498.
    [39] 魏雨,赵建路,韩秀玉,高浓度Fe~(3+)盐溶液的催化相转化制备均匀铁红胶粒,催化学报,1998,19(1),7-8.
    [40] Musi S., Krehula S., Popovi S., et al., Some factors influencing forced hydrolysis of FeCl_3 solutions, Materials Letters, 2003, 57, 1096-1102.
    [41] 韩晓斌,黄丽,回峥,微波水解法制备针形α-Fe_2O_3纳米粒子,无机材料学报,1999,14(4),669-672.
    [42] 傅中,郝学士,吴正翠等,微波合成均分散高分子微球及其机理,物理化学学报,1999,12(2),219-223.
    [43] 汤勇铮,杨红,张文敏,微波制备均分散氧化铁纳米粒子,化学通报,1998,9,52-55.
    [44] 张文敏,刘强,汤勇铮,添加剂对微波法制备均分散α-Fe_2O_3纳米粒子的影响,材料科学与工程,1999,17(2),29-32.
    [45] Liao X. H., Zhu J. J., Zhong W., et al., Synthesis of amorphous Fe_2O_3 nanoparticles by microwave irradiation, Materials Letters, 2001, 50, 341-346.
    [46] Li Q., Wei Y., Study on Preparing Monodispersed Hematite Nanoparticles by Microwave-induced Hydrolysis of Ferric Salts Solution, Materials Research Bulletin, 1998, 33, 779-782.
    [47] 刘成林,钟菊花,张兆奎,表面修饰对α-Fe_2O_3超微粒光谱特性的影响,光谱学与光谱分析,2003,23(1),154-156.
    [48] Sena D., Deb P., Mazumder S., et al., Microstructural investigations of ferrite nanoparticles prepared by nonaqueous precipitation route, Materials Research Bulletin, 2000, 35, 1243-1250.
    [49] 董睿,姜继森,杨燮龙,非水介质中制备纳米氧化铁,无机材料学报,2002,17(5),967-972.
    [50] 刘祥萱,王煊军,刘振玉等,制备方法对纳米氧化铁晶型的影响,火炸药学报, 2002, 4, 85-86.
    [51] Xu X. L., Guo J. D., Wang Y. Z., A novel technique by the citrate pyrolysis for preparation of iron oxide nanoparticles, Marerials Science and Engineering B, 2000, 77(2), 207-209.
    [52] 李宏涛,章晖宇,有机相中制备纳米α-Fe_2O_3及表征,长春工业大学学报(自然科学版),2006,27(4),275-278.
    [53] 李珍,吴明红,顾建忠等,电子束辐射技术制备纳米氧化铁,高校化学工程学报,2006,20(3),481-484.
    [54] 吴喜真,侯利生,稀土氧化物超微粉制备技术研究综述,包钢科技,1999,20(8),27-30.
    [55] 韩惠芳,稀土氧化物催化剂的应用,精细石油化工进展,2003,4(2),18-22.
    [56] 王艳荣,邱克辉,邓昭平,纳米CeO_2制备方法的研究进展,中国稀土学报,2003,21(增刊),62-66.
    [57] 杨维东,王艇,雷衡毅等,稀土生物效应研究进展,稀土,2000,21(3),63-70.
    [58] 郭伯生,稀土农用研究现状与前景[J],中国稀土学报,1985,3(3),89-94.
    [59] 田君,尹敬群,欧阳克氙等,固相配位化学合成稀土有机转光剂,江西科学,2002,20(4),199-202.
    [60] 廉世勋,李承志,吴振国等,农用转光剂及转光膜开发进展,中国塑料,2000,14(9),1-6.
    [61] 陈小雷,国内功能棚膜现状及发展,塑料加工,1999,27(3),10-32.
    [62] 李建宇,张颂培,稀土配合物光能转化剂研究的现状与发展,现代化工,1998,18(12),10-12.
    [63] 于斌,孙波,赵莹等,2-噻吩乙醛酸-邻菲罗啉-铕配合物的合成、结构表征及荧光性能的研究,光谱学与光谱分析,2004,24(12),1571-1574.
