用户名: 密码: 验证码:
碳包覆纳米四氧化三铁颗粒的合成与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳包覆纳米金属氧化物材料(Carbon-encapsulated metal oxide nanoparticles,CEMONs)是一种新型的纳米碳/金属氧化物复合材料,其中纳米金属氧化物粒子作为核心,数层石墨片层有序地将其紧密围绕,形成核壳结构。由于碳包覆层的存在,可避免内部的纳米粒子受环境影响。针对目前碳包覆金属氧化物纳米材料制备中存在的产物纯度低、步骤复杂、形态结构不易控制和难以大量合成等缺点,本论文采用一种新型制备方法——共热解法,通过芳烃物质和有机金属化合物在中温下的共炭化热解制备CEMONs,该方法具有工艺路线简单、反应条件温和、产物组成均匀、结构易于控制及容易实现大量制备等特点。
     本论文主要以间苯二酚为氧源和碳源、以二茂铁为金属源和碳源,采用共热解法制备碳包覆纳米金属氧化物。在详细考察制备工艺参数对CEMONs形成、转化及其形态结构影响的基础上,利用TEM,HREM,XRD,SEM,TG-DSC等测试分析手段研究了材料的形貌和结构,并与制备工艺相关联,实现材料的可控合成;阐明CEMONs的形成机理。
     研究结果表明,以间苯二酚和二茂铁为原料,采用共热解法可以大量制备碳包覆纳米Fe3O4颗粒。在450℃的反应温度下,间苯二酚:二茂铁=10.0g:20.0g时,制备出纯度高的、具有明显核壳结构的碳包覆纳米Fe3O4颗粒。在450℃的反应温度下,提高二茂铁的量从50wt.%到75wt.%时,会使碳包覆颗粒内核中金属相从Fe3O4→α-Fe→Fe3C逐渐转变,同时内部压力升高,颗粒变小,包覆层厚度增加。保持间苯二酚和二茂铁比例恒定,随着反应温度的升高从430℃度到495℃度,内核中金属相也呈现Fe3O4→α-Fe→Fe3C转变。
     通过原料组成、结构分析和合成工艺参数与产物形貌和结构的关系研究,推断出共热解法形成碳包覆纳米金属氧化物是基于Fe纳米颗粒对含氧芳烃分子的催化作用,以及Fe原子在催化芳香烃过程中与氧基团发生氧化物还原反应,而此过程是基于溶解-析出以及动力学平衡的机制。碳包覆纳米金属氧化物的形成需要两个必要因素:体系中有适当比例的铁纳米原子簇和含氧芳香烃,以及适中的反应活性。
Carbon-encapsulated metal oxide nanoparticles (CEMONs) are a new kind of carbon/metal oxide nanocomposite, in which graphite arrange around metal oxide nanoparticles located in the center to form core-shell structure. Because of the carbon layers preventing metal oxide nanoparticles from environment effection, they have good stability in environment. For the preparation of CEMONs, the present techniques, such as the arc-discharge technique, chemical vapor deposition, liquid-impregnating carbonization of non-graphitizing carbon and etc., show some disadvantages, e.g., the morphology and the structure of the resulting nanocrystals are not easy to control, and it is difficult to produce high-purity nanomaterials in large quantities. Here we proposed a novel method for the preparation of CEMONs by co-carbonization of aromatics with metal compounds, i.e., co-pyrolysis method. It featured in simplicity, low temperature, good controllability and high yield.
     The research focused on the preparation of CEMONs by co-pyrolysis of 1,3-benzenediol and ferrocene in which 1,3-benzenediol is oxygen source and carbon source, ferrocene is the metal source and carbon source. The effects of synthesis parameters on the formation and transformation of CEMONs were investigated in detail. The morphology, structure and particular properties of the product were characterized by TEM, HREM, XRD, SEM, and TG-DSC measurements. The formation mechanism of CEMONs was elucidated.
