用户名: 密码: 验证码:
血脑屏障开放后小胶质细胞和星型胶质细胞的反应及神经元损伤对血脑屏障调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血脑屏障(Blood–Brain Barrier,BBB)是血液与脑组织间的一种特殊屏障。由脑部的微血管内皮细胞、管周细胞、基膜、星型胶质细胞和部分神经元轴突末梢构成。在生理条件下,BBB为脑组织选择性通透营养物质,包括氧气、葡萄糖等。同时它可以保护脑组织不受血液中有毒物质的侵害,并将脑组织中的有害的成份过滤到血液中,维持了脑内环境的稳定,确保了中枢神经系统功能的正常执行。大量的研究表明,BBB通透性的改变和神经系统疾病密切相关。源于BBB的损伤和功能失调引起的神经系统的病变很多,其中包括脑缺血性疾病、脑肿瘤、神经退行性疾病(帕金森氏病,阿尔茨海默病)、癫痫、感染或炎症过程(脑膜炎、多发性硬化等)以及创伤等。一方面,在病理条件下,各种因素引起BBB通透性增高,血液中的大分子能够侵入脑组织,引起相应的病理反应。我们课题组以前成功建立了肾上腺素(AD)诱导的BBB开放的大鼠模型,证明了血液中的大分子如IgG可以漏出至脑实质,但这些大分子引起的脑内免疫反应知之甚少。另一方面,各种原因的脑损伤反过来也能够影响BBB的通透性,从而影响脑正常生理功能。但具体的病理改变及相应机制还不清楚。因此,研究BBB开放后的脑内免疫应答机制以及脑损伤对BBB的调控机制对于探讨BBB相关疾病的发病机理与防治策略具有重要意义。
     本研究分为两部分:
     一、小胶质细胞和星型胶质细胞对BBB开放后免疫应答机制研究
     通过我室成功建立的大鼠静脉注射AD诱导BBB开放模型,以小胶质细胞和星型胶质细胞这两种脑内最重要的免疫细胞为研究对象,采用PCR、Western blotting、免疫组化和免疫荧光双标等技术,观察Fcγ受体I(Fcγreceptor I,FcγRI)和Toll样受体4(Toll-like receptor 4,TLR4)这两条重要的免疫应答通路在这两种细胞中的激活情况,探讨BBB开放后脑内免疫应答机制。
     结果发现,大鼠尾静脉注射AD可以瞬间显著提高动脉血压。免疫组化显示,血压升高、BBB开放后有大量的血中IgG分子漏出至脑实质中。对于FcγRI通路,PCR结果表明BBB开放后FcγRI mRNA水平显著提高,Western blotting结果表明FcγRI蛋白水平也显著提高。免疫荧光结果显示:升高的FcγRI定位于小胶质细胞和星型胶质细胞。定量PCR结果表明FcγRI通路下游的关键分子脾脏酪氨酸激酶(Spleen tyrosine kinase,Syk)和效应分子Interleukin(IL)-10、IL-4也都显著提高。而对于TLR4通路,虽然PCR、Western blotting和免疫荧光双标等结果显示TLR4水平在这两种胶质细胞也有一定提高,但增高的幅度较FcγRI分子增高幅度小。令人感兴趣的是,与FcγRI通路不同,定量PCR结果显示TLR4通路的下游关键分子髓样分化初级反应基因88(Myeloid differentiation primary response gene 88,MyD88)和效应分子IL-12a、IL-1β水平均显著降低。
     我们的结果表明,AD诱导的BBB开放后,激活了小胶质细胞和星型胶质细胞抑炎相关的FcγRI通路,提高了下游分子Syk的表达,进而导致抑炎分子IL-10、IL-4表达的上调。同时也发现促炎相关的TLR4通路中虽然TLR4分子水平升高,但通路下游关键分子MyD88及效应分子IL-12a, IL-1β被显著抑制,提示了促炎通路TLR4介导的促炎反应被抑制。这些结果提示小胶质细胞和星型胶质细胞有效的执行看家(housekeeping)功能,限制了BBB开放后炎症反应的过度激活,从而保护了神经系统免受炎症反应的进一步损伤。
     二、糖氧剥夺(oxygen and glucose deprivation, OGD)诱导的神经元损伤调控单层血管内皮细胞通透性机制的研究
     采用成熟的体外单层血管内皮细胞BBB模型,通过OGD处理神经元细胞后,与星型胶质细胞共培养,将培养后的星型胶质细胞再与单层血管内皮细胞共培养,通过荧光标记大分子检测单层内皮细胞BBB模型的通透性变化,用Western blotting方法检测紧密连接蛋白Occludin和Claudin-5的表达状况。血管内皮生长因子(VEGF)是一个调节内皮细胞通透性的关键分子,我们采用ELISA方法检测了其在共培养细胞上清中的表达水平。进而,采用小分子干扰RNA(small interfering RNA,siRNA)干预星型胶质细胞中VEGF的表达,观察其对上述实验模型中单层血管内皮通透性及相关分子变化的影响,以探讨OGD诱导的神经元损伤对单层血管内皮细胞通透性的调控及其中可能的机制。
     结果发现,与OGD处理的神经元共培养后的星型胶质细胞可以显著提高单层内皮细胞的通透性,然而与正常神经元共培养后的星型胶质细胞则对单层内皮细胞通透性则没有明显影响。进一步的Western blotting结果显示,在此过程中内皮细胞间的紧密连接蛋白Occludin和Claudin-5在OGD处理的神经元组显著降低,提示这两种蛋白在OGD处理的神经元调控单层内皮细胞的通透性升高过程中发挥着重要作用。在此基础上,如果将星型胶质细胞去除,仅将OGD的神经元单独培养后的培养液与内皮细胞共培养,则不增加单层内皮细胞通透性,相应地,Occludin和Claudin-5蛋白也不发生明显变化,提示星型胶质细胞参与介导了OGD处理的神经元损伤诱导的BBB通透性增高。进一步的实验结果显示,OGD处理的神经元可以显著提高星型胶质细胞的VEGF表达;而通过RNA干扰技术阻断星型胶质细胞的VEGF表达,可以显著抑制OGD处理的神经元对单层内皮细胞通透性的影响,也相应地抑制了Occludin和Claudin-5蛋白表达量的改变。
     这些结果表明,OGD引起的神经元损伤可以诱导单层内皮细胞BBB模型通透性增高。这种神经元调控BBB通透性的作用需要由星型胶质细胞来介导完成。受损的神经元很可能是通过刺激星型胶质细胞高表达VEGF,而进一步降低内皮细胞紧密连接蛋白Occludin和Claudin-5的表达水平而提高内皮细胞BBB的通透性。
