用户名: 密码: 验证码:
SiC包覆过渡金属纳米吸波材料的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用等离子电弧法,通过改变阳极合金组成和成分、反应气体组成和比例以及控制电弧电流等手段,制备了Fe(χ-C-Fe-Si/SiC)纳米胶囊、Ni(SiC)纳米胶囊。利用X射线粉末衍射(XRD)、高分辨透射电镜(HRTEM)、X光电子能谱(XPS)等测试技术,系统研究了各种纳米胶囊的相组成、颗粒形貌、尺寸分布、微观组织结构以及其元素的价态以及聚集体的结构特征。利用振动样品磁强计(VSM)、网络矢量分析仪研究了所制备纳米胶囊的磁性质和电磁性能,并初步探讨了纳米胶囊具有优秀电磁吸收性能的物理机制。
     结果表明,利用直流电弧法成功地制备了Fe(χ-C-Fe-Si/SiC)纳米胶囊。高分辨电镜显示所制备的粒子具有清晰的壳核结构,粒径尺寸分布在10-50nm左右,壳层厚度在4-8nm范围内。通过XPS光电子谱表面分析确定所制备纳米胶囊的核成分是由Fe组成,同时壳层是由χ-C-Fe-Si,SiC以及一小部分的SiOx,FeOx,C所组成。电磁测试表明,以Fe(χ-C-Fe-Si/SiC)纳米胶囊最大吸收峰值达-37.2dB,对应的涂层厚度为4.5mm,在3.14GHz-13.5GHz频率范围内,吸收率低于-20dB。
     利用直流电弧法成功地制备了Ni(SiC)纳米胶囊,粒径尺寸分布在20-50nm,壳层厚度在4-8nm范围内。XRD及XPS光电子谱分析可以得到,所制备的样品是以Ni为内核,SiC/C为外壳的纳米胶囊。磁性研究表明,与块体金属Ni相比,纳米胶囊的饱和磁化强度减小,而矫顽力增加。利用实验所得到的电磁参数数据模拟Ni(SiC)纳米胶囊/固体石蜡复合材料在不同厚度的电磁损耗能力。当涂层厚度为3.5mm时,该纳米胶囊/固体石蜡复合材料在7.38GHz反射系数达到-33.4dB。在3.88GHz-10.9GHz频率范围反射系数均小于-20dB。而且随着厚度的增加,最大反射损耗移至低频段。
Fe(χ-C-Fe-Si/SiC) and Ni(SiC) nanocapsules were prepared by arc-discharging technique, by changing constitution and composition of the anode, constitution and ratio of the discharging atmosphere and the arc current magnitude. The phase constitution, particles morphologies, size distributions, microstructure and the binding energy of the elements of these different kinds of nanocapsules and the structure characteristics of the aggregates have been studied by means of X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) in details. The magnetic characteristics and electromagnetic (EM) properties of the nanocapsules were measured by Vibrating sample magnetism (VSM), network vector analyzer. The physical mechanism of the good EM absorption properties in these nanocapsules was discussed.
     The result reveals Fe(χ-C-Fe-Si/SiC) nanocapsules were successfully prepared by arc discharge. HRTEM studies revealed the particles have a distinct shell/core structure, the size of the nanocapsules ranges from 10 to 50 nm and the thickness of shell is in 4-8nm. Based on X-ray photoelectron spectroscopy investigation, the core of the as-prepared nanocapsules is Fe, while the shell is mainly composed ofχ-C-Fe-Si and SiC as well as a small amount of SiOx, FeOx, C. The results of microwave absorbing capability indicated that the maximum reflection loss of Fe(χ-C-Fe-Si/SiC) nanocapsules reached -32.3dB with 4.5mm and the absorption is less than -20 dB in the range of 3.14-13.5GHz.