     The results show that large amount of carbon-encapsulated Fe3O4 nanoparticles were obtained by co-pyrolysis of 1,3-benzenediol and ferrocene. The CEMONs with higher purity were prepared in the presence of 33.3 wt.% of 1,3-benzenediol at the reaction temperature of 450℃. With the increase of ferrocene content from 50wt.% to 75wt.% or reaction temperature from 430℃to 495℃, the encapsulated metal core in the product was changed from single Fe3O4 to a-Fe to iron carbides, gradually. Meanwhile, nanoparticles become smaller, and the thickness of corbon layers increases.
     The above research afforded a novel and effective method for the preparation of carbon-encapsulated metal oxide nanomaterials. By analysis of raw feedstock and the investigation on the relationship among the morphology, structure and the synthesis parameters, it is concluded that the formation of CEMONs by co-pyrolysis method is based on the catalysis and oxidation/reduction of iron nano-cluster for the oxygen-containing aromatic molecules. And this process is based on the dissolution-precipitation, and dynamic equilibrium mechanisms. It is assumed that two essential factors must be met for the formation of the nanoparticles, including proper proportion of iron nano-clusters and oxygen aromatics, and moderate reaction activity in the system.
引文
[1]. Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58
    [2]. Iijima S, Ichihashi T, Ando Y Pentagons heptagons and negative curvature in graphite microtubule growth [J]. Nature,1992,356:776-778
    [3]. Ajayan P M, Iijima S. Capillarity-induced filling of carbon nanotubes [J]. Nature, 1993,361:333-334
    [4]. Ajayan P M, Ebbesen T W, Ichihashi T, et al. Opening carbon nanotubules with oxigen and implication for filling[J], Nature,1993,362:522-525
    [5]. Ruoff R, Lorents D C, Chan B, et al. Single-crystal metals encapsulated in carbonnanoparticles [J]. Science,1993,259:346-348
    [6]. Saito Y, Oikuda M, Yoshikawa T, et al. Correlation between volatility of rare-earth-metals and encapsulation of their carbides in carbon nanocapsules [J]. J. Phys. Chem.,1994,98:6696-6698
    [7]. Dravid V P, Host J J, Teng M H, et al. Controlled-size nanocapsules [J]. Nature,1995, 374:602-602
    [8]. Johnson R D, Vries M S, Salem J, et al. Electron paramagnetic resonance studies of lanthanum-containing C80 [J]. Nature,1992,355:239-240
    [9]. Saito Y, Yoshikawa T, Inagakim M, et al. Growth and structure of graphitic tubes and polyhedral particles in arc-discharge[J]. Chem. Phys. Lett.,1993,204:277-282
    [10]. Yannoni C S, Hoinkis M, Vries M S, et al. Scandium clusters in fullerene cages[J].Science,1992,256:1191-1192
    [11], Pradeep T, Kulkarni G U, Kannan K R, et al. A novel Fe C adduct in the solid state [J]. J.Am. Chem. Soc.,1992,114:2272-2273
    [12]. Chai Y, Guo T, Jin C M, et al. Fulleren with metals inside [J]. J. Phys. Chem.,1991,95: 7564-75678
    [13]. Saito Y, Yoshikawa T, Oikuda M, et al. Iron particles nesting in carbon cages grown by arcdischarge[J]. Chem. Phys. Lett.,1993,212:379-383
    [14]. Harris P J F, Tsang S C. Encapsulating uranium in carbon nanoparticles using a new technique [J]. Carbon,1998,36:1859-1861
    [15]. Pascual J I, Mendez J, Gomez-Herrero J, et al. properties of metallic nanowires-from conductance quantization to localization [J]. Science,1995,267:1793-1795
    [16]. Collies P q Zettl A, Bando H, et al. Nanotube nanodevice [J]. Science,1997,278: 100-103
