用户名: 密码: 验证码:
锂离子电池正极材料LiMn_2O_4与LiFePO_4的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子二次电池是以嵌入锂化合物作为正、负极材料的最新一代高比能蓄电池。它具有电池电压高、比能量大、循环寿命长、自放电小以及有利于环保等优点。近年来,锂离子蓄电池在各方面均在不断改进。负极与电解质进步较快,但正极材料的发展较为缓慢。对正极材料应用和研究的主要材料有LiCoO2、LiNiO2、LiMn2O4、LiFePO4等。其中尖晶石LiMn2O4和橄榄石LiFePO4都具有价格低、无毒、理论比容量较高等优点。是下一代锂离子电池最有前途的正极材料。本文从降低锂离子电池的生产成本和提高材料的稳定性出发,主要研究尖晶石LiMn2O4和橄榄石LiFePO4的合成制备方法,以及掺杂提高电池材料的稳定性等问题。得到下述几方面的研究结果。
    本文首先针对固相法制备尖晶石LiMn2O4的合成制备时间长,电化学性能差,溶胶凝胶法的工序多,原料消耗大,成本高等缺点。用溶胶凝胶法改进了制备工艺,简化了制备步骤,这种工艺称为改进柠檬酸溶胶凝胶法。实验探索了最佳合成温度、柠檬酸的最佳比例,以及应用改进的溶胶凝胶法,进行了掺杂和表面包覆以改性LiMn2O4等内容。
    对尖晶石LiMn2O4材料改性主要选择了Li+、Al3+作为阳离子掺杂,选择Cl-作为阴离子掺杂。对溶胶凝胶法合成制备的尖晶石LiMn2O4材料,组成实验电池,用恒电流充放电进行电化学测试,实验表明掺杂Li+、Al3+、Cl-后的尖晶石LiMn2O4的充放电稳定性都有提高。还采用LiCoO2和Al2O3包覆处理LiMn2O4,也能提高LiMn2O4材料的稳定性。当掺Al量为LiAl0.2Mn1.8O4时,能获得较高的容量和很好的循环性能。运用改进的溶胶凝胶法,可制备初始容量大于130mAh/g的尖晶石LiMn2O4。改进溶胶凝胶法可以方便对其掺杂和包覆处理。在简化了以前溶胶凝胶法的合成步骤和减少柠檬酸原来用量的基础上,能合成性能较好LiMn2O4样品,说明该方法可行。
    针对合成橄榄石LiFePO4多用草酸亚铁和醋酸亚铁,我们率先改用Fe3+盐,选用溶胶凝胶法,以高温还原Fe3+合成出LiFePO4。运用溶胶凝胶,以Li2CO3、Fe(NO3)3·9H2O、NH4H2PO4为原料,在保护性气氛条件下,在650℃左右可以合成出电化学性能比较好的橄榄石型的LiFePO4,且粒度较均匀,放电比容量可达到140mAh/g以上。并对掺杂Ag、Cu、Mg等对材料性能的影响进行了实验探索。
    应用高温反应还原Fe3+制备LiFePO4的设想,进一步改用Fe2O3代替Fe(NO3)3·9H2O,并掺不同碳源作为还原剂,应用固相法进行了一系列合成试验。加乙炔黑作为还原剂,同时起到掺碳的作用,在高温下还原制备了橄榄石型的磷酸亚铁
    
    
    锂,放电的比容量可达到130mAh/g 。XRD证实了用乙炔黑能将Fe2O3还原成亚铁制备LiFePO4。在此基础上,本文进一步以蔗糖代替乙炔黑为还原剂,以蔗糖自身分解的产物作为碳源,用高温固相法合成LiFePO4,由于蔗糖在高温下的熔融作用,使参与反应的原料反应充分,以及糖炭化形成包覆和掺碳的作用,获得放电比容量150mAh/g以上的样品,采用廉价的Fe2O3和蔗糖合成出了放电比容量高、性能稳定的LiFePO4,这显示了该法的优越性。。
    其次还实验了大电流1~3mA/cm2充放电和充放电温度对材料性能的影响,显示温度升高,材料放电比容量增大。
    对上述大量实验结果,均用电化学测试方法对充放电容量、循环性能等进行了检测,对材料的合成温度、合成时间以及掺杂、包覆等对材料性能影响进行较系统的探索,用电镜等比较了这些方法所得样品的粒度分布,用X射线衍射方法对材料的晶型结构进行了测试,并对各种方法优劣进行评价。
    在原料方面采用廉价原料和减少药品用量比例等,使成本降低、工艺缩短是本研究的革新,目前正在用包覆的方法(已取得成功)取代使用保护气氛,更是本研究的创新。
Up to now, people realized that the Li-ion battery is a new generation of high specific capacity battery with merits of high voltage and long life and a little self discharging etc. Recently, this battery is still under improving constantly. The investigation of negative and electrolytes have progress more quicker, while the studies on positive material is slower. The major positive material for studying containing LiCoO2, LiNiO2, LiMn2O4 and LiFePO4 etc. However, the spinel LiMn2O4 and olivine LiFePO4 are very hopeful material with low price and few toxic and higher specific capacity, etc. Based on decreasing the production cost and enhancing the stability of the material, this work will studying the preparation method of these material for enhancing their stability through using doping and choosing optimal technology.