    [64] 陆维敏,吴斌,汪丽娜,稀土-反式-2,3-二甲基丙烯酸-邻菲咯啉混配配合物的合成与表征,高等学校化学学报,2001,22(4),535-538.
    [65] Liao W. S., Robert D., Locke et al., Selectin ligands: 2,3,4-tri-O-acetyl-6-O-(2-naphthyl)methyl (NAP) α-D-galactopyranosyl imidate as a novel glycosyl donor for the efficient total synthesis of branched mucin core 2-structure containing the NeuAc α 2,3(SO_3Na-6)Gal β1,3GalNAc α sequence Chemical Communications, 2000, 15(5), 369-370.
    [66] Ma L., Evans O. R., Foxman B. M. et al., Luminescent Lanthanide Coordination Polymers, Inorganic Chemistry, 1999, 38(25), 5837-5840.
    [67] Long D. L., Blake A. J., Champness N. R, et al., Lanthanum Coordination Networks Based on Unusual Five-Connected Topologies, Journal of the American Chemistry Society, 2001, 123(14), 3401-3402.
    [68] Reineke T. M., Eddaoudi M., O'Keeffe M., et al., A Microporous Lanthanide-Organic Framework, Angew. Chem. Int. Ed, 1999, 38(17), 2590-2594.
    [69] 牛新书,徐荭,徐甲强等,溶胶凝胶法纳米α-Fe_2O_3材料的合成、结构及气敏性能,功能材料,2001,32(6),649-651.
    [70] Elva C., Sullivan R., Anthony J. I. W., The use of associated surfactant media for the synthesis of fine particles: preparation of iron oxides, Journal of the Colloid and Interface Science, 1991, 146(2), 582-585.
    [71] 曹为良,张敬畅,石锦华等,超微粒子氧化铁的制备,应用科学学报,2000,18(2),171-174.
    [72] 王胜林,王强斌,古宏晨等,磁性微球的生物医学应用研究进展,化学世界,2001,(7),384-387.
    [73] 王光信,陈宗淇,均分散胶体的研究,均分散Fe_2O_3粒子的制备,物理化学学报,1991,7(6),6992-7021.
    [74] 巍雨,刘晓林,均分散超微细α-Fe_2O_3水溶胶的制备,物理化学学报,1996,12(6),5512-5531.
    [75] 任福民,曾桓兴,强迫水解法制备α-Fe_2O_3纺锤形微粒的研究,科学通报,1991,8.6272-6291.
    [76] 赵纯寅,宋红艳,超细透明氧化铁黄颜料的制法,涂料工业,1996,4,262-271.
    [77] 罗益民,黄可龙,纳米级α-Fe_2O_3细粉的制备与表征,无机材料,1994,9(2),2392-2431
    [78] Grimm S., Schultz M., Barth S., Flame, Pyrolysis-a preparation route for ultrafine pure γ-Fe_2O_3 powders and the control of their particle size and properties, Materials Science, 1997, 32, 10832-10921.
    [79] Oda M., Setoguchi K., Preparation and application of ultra fine particles, Materials Science and Technology, 1997, (13), 2492-2541.
    [80] 冯蕴道,氧化铁超微粉相变过程研究,硅酸盐学报,1991,22(3),3092-3131.
    [81] Lee D. K., Kang Y. S., Lee C. S., et al., Structure and Characterization of Nanocomposite Langmuir-Blodgett Films of Poly(maleic monoester)/Fe_3O_4 Nanoparticle Complexes, The Journal of Physical Chemistry B, 2002, 106(29), 7267-7271.
    [82] Liu L., Li L. P., Wang X.. J., et al., Understanding of the Finite Size Effects on Lattice Vibrations and Electronic Transitions of Nano α-Fe_2O_3, The Journal of Physical Chemistry B, 2005, 109(36), 17151-17156.
    [83] Zhou X. D., Huebner W., Watson G. W., Atomistic Models for α-Fe_2O_3(111), (110), and (100) Nanoparticles, Supported on Yttrium-Stabilized Zirconia, Journal of the American Chemical Society Reviews, 2002, 124(38), 11429-11439.