    [17]. Bubkle K, Gnewuch H, Hempstead M, et al. Optical anisotropy of dispersed carbon naotubes induced by an electric-field [J]. Appl. Phys. Lett.,1997,71:1906-1908
    [18]. Don X L, Zhang Z D, Jin S R, et al. Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane [J]. J. Mater. Res.,1999,14:1782-1790
    [19]. Tomita M, Saito Y and Hayashi T. LaC2 encapsulated in graphite nanoparticle [J]. Jap, J. Appl. Phys.,1993,32:L280-282
    [20]. Satio Y In Carbon nanotubes:preparation and properties[M]. ed. T. W. Ebbesen, CRCPress:Boca Raton,1997.249-251
    [21]. Satio Y Nanoparticles and filled nanocapsules[J]. Carbon,1995,33:979-988
    [22]. Seraphin S., Zhou D., Jiao J., Fillling the carbon nanocages [J]. J. Appl.phys.,1996,80: 2097-2104
    [23]. Murakami Y, Shibata T, Okuyama K, et al. Structural magnetic and superconducting properties of graphite nanotubes and their encapsulation compounds [J]. J. Phys. Chem. Solid.,1993,54:1861-1870
    [24]. Satio Y Yoshikawa T, Okuda M, et al. Synthesis and electron-beam incision of carbon nanocapsules encaging YC2 [J]. Chem. Phys. Lett.,1993,209:72-76
    [25]. Satio Y Yoshikawa T, Okuda M, et al. Carbon nanobapsules encaging metals and carbides [J]. J. Phys. Chem. Solid.,1993,54:1849-1860
    [26]. Satio Y In Recent advances in the chemistry and physics of fullerenes and related' materials [M]. Vol.1, ed. Kadish K M and Ruoff R S, Elctrochemical Society: Pennington,New Jersey,1994.1419-1432
    [27]. Satio Y, Nishikubo K, Kawabata K, et al. Carbon nanocapsules and single-layered nanogubes produced with platinum-group metals(Ru, RH, Pd, Os, Ir, Pt) by arcdischarge [J]. J. Appl. Phys.,1996,80:3062-3067
    [28]. Seraphin S, Zhou D, Jiao J, et al. Yttrium carbide in nanotubes [J]. Nature,1993, 362:503-503
    [29]., Jiao J, Seraphin S, Wang X, et al. Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles [J]. J. Appl. Phys.,1996,80:103-108
    [30]. Majetich S A, Amman J O, McHenry M E, et al. Preparation and properties of carbon-coated Cnanocrstallites [J]. Phys. Rev. B.,1993,48:16845-16848
    [31]. McHenry M E, Majetich S A, Artman J O, et al. Superparamagnetism in carbon-coated Coparticles produced by the Kratschmer carbon arc process [J]. Phys. Rev.B.,1994, 49:11358-11363
    [32]. Scott J H and Majetich S A. Morphology, structure, and growth of nanopaticles producedin a carbon arc [J]. Phys. Rev. B.,1995,52:12564-12571
    [33]. Guerret-Piecourt C, Le Bouar Y, Loiseau A, et al. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes [J]. Nature, 1994,372:761-765
    [34].施尔畏,谢高阳,夏长泰,王步国,仲维卓,无机材料学报,1996,11,193;
    [35]. A. Rabenau, Angew. Chem. Int. Ed. Engl.,1985,24,1026.
    [36]. Lian, S. Y.; Kang, Z. H.; Wang, E. B.; Jiang, M.; Hu, C. W.; Xu, L.SnLid State Cnmmun.2003,127,605
    [37]. Chen M.; Tang B.; Nikles D E. IEEE Trans. Magn.1998,34,1141.
    [38]. Sun X M, Liu J F, Li Y D. Oxides@C core-shell nanostructures:One-pot synthesis, rational conversion, and li storage property [J]. Chem. Mater.2006,18,3486-3494.
    [39]. Xu L Q, Du J, Li P, and Qian Y T. In Situ Synthesis, Magnetic Property, and Formation Mechanism of Fe3O4 Particles Encapsulated in 1D Bamboo-Shaped Carbon Microtubes [J]. J, phys. Chem. B 2006,110,3871-3875.
    [40]. Liu H, Wang G X, Wang J Z, Dvid Wexler. Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries [J]. Electrochem. Commun.2008,10, 1879-1882.
