用户名: 密码: 验证码:
铁的氧化物和羟基氧化物纳米材料的合成、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁的氧化物(Fe_xO_y)和羟基氧化物(FeOOH),包括α-Fe_2O_3、Fe_3O_4和α-FeOOH等都是属于氧化物系统的磁性材料。随着尺寸的减小和形貌的变化,其纳米结构由于小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,导致多种电磁特性或物理特性发生变化,从而在颜料、催化剂、磁记录介质、磁性涂料、气体传感器以及在环境保护过程中的气体脱硫、废水处理等工业应用领域表现出比块材更加优异的性能。此外,Fe_xO_y、FeOOH纳米结构在其他尖端的领域如临床诊断、医药传输、磁流体等方面的应用前景也受到人们的瞩目。因此,关于不同形貌和尺寸的Fe_xO_y、FeOOH纳米结构的合成、表征和性能研究具有重要意义。
     本论文采用水热/溶剂热法来合成铁的氧化物(Fe_xO_y)和羟基氧化物(FeOOH)纳米材料。以Fe(NO_3)_3·9H_2O和KOH(矿化剂)为反应物料,从溶剂、表面修饰剂、反应温度、矿化剂浓度、反应时间等因素出发研究了制备工艺对Fe_xO_y、FeOOH纳米结构形成和特性的影响规律及作用机理。论文研究的主要内容和结果如下:
     1.以Fe(NO_3)_3·9H_2O和KOH为反应物料,以乙醇为溶剂,聚乙烯醇(PVA)作为稳定剂,溶剂热法合成了直径为20~100nm的α-Fe_2O_3纳米颗粒,它们的粒径分布较均匀、分散性好、结晶性较好。研究表明,适量的高分子修饰可以改善纳米晶粒的分散性和尺寸分布的均匀性,PVA结构中的大量自由的强极性羟基基团可以与金属离子之间形成螯合键,紧密包覆在金属离子周围,形成一个有PVA链限制形状的有限结构,使得合成的纳米粒子大小被限制,不易形成团聚,具有较好的稳定效果。
     2.利用溶剂热方法,采用Fe(NO_3)_3·9H_2O和KOH为反应物料,乙二醇为溶剂,在220℃下反应24小时,合成了大量尺寸均一的Fe_3O_4纳米颗粒,其直径约为16nm,结晶性较好。研究了温度和矿化剂浓度对产物形貌的影响。结果表明,通过对温度和矿化剂浓度的调节,可以获得粒径可控、均匀的立方相Fe_3O_4纳米粒子。利用该方法制备Fe_3O_4纳米粒子,方法简单,产量大,而且制备的晶体具有明显的小尺寸效应。
     3.以Fe(NO_3)_3·9H_2O和KOH为反应物料,乙二醇为溶剂,引入适量PEG作为表面修饰剂,利用溶剂热方法制备纳米材料时发现产物形貌中出现了一定量直径约为5nm,长约为30~50nm的Fe_3O_4纳米针。研究了PEG的添加量对形成Fe_3O_4纳米针的影响,并且探讨了PEG促进纳米针生长的机理。
     4.利用水热法,以Fe(NO_3)_3·9H_2O和KOH反应物料,在100℃下反应6小时,合成了大量具有较大长径比的α-FeOOH纳米线,其直径在80nm,长度为1.5~2μm,单根纳米线为结晶良好的正交相针铁矿结构α-FeOOH,并且纳米线沿针铁矿结构α-FeOOH的[001]轴方向取向生长。研究了反应温度、矿化剂浓度和反应时间对产物形貌的影响。结果表明:当温度低于一定值(40℃)时,无论是在低浓度矿化剂的条件下还是在高浓度矿化剂的条件下都得不到α-FeOOH,产物为无定形相;在100℃时,随着矿化剂浓度的升高,将越来越不利于α-FeOOH纳米线的合成;在高温(200℃)下,α-FeOOH会在极短时间内生成,并且随着时间的延长而迅速相转变为α-Fe_2O_3。
     5.以本文合成的α-FeOOH纳米线为原料,在不同温度下对其进行热处理,保温0.5小时。结果表明:不同温度下,α-FeOOH在热处理过程中呈现了相同的相变途径,即脱水形成α-Fe_2O_3,相变温度为240~295.1℃且不同温度热处理后得到的α-Fe_2O_3保持了α-FeOOH原来的纳米线状,线表面有孔洞。高氯酸铵(AP)的催化性能实验结果表明:不同温度下热处理得到的α-Fe_2O_3纳米线均使AP的高温分解温度显著下降,其中热处理温度为350℃时,得到的产物使AP高温分解温度的降幅最大,为71.4℃。
Iron oxides(Fe_xO_y) and Iron oxide hydroxides(FeOOH) nanomaterials have been prepared by hydrothermal/solvothermal methods that employed Fe(NO_3)_3·9H_2O and KOH(mineralizer) as starting materials. The effects of solvent, surfactant, reaction temperature, mineralizer concentration and holding time on the phase formation, performance, and reaction mechanism of Fe_xO_y and FeOOH nanostructures were studied. The preparation processes have been investigated by means of XRD, TEM, HRTEM, SEM, FI-IR, PPMS and TG-DTA. The main work in this thesis is as follows:
    1. Based on the effect of eth on the growth of α-Fe_2O_3 nanoparticles, mass α-Fe_2O_3 nanoparticles surface-modified by polyvinyl alcohol (PVA) have been synthesized via solvothermal treatment of Fe(NO_3)_3·9H_2O and KOH. The as-prepared α-Fe_2O_3 nanoparticles showed well crystalline and disperser with the diameter of 20~100nm. It was found PVA is one kind of excellent surfactant to control the size of particles and improve the disperser and stability of nanoparticles in the solution. A lot of free hydroxyls with highly polar in the structure of PVA make it have easy to form chelating-bonds with metal ion by using its hydroxyls as ligands so that metal ion can be surround by it to form limited space for the ligands of PVA restricting, which prevented the growth of nanoparticles and their congregation.