    [84] 景志红,王燕,吴世华,不同形态的α-Fe_2O_3纳米粉体的水热合成、表征及其磁性研究,无机化学学报,2005,21(1),145-148.
    [85] Tamai H., Ikeya T., Nishiyama F., et al., NO decomposition by ultrafine noble metals dispersed on the rare earth phosphate hollow particles, Journal of Materials Science, 2000, (35), 4945-4953.
    [86] 化工出版社编.中国化工产品大全(上卷),BC431.北京:化工出版社,1990.
    [87] 郝郑平,翁端,沈美庆等,我国机动车排放污染控制与稀土催化剂的应用,稀土,2000,21(3),74-77.
    [88] Weber J. K., Richard, Johan G., et al., Single phase rare earth oxide-aluminum oxide glasses, US Patent, 6482458, 2002.
    [89] McCauley J. R., McDaniel J. G., Catalyst and process for preparing and using same, US Patent, 6117813, 2000.
    [90] Bera P., Priolkar K. R., Gayen A., et al., Ionic dispersion of Pt over Nd_2O_3 by the combustion method, structural investigation by XRD, TEM, XPS, and EXAFS, Chemical Materials, 2003, 15, 2049-2060.
    [91] 唐瑜,唐宽镇,张剑等,酰胺型三足配体硝酸铽超分子配合物的晶体结构与荧光性质,化学学报,2006,64(5),444-448.
    [92] 崔丹,姜坤,蔡伟民,对苯基苯甲酸铽三元配合物荧光性质研究,哈尔滨工业大学学报,2006,38(1),41-43.
    [93] 咸春颖,朱龙观,俞庆森,镧系四元混配化合物[Ln(BA)_2(NO_3)(phen)]_2的合成、晶体结构和波谱研究,高等学校化学学报,1999,25,1504-1508.
    [94] Sabbatini N., Guardigli M., Lehn J. M., Luminescent lanthanide complexes as photochemical supramolecular devices, Coordination Chemistry Reviews. 1993, 123(1), 201-228.
    [95] Pikramenou Z., Yu J., Lessard R. B., et al., Luminescence from Supramolecules Molecular Recognition of Substrates, Coordination Chemistry Reviews, 1994, 132, 181-194.
    [96] 江银枝,胡惟孝,N-(3-甲吡啶-2)-亚胺甲基-1-(3-甲吡啶-2)腙的Ce(NO_3)_3配合物的合成与晶体结构,中国科学B辑,化学,2004,34(1),22-27.
    [97] 贾惠颖,徐蔚青,齐明辉等,5,10,15,20-四(对氯苯基)卟啉羟基稀土配合物的光谱研究,高等学校化学学报,2004,25(2),338-341.
    [98] 李夏,张婷婷,鞠艳玲,钕(Ⅲ)离子与2,4-二甲基苯甲酸、2,2′-联吡啶配合物的合成和晶体结构,应用化学,2006,23(9),1055-1057.
    [99] 武望婷,杨锐,何水样等,[Nd(C_(10)H_9N_2O_4)(C_(10)H_8N_2O_4)(H_2O)_3]_2·phen·4H_2O超分子化合物的合成、晶体结构及热稳定性,南开大学学报,2005,38(4),1-7.
    [100] Ma L., Evans O. R., Foxman B. M., Luminescent Lanthanide Coordination Polymers, Inorganic Chemistry, 1999, 38, 5837-5840.
    [101] Orpen A. G., Brammer L., Allen F. H. et al., Tables of bond lengths determined by x-ray and neutron diffraction. Part 2. Organometallic compounds and coordination complexes of the d-and f-block metals, Journal of the Chemical Society, Dalton Translation, 1989, 12, S1-S83.
    [102] Janiak C., A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands, Journal of the Chemical Society, Dalton Translation, 2000, 3885-3886.
    [103] 冯亚非,宋玉民,高锦章,稀土N,N’,N″-三(3,5-二硝基苯磺酰基)-1,4,7三氮杂环壬烷配合物的合成、表征及荧光性质,应用化学,2002,19(4),334-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700