     Ni(SiC) nanocapsules were successfully prepared by arc discharge, the size of which is 20-50 nm and the thickness is in 4-8nm. It is approved that the core is Ni and the shell is SiC/C measured by XRD and XPS photoelectron spectrum. Magnetism research shows that the saturation magnetization of nanocapsules decreases and the coercive force of nanocapsules increases, compared with pure bulk Ni. The reflection loss R(dB) of the nanocapsules were simulated with experimental date. The reflection loss R(dB) of the nanocapsules 3.5mm in thickness reaches to -33.4dB at 7.38GHz, and EM absorption properties (RL<-20dB) in the 3.88-10.9GHz range. In addition, the optimal RL obviously shifts to the lower-frequency range with increasing thickness of the layer.
引文
[1]张立德,牟季美.纳米材料和纳米结构.北京:中国科学技术出版社,2002.
    [2] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminster fullerene. Nature, 1985, 318: 162-163.
    [3] Iijima S. Helical microtubules of graphic carbon. Nature, 1991, 354(6348): 56-58.
    [4] Frank S, Poncharal P, Wang Z L, et al. Carbon nanotube quantum resistor. Science, 1998, 280(5370): 1744-1746.
    [5] Gentry W R. Atomic and Molecular Beams Methods. New York: Oxford University Press, 1988.
    [6] Orive G, Hernánderz R M, Gascón A R, et al. Drug Delivery in biotechnology: present and future. Curr. Opin. Biotech, 2003, 14(6): 659-664.
    [7] Krucheberg S, Kunz B, Weissbrodt J. Chances and limits of microencapsulation in progressive food industry. Chem. Ing. Tech., 2003, 75(11): 1733-1740.
    [8] Ruoff R S, Lorents D C, Chan B, et al. Singer-crystal metals encapsulated in carbon nanoparticles. Science, 1993, 259(5093): 346-348.
    [9] Saito Y, Yashikawa T, Okuda M, et al. Synthesis and electron-beam incision of carbon nanocapsules encaging YC2. Chem. Phys. Lett., 1993, 209(1-2): 72-76.
    [10] Si P Z, Zhang M, You C Y, et al. Amorphous boron nanoparticles and BN encapsulating boron nanopeanuts prepared by arc decomposing diborane and nitriding. Mater. Sci., 2003, 38(4): 689-692.
    [11] Wang X, Li Y D. Rare earth compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization and properties. Chem. Eur. J., 2003, 9(22): 5627-5635.
    [12] Couvreur P, Barratt G, Fattal E, et al. Nanocapsule technology: A Review. Crit. Rev. Ther. Drug Carrier. Syst., 2002, 19(2): 99-134.
    [13] Liz-Marzan L M, Mulvaney P. The assembly of coated-nanocrystals. Phys. Chem. B, 2003, 107(3): 7312-7326.
    [14] Shi G M, Zhang Z D, Yang H C. Al2O3/Fe2O3 composite-coated polyhedral Fe nanoparticles prepared by arc discharge. J. Alloys Compd., 2004, 384(1): 296-299.
    [15] Geng D Y, Zhang Z D, Zhang W S, et al. Al2O3 coatedα-Fe solid solution nanocapsules prepared by arc discharge. Scripta Mater., 2003, 48(3): 593-598.
    [16] Zhang Z D, Yu J L, Zheng J G, et al. Structure and magnetic properties of boron oxide coated Fe(B) nanocapsules prepared by arc discharge in diborane. Phys. Rev. B., 2001, 64(2): 024404-024408.
    [17] Audier M, Guinot J, Coulon M, et al. Formation and characterization of catalytic carbons obtained from co disproportionation over an iron nickel catalyst-ⅡCharacterization. Carbon, 1981, 19(2): 99-105.
    [18] Zhang Z D. Magnetic Nanocapsules. J. Mater. Sci. Tech., 2007, 23(1): 1-14.
    [19] Ball P, Garwin L. Science at the atomic scale. Nature, 1992, 355: 761-766.
    [20] Yiping L, Hadjipanayis G C, Sorensen C M, et al. Magnetic propeties of fine cobalt particles prepared by metal atom reduction. J. Appl. Phys., 1990, 67: 4502-4504.