    2. Large-scale Fe_3O_4 nanoparticles with uniform diameter of 16nm were synthesized using a simple solvothermal route that employed Fe(NO_3)_3·9H_2O and KOH as starting materials, ethylene glycol (eg) as the solvent. The effects of temperature and mineralizer concentration on the morphology of products were studied. The results showed that size of cubic phase Fe_3O_4 nanoparticles could be controlled by the temperature and mineralizer concentration. The present method is simple, large-production and nanocrystals prepared using this method exhibited significantly small size effect.
    3. When the Fe_3O_4 powers were synthesized by solvothermal treatment of
    Fe(NO_3)_3·9H_2O and KOH, using PEG as a capping agent, ethylene glycol (eg) as the
    solvent, it can be found that some Fe_3O_4 nanopins with the diameter of 5nm and the length of 30~50nm were formed in solutions. The concentration of PEG was supposed to play an important role in the formation of Fe_3O_4 nanopins. The mechanism of PEG accelerating Fe_3O_4 nanopins' formation was preliminarily discussed.
    4. Large-scale α-FeOOH nanowires were synthesized by hydrothermal treatment of Fe(NO_3)_3·9H_2O and KOH. X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) images show that the products are orthorhombic structure α-FeOOH nanowires with diameter of 80nm and length up to 1.5~2um. Selected area electron diffraction (SAED) and high resolution TEM (HRTEM) studies indicated the single-crystalline nature of α-FeOOH nanowires with an oriented growth along the [001] axis direction. The effects of temperature, mineralizer concentration and time on the morphology of products were studied. It was found that: No effect on the crystallinity of α-FeOOH when different mineralizer concentration were used at low temperature(40oC), amorphous phase will be obtained; With the increase of the mineralizer concentration, the crystallinity of α-FeOOH decrease and a few hexagonal α-Fe_2O_3 were gained at 100°C; At high temperature(200oC), α-FeOOH nanowires obtained by hydrothermal synthesis processing convert to hexagonal α-FejOs rapidly.
    5. Heat treatment of the as-prepared α-FeOOH nanowires in this dissertation at different temperature for 0.5h. The results showed that phase transformation of α-FeOOH occured between 240°C and 295.1°C, which obeyed the same process described as 2α-FeOOH→α-Fe_2O_3+H_2O at different heat treatment temperature. XRD and TEM showed that the products of heat treatment also remained nanowire morphology with many holes on the surface. The experiment on catalytic performance for ammonium perchlorate (AP) indicated that all the products obtained by heat treatment of α-FeOOH nanowires at different temperature made the temperature of high-temperature exothermic peak of AP decrease. The sample obtained upon heating α-FeOOH nanowires at 350°C made it largest decrease by 71.4°C.