    First of all, to counter the weak points of longer synthesis time, poor electrochemical behavior, long process of reaction and higher cost, etc., the auther created a modified sol-gel method with citric acid for shorten the preparing step, exploring optimal synthesizing temperature and technology, used the doping and covered some film on the product and so on.
    To improve the behavior of spinel LiMn2O4, We used the doping with the donor Li+, Al3+,and Cl-. The examination results of galvanostatic charge-discharge experiments shown that the stability of charge-discharge of Li+, Al3+,and Cl- doped spinel LiMn2O4 have enhanced. The LiMn2O4 coated with LiCoO2 and Al2O3 film were enhanced the stability.
    The experiments shown that the modified sol-gel method can prepare the spinel LiMn2O4 with original capacity higher than 130mAh/g and shorten the synthesizing step, decreasing the citric acid and so on.
    To counter the synthesis of olivine LiFePO4 with Fe(C2O4)2 and Fe(CH3COO)2 mostly , we are the first to used the sol-gel method with Fe3+ through high temperature to make LiFePO4. We prepared the olivine LiFePO4 with good electrochemical behavior and its discharge specific capacity as high as 140mAh/g.
    This work have explored the influence of Ag, Cu, Mg-doped LiFePO4 to the
    
    
    behavior of LiFePO4 through high temperature reaction for reducing Fe3+ and used Fe2O3 instead of Fe(NO3)3·9H2O. We also used the carbon from different source as a reducing reagent, prepared the olivine LiFePO4 through high temperature reduction, the prepared sample has the discharge specific capacity reached 130mAh/g. Based on this exploration to carry out experiment, the prepared sample get high discharge specific capacity to 150mAh/g and excellent behavior, we have discussed the mechanism briefly.
    The article have reported the examination of prepared sample through electrochemical method for their charge-discharge behavior, the XRD method for their crystalline structure, explored the influence of different experimental factor to the behavior of all sample.