    [41]. Kroto H W, Heath J R, O'Brien S C, et al,C60:Buckxninster Fullerene [J]. Nature, 1985,318:162-163
    [42]. Hayashi T, Hirono S, Tomita M, et al. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon[J]. Nature,1996,381:772-4
    [43]. Chen H, Huang R B, Tang Z C, et al. Single titanium crystals encapsulated in carbon nanocages obtained by laser vaporization of sponge titanium in benzene vapor [J]. Appl.Phys. Lett.,2000,77:91-93
    [44]. Nolan P E, Lynch D C, Cutler A H. Cataytic disproportionation of CO in the absence of hydrogen:encapsulating shell formation [J]. Carbon,1994,32:477-483
    [45]. Liu B H, Ding J, Zhong Z Y et al. Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method[J]. Chem. Phys. Lett.,2002,358:96-102
    [46]. Ioannis P, Valerie C, Shik C T. Syntheses of carbon encapsulated magnetic FeNi nanoparticle via decompositions of methane and benzene [J]. Carbon,2006,44: 820-823
    [47]. Nolan P E, lynch D C, Cutler A H. Graphite Encapsulation of Catalytic Metal Nanoparticles [J]. Carbon,1996,34:817-819
    [48]. Baker R T, Chludzinski Jr J, Dudash N S, et al. The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum [J]. Carbon,1983, 21:463-68
    [49]. Liu Z J, Yuan Z Y, Zhou W Z, et al. Controlled synthesis of carbon-encapsulated Co nanoparticles by CVD [J]. Chem. Vap. Deposition,2001,7:248-251
    [50]. Wang X F, Wang D Z, Liang J. Carbon Nanotube Capacitor Materials Loaded with Different Amounts of Ruthenium Oxide [J].Acta Phys Chim.Sin,2003,19 (6):509-513.
    [51]. Cao H Q,Zhu M F, Li Y G. Novel carbon nanotube iron oxide magnetic nariocompo mposites [J].Journal of Magnetism and Magnetic Materials 2006,305:321-324.
    [52].于华荣,成荣明,徐学诚,等.碳纳米管负载氧纳米Fe2O3的研究[J].无机化学学报,2005,21(11):1651-1657
    [53]. Yogo T, Suzuki H, Iwahara H, et al. Synthesis and properties of platinum-dispersed carbon by pressure pyrolysis of organoplatinum copolymer [J]. J. Mater. Sci.,1991,26: 1363-1367
    [54]. Yogo T, Naka S, Hirano S, Synthesis and properties of carbons dispersed with a-iron particles from divinyl benzene-vinylferrocene [J]. J. Mater. Sci.,1989,24:2071-2075
    [55].陈学刚,宋怀河,陈晓红等.蔡和二茂铁共炭化制纳米Fe/C材料的研究[J].新型炭材料,2000,15:5-8
    [56].陈学刚,宋怀河,陈晓红等.纳米Fe/C复合材料的原位合成[J].材料研究学报,2002,16:146-150
    [57]. Song H H, Chen X H. Large-scale Synthesis of Carbon-encapsulated Iron Carbide Nanoparticles by Co-carbonization of Durene with Ferrocene [J]. Chem. Phys. Lett., 2003,374:400-04
    [58]. Song H H, Chen X H, Zhang S Y, Li H Q. Influence of ferrocene addition onthe morphology and structure of carbon from petroleum residue [J]. Carbon,2003, 41:3029-3038
    [59]. Yogo T, Naka S, Hirano S I. Synthesis and properties of magnetite-dispersed carbon by pressure pyrolysis of divinylbenzene-vinylferrocene with water [J]. J. Mater. Sci., 1989,24:2115-2119
    [60]. Yogo T, Naka S, Hirano S I. Cementite dispersed in carbons from ferrocene, vinylferrocene, divinylbenzene systems [J]. J. Mater. Sci. Lett.,1987,22:985-988
    [61]. Lian W T, Song H H, Chen X H,Li L X et al, The transformation of acetylene black into onion-like hollow carbon nanoparticles at 1000 ℃ using an iron catalyst [J]. Carbon,2008,56,525-530.