引文
[1] Sheppard L M. Aluminum nitride-a versatile but challenging material. Am. Cera. Bull, 1990, 69(11): 1801-1812.
    [2] Zhang J Y, Xie J P, Liu J Q, et al. Microemulsion electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine. Electrophoresis, 2004, 2(1): 74-79.
    [3] Peri Ⅰ, Kenndler E. Recent developments in capillary electroldnetic chromatography with replaceable charged pseudostationary phases or additives. Electrophoresis, 2003, 24(17): 2924-2934.
    [4] Molina M, Silva M. Micellar electrokinetic chromatography: current developments and future. Electrophoresis, 2002, 23(22-23): 3907-3921.
    [5] Xie J P, Zhang J Y, Liu H X, et al. Microemulsion electrokinetic chromatography with laser-induced fluorescence detection as tested with aminoacids. Biomed chromatogr, 2004, 18(8): 600-607.
    [6] 顾宁.纳米技术与应用.北京:人民邮电出版社,2002年4月,ISBN7-115-10037-3/TN·1830.
    [7] A. I. E Kimov, A. A. Onushchenko. Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett, 1984, 40, 1136.
    [8] L. E. Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Phys. Chem, 1985, 80, 4403-4409.
    [9] L. E. Bros. Electron wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem, 1986, 90, 2555-2560.
    [10] N. Herron, Y. Wang, H. Eckert. Synthesis and Characterization of Surface-Capped, Size-Quantized CdS Clusters; Chemical Control of Cluster Size. J. Am. Chem. Soc, 1990, 112, 1322-1326.
    [11] R. Rossetti, J. L. Eillison, J. M. Gibson, et al. Size effects in the excited electronic states of small colloidal CdS crystallines. J. Chem. Phys. 1984, 80, 4464-4469.
    [12] Z. Q. Qiu, Y. w. Du. A Mossbauer study of fine iron particles. J. Appl. Phys, 1988, 63, 4100-4104.
    [13] A. Hagfeldt, M. Gratzer. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev, 1995, 95, 49-68.
    [14] 巩雄,张桂兰,汤国庆,等.纳米晶体材料研究进展.化学进展,1997,9(4):349-360.
    [15] Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature, 356 (1991) 776-778.
    [16] 田明原,施尔畏,郭景坤.纳米陶瓷与纳米陶瓷粉末.无机材料学报,1998,13(2):129-137.
    [17] Deng Zaide, Hou Xiya, Ying Tingzhao, et al. Ni/Al_2O_3 cermetcomposite materials. Journal of South China University of Technology, 2001, 29(7): 62-65.
    [18] Konopka K, Ozieblo A. Microstructure and the fracture toughness of the Al_2O_3-Fe composites. Materials Characterization, 2001, 9(46): 125-129.
    [19] Song Shixue, Ai Xing, Zhao Jun, et al. Al_2O_3/Ti(C_(03)N_(07))cut ting tool material. Materials Science Engineering, 2002, 35(4): 1-5.
    [20] Lee J H, Ko S K, Won C W. Sintering behavior of Al_2O_3-TiC composites powder prepared by SHS process. Materials Research Bulletin, 2001, 7(36): 989-996.
    [21] Jerome Lalande, Sven Scheppodat, Rolf Janssen, et al. Toughening of alumina/zirconia ceramiccomposites with silver particles. J. Eur. Ceram. Soc, 2002, 22(6): 2165-2171.
    [22] Yee Y, Nam H, Lee S, et al. PZT Actuate micromirror for fine tracking mechanism of high density optical data storage. Sensors and Actuators A, 2001, 89: 166-173.
    [23] Wang S, Li J, Wakabayashi K, et al. Lost silicon mold process for PZT microstructure. Adv. Mater, 1999, 11(10): 873-876.
    [24] 姚晖,杜昶,杨韶华,等.纳米羟晶/胶原仿生骨修复家兔颅颌骨缺损的实验研究.透析与人工器官,2000,11(12):5-8.
    [25] Wang R Z, Cui F Z, Liu H B, et al. Synthesis of nanophase hydroxapatite/collagen composite. Mater. Sci. Lett, 1995, 14: 490-494.
    [26] Matusmoto K, Ishii M, Segawa K, et al. Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiO_x/Ti system. Appl. Phys. Lett, 1996, 68: 34-36.