引文
[1] 吕鸣祥,黄长保,宋玉谨.化学电源.天津大学出版社.1996
    [2] 周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展. 化学进展.1998.10:85-94
    [3] 陈立泉,新型能源材料产业化前景. 新材料产业,2001,7:12-18
    [4] 毕道治.21世纪电池工业展望. 电池工业. 2002. 7:205-210
    [5] 夏熙. 迈向21世纪的化学电源. 电池. 2000. 30:95-97
    [6] 万春荣. 先进电池与材料化学. 电池. 2001. 31(2):51-53
    [7] Nishi Y. Lithium Ion Secondary Batteries: Past 10 Years and the Future. J Power Sources. 2001. 100:101-106
    [8] tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001. 144(15): 359-367
    [9] Buiel E, Dahn J R. Li-Insertion in Hard Carbon Anode Materials for Li-Ion Batteries. Electrochim Acta. 1999. 45:121-130
    [10]Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Tin-based amorphous oxide: a high-capacity lithium-ion–storage material. Science.1997. 276(30):1395-1397
    [11]Wang X M, Yasukawa E, Mori H. Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries. J Electrochem Soc. 1999.146(11): 3992-3998
    [12]Scrosati B. Recent Advances in Lithium Ion Battery Materials. Electrochim Acta. 2000. 45:2461–2466
    [13] Whittingham M S. Electrochemical energy storage and intercalation chemistry. Science. 1976.192: 1226
    [14] Rao M L, Francis R W, Christopher H A. Lithium-aluminium electrodes. J. Electrochem. Soc. 1977. 124: 1490–1492
    [15] Murphy D W, DiSalvo F J, Carides J N, Waszczak J V. Topochemical reactions of rutile related structures with lithium. Mat. Res. Bull. 1978. 13: 1395–1402
    [16] M Lazzari, B Scrosat. A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 1980. 127: 773–774
    [17]Whittingham M S. Insertion electrodes as SMART materials the first 25 years and future promises. Solid state Ionics. 2000.134: 169-178
    [18] Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0    
    [19] Thackeray M M, David W I F, Bruce P G, Goodenough J B. Lithium insertion into manganese spinels. Mat. Res. Bull. 1983, 18: 461–472
    [20] Nagaura T, Tozawa K, Lithium ion rechargeable battery. Prog. Batteries Solar Cells. 1990. 9: 209
    [21]陈立泉. 电动车锂离子电池的材料问题. 中国工程科学(Engineering Science). 2002. 4(11):32-36
    [22] 吴国良. 锂离子电池负极材料的现状与发展. 电池. 2001: 31(2): 54-57
    [23] 林永, 黄宗卿. 石墨作为锂离子电池负极材料的研究. 第二十四届中国化学与物理电源学术年会论文集 (哈尔滨 ) . 2000: 288- 289
    [24] 唐致远. 石墨镀铜及其用作锂离子电池负极的研究. 第二十四届中国化学与物理电源学术年会论文集(哈尔滨 ). 2000: 286- 287
    [25] 唐致远. 石墨负极材料的化学处理改性研究. 第二十四届中国化学与物理电源学术年会论文集 (哈尔滨 ) . 2000: 284- 285
    [26] 仇卫华. 锂离子电池负极材料-树脂包覆石墨的性能. 电源技术. 1999, 23( 1) : 7- 9
    [27] 杜翠薇. 锂离子电池非碳负极材料的研究进展. 第二十四届中国化学与物理电源学术年会论文集 (哈尔滨 ). 2000: 294- 295
    [28] Nshijima M. Li deintercalation-intercalation reaction and structural change in lithium transition metal nitrides Li7MnN4. J Eletrochem Soc, 1994, 141: 2966- 2971.
    [29]吴宇平,万春荣,江长印. 锂离子二次电池. 化学工业出版社. 2002
    [30]徐国宪,章庆权编. 化学电源. 新型国防工业出版社. 1984. 63—65
    [31]夏 熙,刘 玲. 二氧化锰在锂离子电池中的应用. 电源技术. 1997. 21(3)120-126
    [32]廖春发,郭守玉,陈辉煌. 锂离子电池正极材料的制备研究现状.江西有色金属. 2003. 17(2 ):34-36