The blood-brain barrier (BBB) is a barrier between blood and brain perikaria, consisting of microvascular endothelial cells, basement membrane, pericytes, astrocytes and neuronal process. Under normal condition, BBB may filter nutrients including glucose and oxygen into the brain tissue. At the same time, BBB is also a special barrier that shields the brain from toxic substances in the blood, filters harmful compounds from the brain back to the bloodstream supplies, sustains environment steability, and ensures proper function of the central nervous system (CNS). Lots of reports have suggested the BBB permeability damage are closely related to CNS diseases, including stroke, brain tumor, Alzheimer’s disease (AD), Parkinson’s disease (PD). Under pathological condition, the increased BBB permibility will lead large molecules extruding into brain tissue, which correspondly induce immue responses. In our previous study, we have successfully established a rat model of BBB opening induced by injection of adrenalin (AD). We found that large molecules such as IgG extruded to brain parenchyma after BBB opening. But little is know on the details of immumological reaction that occurs under BBB opening. One the other hand, the damage of brain can affect BBB permeability, and finally affect the brain function. But the mechanisms of these processes still remain unknown. Therefore, there is great significance to study on the immune responses after BBB opening, and the regulation mechanism of brain damage on BBB.
     The reseach included two parts.
     ⅠThe immune response of microglia and astrocytes after BBB opening.
     In the present study, we used the established rat BBB opeing model induced by AD. We observed the immune response pathways of Fcγreceptor I (FcγRI) and Toll-like receptor 4 (TLR4) on microglia and astrocytes by PCR, Western blotting, immunohistochemistry, double immunofluorescence staining, and discussed the possible immune mechanism of microglia and astrocytes following BBB opening.
     The results showed that the arterial blood pressure was greatly increased and IgG extruded to brain parenchyma after the injection of AD, demonstrating the success of the BBB opening model. PCR, Western blotting and double immunofluorescence staining results showed that both FcγR? mRNA level and its protein expression were significantly increased. Spleen tyrosine kinase (Syk) is the key molecule in the downstream of FcγR? pathway, and cytokines interleukin (IL)-10, IL-4 are important effectors of anti-inflamation. Real time PCR results showed that all of these three FcγR? pathway related molecules increased significantly. For TLR4 pathway, even the molecule TLR4 expression were greatly increased, the expressions of the key molecule MyD88 and the effectors IL-12a, IL-1βof downstream of TLR4 pathway were greatly decreased.