    [27] Janes D B, Lee T, Liu J, Batistuta M, et al. Self-assembled metal/molecule/ semiconductor nanostructures for electronic device and contact applications. J. Electro. Mater, 2000, 29: 565-569.
    [28] Park H, Park J, Lim A, et al. Nanomechanical oscillations in a single-C60 transistor. Nature, 2000, 407: 57-60.
    [29] Postma H W C, Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature. Science, 2001, 293(5527): 76-79.
    [30] 王成伟,李梦柯,力虎林.模板法合成高度取向碳纳米管有序阵列膜的场电子发射特性.中国科学A辑,2000,30(11):1019-1024.
    [31] Schon J H, Meng H, Bao Z. Self-assembled monolayer organic field-effect transistors. Nature, 2001, 413(6857): 713-715.
    [32] 于兵川,无洪特,张万忠.光催化纳米材料在环境保护中的应用.石油化工,2005,24(5):491-495.
    [33] Tang W Z, An H. UV/TiO_2 photo-catalytic oxidation of commercial dyes in aqueous solutions. Chemosphere, 1995, 31(9): 4157-4170.
    [34] 李毕忠.抗菌塑料的发展和应用.化工新型材料,2000,28(6):8-12.
    [35] Donley M S, Vreugdenhil A J. Nanostructured silicon sol-gel surface treatments forAl 2024- T3 protection. J. Coat. Tech, 2001, 73(915): 35- 43.
    [36] Lin Yuanhua, Tang Zilong, Zhang Zhongtai. Preparation of nanometer zinc oxide powders by plasma pyrolysis technology and their application. Journal of the American Ceramic Society, 2001, 83(11): 2869-2871.
    [37] Zehnder T, Matthey, Schwaller P, et al. Wear protective coatings consisting of TiC-SiC-a-C: H deposited by magnetron sputtering. Surf. Coat. Tech, 2003, 163: 238-244.
    [38] 张阳德.纳米生物技术在医学上的研究现状及应用前景.临床外科杂志,2005,13(1):40-41.
    [39] 王浩,赵文宽,方佑龄,等.二氧化钛催化杀灭肿瘤细胞的研究.催化学报,1999,20(30):373-374.
    [40] 石玉龙,谢广文.二氧化钛的用途及其薄膜的制备方法.电机电器技术,2000,(3):37-42.
    [41] Ruan J M. Biocompatility evaluation in bitro part Ⅰ: Morphology expression and proliferation of human and rat osteblasts. Journal of Central South University of Technology, 2001, 8(1): 1-8.
    [42] Ruan J M. Biocompatility evaluation in bitro part Ⅱ: Functional expression of human and animal osteoblasts on the biomaterials. Journal of Central South University of Technology, 2001, 8(2): 1-8.
    [43] Tiefenauer L X, Tschirky A, Kkne G, et al. Invivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn. Reson. Imaging, 1996, 14(4): 391-394.
    [44] 朱海峰,孙涛涛,金碧辉.超分子化学-分子自组装.中国基础科学,2005,(4):10-12.
    [45] Smith S B, Cui Y, Bus mante C. Over stretching B=DNA: the elastic response of individual duble-stranded andsingle stranded DNA molecules. Science, 1996, 271:795-798.
    [46] Zlatonova J, Lindsay S M, Leuba S H. Single molecule force spectroscopy in biology using the atomic force microscope. Prog. Biophys. Mot. Biol, 2000, 74:36-37.
    [47] Fisher T E, Marszalek P E, Fernandez J M. Stretching single molecule into noval conformations using atomic force microscopy. Nature Structural Biology, 2000, 7:719-723.
    [48] Higashi N, Inoue T, Niwa M. Immobilization and cleavage of DNA at cationic, self-assembled monoloyers containing C60 on gold. Chem. Commun, 1997, 1507-1508.
    [49] Schouten S, Stroeve P, Longo M L. DNA adsorption and cationic bilayer deposition on self-assembled monolayers. Langrnuir, 1999, 15: 8133-8139.
    [50] Huang E, Zhou F, Deng L. Studies of surface coverage and orientation of DNA molecules immobilized onto preformed alkanethiol self-assembled monolayers. Langrnuir, 2000, 16: 3272-3280.
    [51] Smith E A, Wanat M J, Cheng Y. Formation, spectroscopic characterization, and application of sulfhydryl-terminated alkanethiol monolayers for the chemical attachment of DNA on to gold surfaces. Langmuir, 2001, 17: 2502-2507.