    [33]李运姣,王晨生,孙召明.锂离子电池正极材料LiCoO2 和LiNiO2的研究进展. 稀有金属与硬质合金. 2002. 30(1):38-41
    [34] Li W, Currie J C. Morphology effects on the electrochemical performance of Li Ni1-xCOxO2. JElectrochem Soc. 1997. 144: 2773
    [35] Gummow R J, Thackeray M M. Characterization of LiCo1-yNiyO2 electrodes for rechargeable lithium cells. J Electrochem Soc. 1993. 140: 3365
    [36] Obrovac M N, Mao O, Dahn J R. Struture and electrochemistry of LiMO2 (M=Ti, Mn, Fe, Co, Cr, Ni) prepared by methanchemical synthesis. Solid State Ionics. 1998, 112: 9-19
    [37]吴川,吴锋,陈实,王国庆. 锂离子电池正极材料研究进展. 电池. 2000,30(1):36~38
    [38]郭鸣风,杨瑞敏,张泽波,叶劲草. LiCoO2的合成及其在锂蓄电池中的行为. 电化学. 1995.1(1):70~77
    
    [39]Wu Y P, Rahm E, Holze R. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries. Electrochim Acta. 2002. 47:3491-3507
    [40] 吴宇平,方世壁,刘昌炎. 锂离子电池正极材料氧化钴锂的进展. 电源技术. 1997.21(95): 208-209
    [41] 彭忠东,杨建红,邓朝阳. 锂离子电池正极材料的研制进展. 电池. 1999, 29(3): 125-127
    [42] Julien C, Nazri G A, Rougier A. Electrochemical performances of layered LiM1-yMyO2(M=Ni, Co, M’=Mg, Al, B) oxisides in lithium batteries. Solid State Ionics, 2000, 135: 121-130
    [43] 詹辉,周运鸿. 锂离子蓄电池正极材料的发展.电源技术. 1999, 23(增): 102-104
    [44] 陈德钧, 锂离子电池有希望的阴极材料LiNiO2. 电池, 1997. 27( 5): 234-237
    [45] 解晶莹, 尹鸽平, 史鹏飞. 锂镍氧化物的合成和电化学行为研究. 电源技术. 1997. 21(5): 185-189
    [46] Wang G X, Zhong S, Bradhurst D H. Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries. J Power Sources. 1998. 76(2): 141-46
    [47]Dahn J R, Von Sacken U, Juskow M W. Rechargeable LiNiO2/carbon cells. J Electrochem Soc. 1991. 137:2207
    [48]Monshtev R , Zlatilova P , Manev V. Synthesis of LiNiO2 in air atmosphere:X-ray diffraction characterization and electrochemical investigation. J Power Sources. 1996. 62(1):59-65
    [49]Vitins G, West K. Lithium intercalation into layered LiMnO2 . J Electrochem Soc, 1997, 144:2587
    [50]陈昌国,余丹梅,黄宗卿. 锂离子电池锰系正极材料的研究进展. 电池. 2000. 30(4):178-180
    [51] Gummow R J, Thackeray M M. An investgation of spinel-related and orthorhombic LiMnO2 and cathodes for rechargeable lithium batteries. J Electrochem Soc. 1994. 141(5):1178~1180
    [52]Gao Y, Dahn J R. The high temperature phase diagram of Li1-xMn2-xO4 and its implication. J Electrochem Soc. 1996. 143:1783-1788
    [53 ] Antonini A, Bellitto C , Pasqualli M . Factors affecting thestabilization of Mn spinel capacity upon storing and cycling at high temperatures. J Electrochem Soc. 1998 . 145: 2726- 2732
    [54] 郑洪河,徐仲榆. 影响LiMn2O4正极材料容量衰退的主要因素. 电池. 2001.31(3):119-122
    [55] Amatucci G G,Pereira N ,Zheng T . Enhancement of elec trochemical properties of LiMn2O4 through chemical substitution. J . Power Sources .1999.81-82 :39
    [56] 陈彦彬, 韩景立, 张刚, 等. 锂离子蓄电池正极材料LiMn2O4的研究进展. 电源技术, 2000 . (4) :238-242.
    [57] Song D , Ikuta H ,Wakihara M. Cyclability and dissolution of maganese in substituted stoichiometric and nonstoichiometric lithium manganese oxides at high temperature .