    [62]. Zhou J S, Song H H, Chen X H et al. Carbon-encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles:a general synthesis strategy and its application to lithium-ion batteries [J]. Chem. Mater.2009,21(13),2935-2940
    [63]. Harris P J F, Tsang S C. A simple technique for the synthesis of filled carbon nanoparticles [J]. Chem. Phys. Lett.,1998,293:53-58
    [64]. Harris P J F, Tsang S C. Encapsulating uranium in carbon nanoparticles using a new technique [J]. Carbon,1998,36:1859-61
    [65].程继鹏,张晓彬,戈桂芬.含铁粒子修饰碳纳米管的初步研究[J].浙江大学学报(工学版),2006,40(4):676-678.
    [66].王曙光,李延辉,赵丹,等.碳纳米管负载氧化铝材料的制备及其吸附水中氟离子的研究[J].高等学校化学学报,2003,24(1):95-99
    [67].吴卫泽,朱珍平,刘振宇.Fe/C复合纳米材料的制备研究[J].新型炭材料,2002,17:4-8
    [68].邱介山,安玉良,等.生物基碳包覆纳米材料(Mn,Co)的制备[J].物理化学学报,2004,20:260-264
    [69]. lto S, Nakaoka K, Kawamura A, Ui K, Fujimoto K et al. Lithium battery having a large capacity using Fe3O4 as a cathode material [J]. Power Sources 2005.146.319.
    [70]. Mitra S. Poizot P. Finke A. Tarascon J M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications [J]. Adv. Funct. Mater.2006,16,2281.
    [71]. Dominko R, Goupil J M, Bele M et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J]. Electrochem. Soc.2005,152,858.
    [72]. Hu Y S, Guo Y G, Dominko R, Gaberscek M, Jamnik J. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect [J]. Maier. Adv. Mater.2007.19.1963.
    [73], Yosida Y. Synthesis of CeC2 crystals encapsulated within gigantic super fullerenes[J]. Appl. Phys. Lett.,1993,62:3447-3448
    [74], Huang S Y, Kavan L, Exnar I, et al. Rocking chair lithium battery based on nanocrystalline TiO2 (Anatase) [J]. J. Electrochem. Soc.,1995,142:142-143
    [75]. Wang X, Gao L S, Zheng H G et al. Fabrication and electrochemical properties of Fe2O3 nanoparticles [J]. J. Crystal Growth,2004,269:489-492
    [76]. Prosini P P, Mancini R, Petrucci L, et al. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications [J]. Solid State Ionics,2001, 144:185-192
    [77]. Awadalla Salah A. Magnetic study of nickel particles encapsulated in carbon nanoparticles [D],UMI Number:1382547, UMI Company,1997
    [78]. Panyam J, Sahoo S K, Prabha S, et al. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,llactide-co-glycolide) nanoparticles [J]. Int. J. Pharm,2003,262:1-12
    [79]. Michal B, Andrzej H, Hubert L. Arc plasma route to carbon-encapsulated magnetic nanoparticles for biomedical applications [J]. Sensors and Actuators,2005,109:81-85
    [80]. Dobson J. Magnetic Nanoparticles for Drug Delivery [J]. Drug Develop. Res.,2006, 67:55-64
    [81]. Che R, Chen Q, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes [J]. Adv. Mater.,2004,16:401-405.
    [82]. Elias K L, Price R L, Webster T J. Enhanced functions of osteoblasts on nanometer diameter carbon fibers [J]. Biomaterials,2002,23:3279-3287
    [83]. Price R L, Waid M C, Haberstroh K M, et al. Selective bone cell adhesion on formulations containing carbon nanofibers [J]. Biomaterials,2003,24:1877-1887
    [84]. Huo J P, Song H H, Chen X H. Preparation of carbon-encapsulated iron narioparticles by co-carbonization of aromatic heavy oil and ferrocene [J]. Carbon.2004,42: 3177-3182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700