    [21] Brus L E. Electronic wave functions in semiconductor clusters: experimental and theory. J. Phys. Chem., 1986, 90: 2555-2560.
    [22] Awschalsom D D, Mccord M A, Grinstein G. Observation of macroscopic spin phenomena in nanometer-scale magnets. Phys. Rev. Lett., 1990, 65: 783-786.
    [23] Sun X C. Microstructure characterization and magnetic properties of nanomaterials. Mol. Phys., 2002, 100: 3059-3063.
    [24] Hihara T, Onodera H, Sumiyama K, et al. Magnetic Properties of iron in nanoparticles. Jpn. Appl. Phys., 1994, 33(2): 24-25.
    [25] Néel L. Theory of tra?nage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys., 1949, 5(1): 99-136.
    [26] Brown W F. Thermal fluctuations of a single domain particle. Phys. Rev., 1963, 130(5): 1677-1686.
    [27] Colvin V L, Alivisatos A P. Light-emitting diodes made from Cadmium Selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370: 354-357.
    [28] Link S, El-Sayed M A. Optical properties and ultra fast dynamics of metallic nanoparticles. Ann. Rev. Phys. Chem., 2003, 54: 331-336.
    [29]刘顺华,刘军民,董兴龙.电磁波屏蔽及吸波材料.北京:化学工业出版社,2006.
    [30]王光华,董发勤,贺小春.纳米吸波材料研究进展.中国粉体技术,2007,13(4):35-38.
    [31] Bregar V B. Advantages of ferromagnetic nanoparticle Composites in microwave Absorbers. IEEE Trans. Magn., 2004, 40(3): 1679-1684.
    [32]谢俊磊,杜仕国,施冬梅.新型雷达吸波材料研究进展.飞航导弹,2008,7:58-61.
    [33]焦桓,罗发,周万成.纳米吸波材料的研究与发展趋势.宇航材料工艺,2001,5:9-11.
    [34] Han Z, Li D, Wang H, et al. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Appl. Phys. Lett., 2009, 95: 023114.
    [35]黄婉霞,陈家钊,毛健.纳米级Fe3O4对电磁波的吸收效能研究,功能材料,1999,30:105-106.
    [36]陈利民,亓家钟,朱雪琴等.纳米γ-(Fe,Ni)合金颗粒的微观结构及其微波吸收特性,兵器材料科学与工程,1999,22(4):3-6.
    [37] Sugita N, Maekawa M, Oha Y, et al. Advances in fine magnetic particles for high density recording. IEEE Trans. Magn., 1995, 31(6): 2854-2858.
    [38] Vinoy K J, Jha R M. Radar Absorbing Materials From Theory to Design and Characterization. London: Kluwer Academic Publishers, 1996.
    [39]王先冲.电磁场理论及应用.北京:科学出版社,1982.
    [40]王玉仑.电磁场和电磁波.哈尔滨:哈尔滨工业大学出版社,1982.
    [41]王智勇,刘俊能.超细金属粉微波电磁性能的研究,航空材料学报,1994,14(3):11-13.
    [42]秦嵘,陈雷.国外新型隐身材料研究动态,宇航材料工艺,1997,4:17-19.
    [43] Olmedo L, Chateau G, Deleuze C, et al. Microwave characterization and modelization of magnetic granular materials. J. Appl. Phys., 1993, 73(10): 6992-6994.
    [44]张雪峰,李哲男,王威娜等.磁性Fe、Co、Ni纳米粒子的吸波性能研究,粉末冶金工业,2006,16(1):11-16.
    [45] Fang J Y, Stokes K L, Wiemann J A, et al. Microemulsion Processed Bismuth Nanoparticles. Mater. Sci. Eng. B, 2001, 83: 254-257.
    [46]刘爱祥,茹淼焱,孟凡君等.聚硅氮烷包覆纳米铁磁性铁粉PsZFe的合成及其雷达波吸波性能研究,高分子学报,2003,5:757-759.