    
    
    Electrochemistry .2000 68(6) :460
    [58] 陈彦彬,刘庆国. 锂离子蓄电池正极材料LiMn2O4 高温容量衰减解析. 电源技术. 2002 . 26(1) :528
    [59] Guyonard D, Tarascon J M. Rechargeable Li1+xMn2O4 cells with a new electrolyte composition. J Electrochem Soc, 1993, 140:3071
    [60]Tarascon J M , Mckinnon W R, Coowar F, Bowmer T N, Amatucci G, Guyomard D. Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4 J Electrochem Soc, 1994, 141:1421-1431
    [61]Yamada A, Miura K, Hinokuma K, and Tanaka M. Synthesis and structural aspects of LiMn2O4±δ as a cathode for rechargeable lithium batteries. J Electrochem Soc, 1995, 142(7): 2149-2156
    [62]Yamada A, Tanaka M, Tanaka K, Sekai K. Jahn–Teller instability in spinel Li–Mn–O. J Power Sources, 1999, 81–82:73–78
    [63]Huang H T, Bruce P G. A 4V lithium manganese oxide cathode for rocking-chair lithium ion cells. J Electrochem Soc, 1994, 141(9): L106
    [64]Naghash A R, Lee J Y. Preparation of Spinel lithium manganese oxide by aqueous co-precipitation. J Power Sources. 2000. 85:284-293
    [65]Brboux, Tarascon J M, Shokoohi F K. The Use of Acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds. J Solid State Chem. 1991. 94:185
    [66]Hwang B J, Santhanam R, Liu D G. Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by a sol-gel method at low temperature. J Power Sources. 2001, 101:86-89
    [67]Hon Y M, Lin S P, Fung K Z, Hon M H. Synthesis and characterization of nano-LiMn2O4 powder by tartaric acid gel process. J European Ceramic Society. 2002. 22:653-660
    [68]Lee Y S, Sun Y K, Nahm K S. Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol–gel method for lithium secondary batteries. Solid State Ionics. 1998.109:285-294
    [69]Hwang K T, Um W S, Lee H S, Song J K, Chung K W. Powder synthesis and electrochemical properties of LiMn2O4 prepared by an emulsion-drying method. J Power Sources. 1998. 74:169-174
    [70]Yang W S, Liu Q G, Qiu W H, Lu S G, Yang L L. A citric acid method to prepare LiMn2O4 for lithium-ion batteries. Solid State Ionics. 1999. 121:79-84
    [71]Liu W, Farrington G C. Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the Pechini process. J Electrochem Soc.1996,143(3):879
    [72]Hayashi N , Ikuta H , Wakihara M. Cathode of LiMg yMn2-yO4 and LiMg yMn2 - yO4 -δ spinel
    
    
    phases for lithium secondary batteries. J Electrochem Soc .1999 .146 :1351-1354.
    [ 73] Sun Y K , Kim D W, Chou Y M. Synthesis and characterization of spinel LiMn2-xNi xO4 for lithium/ polymer battery application[J ] . J Power Sources. 1999, 79 :231 - 237.
    [74]Wohlfahrt M M , Butz A , Oesten R. The influence of doping on the operation of lithium manganese oxide spinel . J Power Sources.1997. 68 :582 - 585.
    [75]Yair E E , Vaughey J T , Thackeray , Michael M. LiNi xCu0. 5 - x Mn1. 5 O4 spinel electrodes superior high-potential cathode materials for batteries . electrochemical and structural studies. J Electrochem Soc. 1999. 146 (3) :908 - 913.
    [76]Amatucci G G, Pereira N , Zheng T. Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution . J Power Sources. 1999 , 81 - 82 :39 - 43.
    [77] Arora P , Popov B N ,White R E. Electrochemical investigations of cobalt doped LiMn2O4 as cathode material for lithium ion batteries . J Electrochem Soc. 1998. 145 (3) :807 - 815
    [78] Kockde A , Terg E , Gummow R J . The effect of multivalent cation dopants on lithium manganese spinel cathode. J Power Sources. 1998. 70 :247 - 252
    [79] Toshimi T,Hiroshi H, Hirotoshi E . Structure and electrochemical characterization of Li1 + xMn2 - xO4 for Li ion battery applications. J Electrochem Soc. 1996.143 (1) :100 - 114.