    [52] Philippe P, Wang Z L, Ugarte D, et al. Electrostatic deflections and eleetromechanical resonances of carbon nanotubes. Science, 1999, 283(5407): 1513-1516.
    [53] Yurke B, Turberfield A J, Mills A P, et al. A DNA-fuelled molecular machine made of DNA. Nature, 2000, 406(6796): 605- 608.
    [54] 张太中,林元华,唐子龙,等.纳米材料及其技术的应用前景.材料工程,2000(3):42-48.
    [55] Kayano S, Toshiya W, Kazuhito H. Bactericidal activity of copper deposited TiO_2 thin film under weak UV light illumination. Environ. Sci. Technol, 2003, 37(20):4785-4789.
    [56] Younan Xia, Peidong Yang. One-Dimensional Nanostructures: Synthesis, Characterization and Application. Adv. Mater, 15 (2003) 351.
    [57] 魏雨,刘晓林,郑学忠.均分散超微细a-Fe_2O_3水溶胶的制备.物理化学学报,1996,12(6):551-553.
    [58] Chen D H, Jiao X I, Chen D R. Solvothermal Synthesis of Particles with Different Morphologies. Mater Res Bull, 2001(36): 1057-1064.
    [59] 严新.固相法制备氧化铁纳米粒子.盐城工学院学报(自然科学版),2002,15(4):24-26.
    [60] 邱春喜,姜继森,赵振杰,等.固相法制备a-Fe_2O_3纳米粒子.无机材料学报,2001,16(5):957-960.
    [61] 徐宏,刘剑洪,陈沛,赵凤起,等.纳米氧化铁的制备及对吸收药热分解催化作用的研究.火炸药学报,2002,3:51-65.
    [62] Sesigur h, Acrna E, Addemir O, et al. The Preparation of Magnetic Iron Oxide. Mater Res Bull, 1996, 31(12): 1573-1579.
    [63] 严新,朱雪梅,吴俊方,等.均匀氧化铁纳米粒子的制备及表征.盐城工学院学报,2002,15(2):50-52.
    [64] 杨家玲,张新歌,韩立,等.氧化锌与氧化铁纳米材料的化学制备.天津城市建设学院学报,2002,8(4):235-237.
    [65] 任福民,曾恒兴.强迫水解法制备α-FeOOH纺锤形微粒的研究.科技通报,1991,(8):627-629.
    [66] 贺会兰,郑学忠,魏雨.强迫水解法制备纺锤状α-Fe_2O_3的研究.河北大学学报(自然科学版),1997,21(3):301-304.
    [67] 丁明,曾桓兴.中和沉淀法Fe_3O_4的生成研究.无机材料学报,1998,13(4):619-624.
    [68] 程海斌,刘桂珍,李立春,等.纳米Fe_3O_4的(电位和分散稳定性.武汉理工大学学报,2003,25(5):4-6.
    [69] Yong-kang Sun, Ming Ma, Yu Zhang, et al. Synthesis of nanometer-size maghemite particles from magnetite. Colloids and surfaces A: Physicochem. Eng. Aspects, 2004, 245: 15-19.
    [70] Jun Wang, Kai Zhang, Zhenmeng Peng, et al. Magnetic properties improvement in Fe_3O_4 nanoparticles grown under magnetic fields. Journal of Crystal Growth, 2004,266: 500-504.
    [71] 邓建国,贺传兰,龙新平,等.磁性Fe_3O_4聚吡咯纳米微球的合成与表征.高 分子学报,2003,3:393-397.
    [72] Lai Qiong Yu, Lu Ji Zheng, Ji Xiao Yang. Study of preparation and properties on magnetization and stability for ferromagnetic fluids. Materials Chemistry and Physics, 2000, 66: 6-9.
    [73] 陈雷,杨文军,黄程,等.以高分子材料为介质制备纳米氧化铁颗粒.高分子材料科学与工程,1998,14(4):53-55.
    [74] 杨华,黄可龙,刘素琴,等.水热法制备的Fe_3O_4磁流体.JMagn.Mater.Devices,2003,34(2):4-6.
    [75] 邱星屏.四氧化三铁磁性纳米粒子的合成及表征.厦门大学学报(自然科学版),1999,38(5):711-715.
    [76] Massart R. Preparation of magnetite nanoparticles. IEEE Trans. Magn, 1981, 17: 1247-1250.