    [47] Arnim H, Michael G. Optical and Chemical Observationson Gold-Mercury Nanoparticles in Aqueous Solution. J. Phys. Chem. B, 2000, 104(21): 5056-5060.
    [48] Shi H Z, Bi H J, Yao B D, et al. Dissolution of Au nanoparticles in hydrochloric acid solution as studied by optical absorption. Appl. Surf. Sci., 2000, 161(1-2): 276-278.
    [49] Han Z, Li D, Liu X G, et al. Microwave-absorption properties of Fe(Mn)/ferrite nanocapsules. J. Phys. D: Appl. Phys., 2009, 42(5): 055008.
    [50]杨志民,毛昌辉,杜军等.Fe4N电磁波吸收剂的合成及其吸波性能的研究,稀有金属,2002,26(2):103-107.
    [51]张秀成,赵振声.微波铁氧体吸收剂复磁导率和复介电常数的温度特性研究,功能材料,1994,25(2):169-171.
    [52]赵东林,罗发,周万城.纳米碳化硅、氮化硅和掺杂氮碳化硅粉体的制备及其微波介电特性,硅酸盐学报,2008,36(6):783-787.
    [53] Si P Z, Choi C J, Brück E, et al. Structure and magnetic properties of surface alloyed Fe nanocapsules prepared by arc discharge. Physica B, 2005, 369: 215-220.
    [54] Uyeda R. Crystallography of metal smoke particles. Tokyo: Terra Scientific Publishing Company, 1987.
    [55] Kraetschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60: A new form of carbon. Nature, 1990, 347: 354-358.
    [56] Saito Y, Okuda M, Yoshikawa T, et al. Correlation between volatility of rear earth metals and encapsulation of their carbides in carbon nanocapsules. Phys. Chem., 1994, 98: 6696-6698.
    [57] Komaysu S, Shimizu Y, Moriyoshi Y, et al. Preparation of boron nitride nanocapsules by plasma-assisted pulsed laser deposition. Appl. Phys., 2002, 91: 6181-6184.
    [58] Banhart F, Redlich P, Ajayan P M. The migration of metal atoms through carbon onion. Chem. Phys. Lett., 1998, 292(27): 554-560.
    [59] Babonneau D, Cabioch T, Naudon A, et al. Silver nanoparticles encapsulated in carbon cages obtained by co-sputtering of the metal and graphite. Surf. Sci., 1998, 409(2): 358-371.
    [60] Wang Z H, Choi C J, Kim B K, et al. Characterization and magnetic properties of carbon coated cobalt nanocapsules synthesized by the chemical vapor condensation process. Carbon, 2003, 41: 1751-1758.
    [61] Li D, Choi C J, Kim B K, et al. Characterization of Fe/N nanoparticles synthesized by the chemical vapor condensation process. J. Magn. Magn. Mater, 2004, 277: 64-70.
    [62] Liu Z J, Yuan Z Y, Zhou W Z, et al. Controlled synthesis of carbon-encapsulated Co nanoparticles by CVD. Chem. Vapor Depos., 2001, 7: 248-251.
    [63] Xing G J, Chen G H, Song X M, et al. ZnO and TiO2 nanoparticles encapsulated in boron nitride nanocages. Microelectron. Eng., 2003, 66: 70-76.
    [64] Tokoro H, Fujii S, Oku T. Microstructures and magnetic properties of BN-coated Fe nanoparticles synthesized by a solid phase reaction. J. Mater. Chem. 2004, 14: 253-257.
    [65] Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microwave Theory Tech., 1971, 19: 65-72.
    [66] Yusoff A N, Abdullah M H, Mansor A A, et al. Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys., 2002, 92: 876-878.
    [67] Liu J R, Itoh M, Machida K. GHz range absorption properties of alpha-Fe/Y2O3 nanocomposites prepared by melt-spun technique. Chem. Lett., 2003, 32: 394-395.