    [80]Tarascon J M. Li metal free rechargeable batteeries based on Li1-xMn2O4 cathode and carbon anodes. J Electrochem Soc. 1991.138:2 684
    [81]Park S H, Park K S, Sun Y K, Nahm K S. Syhthesis and characterization of a new spinel, Li1.02Al0.25Mn1.75O3.97S0.03, operating at potentials between 4.3 and 2.4V. J Electrochem Soc. 2000. 147(6):2116-2121
    [82]Sugiyama. Positive electrode material for secondary lithium battery. US patent, No.6087042. July 11.2000
    [83]吴晓梅,杨清河,吴浩青,宗祥福.锂离子电池阴极材料尖晶石结构Li1+XMn2-XO4研究.电化学.1998. 4(4):365
    [84]胡哓宏,杨汉西,艾新平,李升宪,洪昕林. LiMn2O4正极在高温下性能衰退现象的研究.电化学.1999. 5(2):224
    [85] Xia Y, Zhou Y , Masaki Y. Capacity fading on cycling of 4V Li/LiMn2O4 cells. J Electrochem Soc.1997.144:2593
    [86]Guyomard D,Tarascon J M.Rechargeable Li1+xMn2O4/carbon cells with a new electrolyte composition. J Electrochem Soc,1993;140:3071
    [87] Padhi A K, Nanjundaswamy K S, Masquelier C, Goodenough J B. Effect of structure on the Fe3+/Fe2+ redox couple in Iron phosphate, J. Electrochemical Soc. 1997. 144: 1609
    [88]Padhi A K, Nanjundaswamy K S , Goodenough J B. Phospho-olivines as positive-electrode
    
    
    materials for rechargeable lithium batteries. J Electrochem Soc. 1997. 144 (4) :1188 - 1194.
    [89] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. J.Electrochem. Soc. 2001. 148(3): A224-A229
    [90] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4. J. Power sources. 2001. 97-98: 498-502
    [91] Anna S A, Beata K, Lennart H. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and mossbauer spectroscopy study. J Solid State Inoics. 2000. 130(1-2): 41-52
    [92] Whittingham M S, Yangning S, Shoufeng Y, Samuel L. ntercalation Chemistry and battery material. Electrochemical Society-Salt Lake City 2002
    [93 ] MacNeil D D, Zhonghua L, Zhaohui C . A comparison of electrode/electrolyte reaction at elevated temperatures for various Li2ion battery cathodes . J Power Sources. 2002. 108 (1 - 2) :8 -14
    [94] Andersson A S , Thomas J O. The source of first cycle capacity loss in LiFePO4. J Power Sources 2001. 97 - 98 :498 - 502
    [95] Li G, Azuma H, i Tohda M. Optimized LiMnyFe1–yPO4 as the cathode for lithium batteries . J Electrochem. Soc. 2002. 149(6): A743-A747
    [96]Takahashi M , Tobishima S , Takei K. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 2002 .148 (3 - 4) :283 - 289
    [97] Yamada A, Kudo Y, Liu K Y. Phase Diagram of Lix (MnyFe1–y) PO4 (0≤x, y≤1) . J.Electrochem.Soc. 2001. 148: A1153-A1158
    [98] Takahashi M, Tobishima S, Takei K, Sakurai Y. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J Power sources. 2001. 97-98: 508-511
    [99] Ravet N, Chouinard Y, Magnan J F, Besner S, Gauthier M, Armand M .Electroactivity of natural and synthetic triphylite. J.Power sources. 2001. 97-98: 503-507
    [100]Okada S, Sawa S, Egashira M, Yamak J I, Tabuchi M, Kageyama H, Konishi T, Yoshino. A Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J. Power sources. 2001. 97-98: 430-432
    [101] Li G, Azuma H, Tohda M . Optimized LiMnyFe1–yPO4 as the Cathode for Lithium Batteries. J. Electrochem. Soc. 2002. 149(6): A743-A747
    [102] Li G, Azuma H, Tohda M. LiMnPO4 as the cathode for lithium batteries. Electrochemical and Solid Letters. 2002. 5(6): A135-A137
    [103] Andersson A S, Kalska B, H?ggstr?m L, John O. Thomas .Lithium extraction/insertion in LiFePO4: an X-ray diffraction and M?ssbauer spectroscopy study.Solid state Ionics. 2000. 130: 41-52
    
    [104] Shoufei Y, Zavalij P Y, Whittingham M S, hydrothermal synthesis of lithium iron phosphate cathode, Electrochemistry Communication. 2001.3:505-508
    [105]Yang S ,Song Y,Peter Y Z, Whittingham M S. Reactivity ,stability and electrochemical behavior of lithium iron phosphates . Electrochemistry Communications. 2002. 4:239 - 244.