    [77] Molday R S. Magnetic iron-dextran microspheres. US: 4452773. 1984-06-05.
    [78] Shen L, Laibinis P E, Hatton T A. Bilayer surfactant stabi-lizod magneticfluids: Synthesis and interactions at interfaces. Langmuir, 1999, 15: 447-453.
    [79] 成国祥,张仁柏,万怡灶,等.反相胶束微反应器的特性与Fe_3O_4纳米微粒制备.兵器材料科学与工程,1998,21(6):27-30.
    [80] 何秋星,杨华,刘素琴,等.转相法制备高比表面积纳米Fe_3O_4磁性粉体.精细化工,2003,2q5):257-260.
    [81] 景苏,鲁新宇.室温固相法合成纳米FeOOH及Fe_2O_3.南京工业大学学报,2002,24(6):52-55.
    [82] 徐宏,刘剑洪,陈沛,等.纳米氧化铁的制备及其对吸收药热分解催化作用的研究.火炸药学报,2002,3:51-52.
    [83] 胡鸿飞.微酸性介质中空气氧化法制备超细氧化铁的研究.成都:四川大学,1999.
    [84] 胡鸿飞,朱胜友,蒋祉刚,等.微碱性介质中空气氧化法制备超细α-FeOOH的动力学.钢铁钒钛,1999,20(4):50-54.
    [85] Toshio Takada and Masao Kiyama. Preparation of Ferries by Wet Method.Fe_3O_4Proceedings of the International Conference, Japan, July 1970: 69-71.
    [86] Fengxia Geng, Zhigang Zhao, Jianxin Geng, et al. A simple and low-temperature hydrothermal route for the synthesis of tubular α-FeOOH. Materials Letters, in press.
    [87] Dong-En Zhang, Xiao-Jun Zhang, Xiao-Min Ni, Hua-Gui Zheng. Preparation and characterization of α-FeOOH nanorods via an ethylenediamine-assisted route. Materials Letters, 60 (2006) 1915-1917.
    [88] Yannick Cudennec, André Lecerf. The transformation of ferrihydrite into goethite or hematite, revisited. Solid State Chemistry, 179 (2006) 716-722.
    [1] 杨宗志.世界合成氧化铁颜料工业概况(Ⅰ).涂料工业,1994,(4):37-41.
    [2] 黄平峰.我国合成氧化铁颜料生产现状及发展方向.无机盐工业,1996,28(6):13-16.
    [3] 舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒的制备.无机化学学报,1999,15(1):17.
    [4] 陈庆春.几种表面活性剂分散效果的比较研究和应用.化工矿物与加工,2003,(1):18220.
    [5] 刘剑,曹瑞军,郗英欣.表面活性剂在纳米粉体制备中的应用.化工新型材料,2003,31(7):20223.
    [1] 都有为.纳米材料中的巨磁电阻效应.物理学进展,1997,(2):180.
    [2] 田明波.磁性材料.北京:清华大学出版社,2001.41-46.
    [3] 李国栋.当代磁学.合肥:中国科技大学出版社,1999.142-148.
    [4] Gunther L. Magnetic nano-particles for high density recording. Phys World, 1990, (3): 28-148.
    [5] 赵晖,屠德容.钴改性Fe_3O_4磁粉的研制.无机盐工业,1997,(3):3-5.
    [6] Kuroyama, Shigefumi, Okazaki, et al. Method for preparing magnetic particles for magnetic-recording media. US: 4 851 258, 1989-07-25.
    [7] 黄婉霞,陈家钊,毛键,等.纳米级Fe_3O_4对电磁波的吸收效能的研究.功能材料,1999,28(2):135-136.
    [8] 蒋秉植,杨健美.磁性流体的制备、应用及其稳定性的解析.化学进展,1997,19(1):70-72.
    [9] Molday, Robert S. Magnetic iron-dextran microspheres. US: 445 773, 1984-06-05.
    [10] 邱星屏.四氧化三铁磁性纳米粒子的合成与表征.厦门大学学报,1999,38(5):11-714.
    [11] 高道江,王建华.超微磁性四氧化三铁粒子的制备.四川师范大学学报,1997,20(6):94-97.
    [12] Yuliang Wang, Younan. Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals. Nano. Lett, 2004,4, 2047.
    [13] Xiaoming Sun, Yadong Li. Ga_2O_3 and GaN Semiconductor Hollow Spheres. Angew. Chem. Int. Ed, 2004, 43, 3827.