    [68] Liu J R, Itoh M, Machida K. Electromagnetic wave absorption properties of a-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range. Appl. Phys. Lett., 2003, 83: 4017-4019.
    [69] Zhang X F, Dong X L, Huang H, et al. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J. Phys. D, 2007, 40: 5383-5387.
    [70]李鹏,周万成,贺媛媛.高温吸波材料研究应用现状,航空制造技术,2008,6:26-29.
    [71] Caruso F. Nanoengineering of Particle Surfaces. Adv. Mater., 2001, 13(1): 11-21.
    [72]郭硕鸿.电动力学.北京:高等教育出版社,1979.
    [73] Liu X G, Geng D Y, Meng H, et al. Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl. Phys. Lett., 2008, 92: 73117.
    [74] Wu M Z, Zhang Y D, Hui S, et al. Magnetic properties of SiO2-coated Fe nanoparticles. Appl. Phys., 2002, 92(11): 6809-6812.
    [75] Sugimoto S, Maeda T, Book D, et al. GHz microwave absorption of a fineα-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen. J. Alloys Compd., 2002, 330: 301-306.
    [76] Zhao D L, Li X, Shen Z M. Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes. Compos. Sci. Technol., 2008, 68(14): 2902-2908.
    [77] Zhong G Q, Zhou H L, Jia Y Q. Preparation of Amorphous Ni-B Alloys Nanoparticles by Room Temperature Solid-Solid Reaction. J. Alloys Compd., 2008, 465(1-2): L1-L3.
    [78] Sinha S, Badrinarayanan S, Sinha A P B. Interaction of Oxygen with Zr76Fe24 Metglass: an X-ray Photoelectron Spectroscopy Study. J. Less Common Metals, 1986, 125: 85-95.
    [79] Siriwardane R V, Cook J M. Interactions of SO2 with sodium deposited on silica. J. Colloid Interface Sci., 1985, 108(2): 414-422.
    [80] Allen G C, Curtis M T, Hooper A J, et al. X-Ray photoelectron spectroscopy of iron-oxygen systems. J.Chem.Soc.Dalton Trans., 1974, 14: 1525-1530.
    [81] Watts P C P, Ponnanpalam D R, Hus W K, et al. The complex permittivity of multi-walled carbon nanotube-polystyrene composite films in X-band. Chem. Phys. Lett., 2003, 378(5-6): 609-614.
    [82] Zhang X F, Dong X L, Huang H, et al. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett., 2006, 89: 053115.
    [83] Dong X L, Zhang X F, Huang H, et al. Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett., 2008, 92: 013127.
    [84] Frenkel J, Dorfman J. Spontaneous and induced magnetisation in ferromagnetic bodies. Nature, 1930, 126: 274-275.
    [85] Lee C C, Chen D H. Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles. Appl. Phys. Lett., 2007, 90: 193102.
    [86] Zhao D L, Li X, Shen Z M. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J. Alloys Compd., 2009, 471(1/2): 457-460.
    [87] Niles D W, Hochst H, Zajac G W, et al. The interface formation and thermal stability of Ag overlayers grown on cubic SiC (100). J. Vac. Sci. Technol., 1988, A6: 1584-1588.
    [88] Zhang Z D, Zheng J G, Skorvanek I, et al. Synthesis, Characterization and magnetic properties of carbon and boron oxide encapsulated iron nanocapsules, J. Nanosci. Nanotechnol., 2001, 1(3): 153-158.
    [89] Fischer R, Kronmuller H. The role of the exchange interaction in nanocrystalline isotropic Nd2Fe14B-magnets. J. Magn. Magn. Mater., 1999, 91(1): 225-233.
    [90] Tang X, Hu K A. Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites. Mater. Sci. Eng. B, 2007, 139: 119-123.
    [91] Tang X, Tian Q, Zhao B Y, et al. The microwave electromagnetic and absorption properties of some porous iron powders. Mater. Sci. Eng. A, 2007, 445-446: 135-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700