    [106] Franger S, LiFePO4 Synthesis routes for enhanced electrochemical performance. J. Electrochem. Soc. 2002. 5(10): A231-A233
    [107] Croce F, Epifanio A D, Hassoun J, Deptula A, Olczac T, Scrosati B. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid Letters . 2002. 5(3): A47-A50
    [108]Doeff M M , Finones R , Yaoqin H. Electrochemical performance of Sol-Gel synthesized LiFePO4 in lithium battery. 11th International Meeting on Lithium Battery. Monterey. CA .USA :2002
    [109]Park K S, Son J T, Chung H T, Kim S J, Lee C H. Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochemistry Communications 5 (2003) 839-842
    [110] Croce F , Hassoun J , Persi L , A high-rate , long life lithium nano composite polymer electrolyte battery . Electrochem and Solid State Letters. 2001. 4 :A121 - A123
    [111]Ravet N , Chouinard Y, Magnan J F . Electroactivity of natural and synthetic triphylite. J Power Sources. 2001. 97 - 98 :503 - 507
    [112]Prosini P P , Zane D , Pasquali M. Improved electrochemical performance of a LiFePO4 based composite cathode. Electrochimica Acta. 2001. 46 :3517 -3523
    [113]Huang H , Yin S C , Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem and Solid State Letters. 2001. 4:A170- A172.
    [114]Zhaohui C , Dahn J R. Reducing carbon in LiFePO4/ C composite electrodes to maximize specific energy , volumetric energy , and tap density. J Electrochem Soc. 2002. 149 : A1184 - A1189
    [115] Prosini P P, Carewska M, Scaccia S, Wisniewski P, Pasquali M. Long-term cyclability of nanostructured LiFePO4. Electrochimica Acta 2003 48: 4205-4211
    [116]Chung S Y,Blocking J T ,Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials. 2002. 2 : 123 -128.
    [117]倪江锋,周恒辉,陈继涛,苏光耀. 铬离子掺杂对LiFePO4电化学性能的影响. 物理化学学报. 2004. 20(6):582-586.
    [118]吕正中,周震涛. LiFePO4/C复合正极材料的结构与性能. 电池. 2003. 33(5):269-271
    [119]施志聪,李晨,杨勇. LiFePO4新型正极材料电化学性能的研究. 电化学. 2003.9(1):9-13
    [120]甘晖,童庆松,张晓勤. 由PAM合成磷酸亚铁锂/碳及其充放电性能研究. 福建师范大学
    
    
    学报(自然科学版). 2003. 119(13):49-53
    [121] Yamada A, Kudo Y, Liu K Y. Reaction mechanism of the olivine-type Lix (Mn0.6Fe0.4) PO4 (0≤x≤1). J Electrochem.Soc. 2001. 148(7): A747-A754
    [122]Eriksson T, Hjelm A K, Lindbergh G, Gustafssona T. Kinetic study of LiMn2O4 cathodes by In situ XRD with constant-current cycling and potential stepping. J Electrochem Soc, 2002, 149(9):A1164-A1170
    [123]Xia Y Y , Yoshio M. An investigation of lithium Ion insertion into spinel structure Li-Mn-O compounds. J Electrochem Soc,1996,143(3):825-833
    [124]Ohzuku T, Kitagawa M, Hirai T. Electrochemistry of manganese dioxide in lithium nonaqueous cell. J Electrochem Soc, 1990,137:769-775
    [125]Lee Y J, Grey C P. 6Li magic angle spinning nuclear magnetic resonance study of the cathode materials Li1+δMn2-δO4-δ. J Electrochem Soc, 2002, 149(2):A103-A114
    [126]Tucker M C, Kroeck L, Reimer J A, Cairns E J. The influence of covalence on capacity retention in metal-substituted spinel 7Li NMR, SQUID, and electrochemical studies. J Electrochem Soc, 2002, 149(11):A1409-A1413
    [127]Park S C, Han Y S, Kang Y S, Lee P S, Ahn S H, Lee H M, Lee J Y. Electrochemical Properties of LiCoO2-coated LiMn2O4 prepared by solution-based chemical process. J Electrochem Soc, 2001, 148 (7):A680-A6 86
    [128]Franger S, Cras F L, Bourbon C, Rouault H. Comparison between different LiFePO4 synthesis routes and their influence on its phosico-chemical properties. J power Souces, 2003, 119-121:252-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700