    [14] Yuliang Wang, Xuchuan Jiang, Younan Xia. A Solution-Phase, Precursor Route to Polycrystalline SnO_2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions. J. Am. Chem. Soc, 2003, 125, 16176.
    [15] Jingyi Chen, Thurston Herricks, Matthias Geissler, and Younan Xia. Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process. J. Am. Chem. Soc, 2004, 126, 10854.
    [16] Hong Deng, Xiaolin Li, Qing Peng, Xun Wang, Jinping Chen, and Yadong Li. Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angew. Chem. Int. Ed, 2005, 44, 2782.
    [17] 陈宗淇.Smoluchowski粒子碰撞凝并理论.北京:高等教育出版社,1984.
    [18] 孟哲,张冬亭,王春平.磁性纳米级Fe_3O_4的氧气诱导、空气氧化液相合成与表征.光谱实验室,2003,20(4):489-491.
    [19] 任欢鱼,庄虹,刘勇健.Fe_3O_4纳米颗粒的表面改性.化学研究,2003,14(1):11-13.
    [20] 李国栋.当代磁学.合肥:中国科学技术大学出版社,1999.
    [21] Li Z Q, Xiong Y J, Xie Y. Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route. Inorg. Chem, 2003, 42:8105-8109.
    [22] Zhou H L, Li Z. Mater. Synthesis of nanowires, nanorods and nanopartieles of ZnO through modulating the ratio of water to methanol by using a mild and simple solution method. Chem. Phys, 2005, 89:326-331.
    [1] Misawa T, Kruno T, Shimodarira S. Mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels. Corros Sci, 1971, 11(1):35.
    [2] Hingston F J, Posner A M, Quirk J P. Anion adsorption by goethite and gibbsite: Ⅰ.The role of the proton in determining adsorption envelops. J Soil Sci, 1972, 23(2):177.
    [3] Hingston F J, Posner A M, Quirk J P. Anion adsorption by goethite and gibbsite. Ⅱ.Release of anions from hydrous oxide surfaces. J Soil Sci, 1974, 25(1): 16.
    [4] Bates G. In: Craik D J ed. Magnetic Oxide, part-2. New York: Wiley, 1975: 703.
    [5] 古宏晨,胡黎明,陈军,等.超细α-FeOOH制备过程研究Ⅰ.制备工艺,华东化工学院学报,1992,18(4):467.
    [6] 仲维卓,华素坤.纳米材料及其水热法制备(上).上海化工,1998,23(11):26.
    [7] R.A. Nyquist, R.O. Kagel. Infrared Spectra of Inorganic Compounds. Academic Press, San Diego, CA, 1971.
    [8] M. Loan, G. M. Parkinson, W. R. Richmond. The effect of zinc sulphide on phase transformations of ferrihydrite. Am. Mineral, 90 (2005) 258.
    [9] U. Schwertmann, H. Stanjek, H. H. Beeher. Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25 degrees C. Clay Miner, 39 (2004) 433.
    [10] 北京师范大学.无机化学.北京:高等教育出版社,1985:944.
    [11] Pacpopov Y G, Kleschov D G, Krasnobai N G, et al. On the mechanism of crystal formation in the FeSO_4-H~+/OH~-—H_2O—O_2 system. Materials chemistry and physics, 1991, 30:25
    [12] Kiyama M, Takada T. The Role of βFeOOH in the Corrosion of Archaeological Iron. Bull Chem Soc Jpn, 1972, 45:1923
    [13] H. D. Ruan, R. L. Frost, J. T. Kloprogge, L. Duong. Infrared spectroscopy of goethite dehydroxylation:Ⅲ. FT-IR microscopy of in sire study of the thermal transformation of goethite to hematite. Spectrochimica Acta Part A, 2002, 58:967-981.
    [14] 高志华,李春虎.纳米粒子α-FeOOH/α-Fe_2O_3样品的制备与表征,化工冶金,2000,21(4):342-345.
    [15] 刘永红,叶发兵,岳霞丽,董元彦.铁氧化物的合成及其表征.化学与生物工程,2006,23(7):10-12.
    [16] 陈济舟,蒋世承,王加林,王俊桥.α-FeOOH的脱水温度与α-Fe_2O_3结构变化间关系的X射线衍射研究.应用科学学报,1990,8(1):55-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700