     These results demonstrated after AD-induced BBB opening, FcγR? mediated anti-inflammatory responses were activated, while TLR4-mediated pro-inflammatory responses were inhibited. These indicated that microglia and astrocytes may serve a house-keeping function to limit excessive inflammatory reactions when large circulating molecules enter brain parenchyma after BBB opening.
     ⅡThe regulation of oxygen glucose deprivation (OGD)-treated neuron on the permeability of monolayer microvessel endothelial cell BBB model.
     We employed an in vitro BBB model of the monolayer microvessels endothelial cells co-cultured with astrocytes. OGD was used as a method to induce the damage to the neuron. We first co-cultured OGD-treated neuron with astrocytes. Then the astrocytes were co-cultured with endothelial cells. We tested the permeability of monolayer endothelial cells using fluorescence labeled large molecule, and tight junction proteins by Western blotting. As VEGF is a key molecule to regulate the endothelial cell permeability, we used VEGF siRNA to knockdown VEGF expression to observe its effect on the permeability of endothelial cells and the tight junction proteins induced by OGD-treated neuron.
     The results showed that the astrocytes co-cultured with OGD-treated neuron increased the permeability of monolayer endothelial cells, but the astrocytes co-cultured with normal neuron did not. Occludin and Claudin-5, two important tight junction proteins, were greatly decreased in OGD-treated neuron group, suggesting the proteins may play important roles in the OGD-treated neuron increased permeability of monolayer endothelial cell. If we removed the astrocytes, the increased OGD-neuron induced permeability of monolayer endothelial cell disappeared. And accordingly, the protein levels of Occludin and Claudin-5 did not change either. This result suggested that astrocytes were involved in the process of increasing permeability of monolayer endothelial induced by OGD-treated neuron. VEGF expression on astrocytes was found to be highly increased by OGD-treated neuron using Western blotting and ELISA. If the VEGF expression was knockdowned by VEGF siRNA in astrocytes before they were co-cultured with OGD-treated neuron, the increased permeability of monolayer endothelial cells induced by OGD-treated neuron was greatly inhibited, as well as the decreased expression of tight junction proteins, Occludin and Claudin-5.
     These results demonstrated that OGD-damaged neuron could increase the permeability of monolayer endothelial cells, which process was mediated by astrocytes. The OGD-treated neuron stimulated the astrocytes to secrete VEGF to down regulate Occludin and Claudin-5 expression, finally leading to promote the permeability of monolayer endothelial cells.
引文
1. Zlokovic, B.V., The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 2008. 57(2): p. 178-201.
    2. Persidsky, Y., et al., Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol, 2006. 1(3): p. 223-36.
    3. Rubin, L.L. and J.M. Staddon, The cell biology of the blood-brain barrier. Annu Rev Neurosci, 1999. 22: p. 11-28.
    4. Ballabh, P., A. Braun, and M. Nedergaard, The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis, 2004. 16(1): p. 1-13.
    5. McCarty, J.H., Cell biology of the neurovascular unit: implications for drug delivery across the blood-brain barrier. Assay Drug Dev Technol, 2005. 3(1): p. 89-95.
    6. Choi, Y.K. and K.W. Kim, Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep, 2008. 41(5): p. 345-52.
    7. Doolittle, N.D., et al., New frontiers in translational research in neuro-oncology and the blood-brain barrier: report of the tenth annual Blood-Brain Barrier Disruption Consortium Meeting. Clin Cancer Res, 2005. 11(2 Pt 1): p. 421-8.
    8. Mark, K.S. and T.P. Davis, Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol, 2002. 282(4): p. H1485-94.
    9. Fanning, A.S., et al., The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem, 1998. 273(45): p. 29745-53.
    10. Lai, C.H., K.H. Kuo, and J.M. Leo, Critical role of actin in modulating BBB permeability. Brain Res Brain Res Rev, 2005. 50(1): p. 7-13.
    11. Pardridge, W.M., Molecular biology of the blood-brain barrier. Mol Biotechnol, 2005. 30(1): p. 57-70.
    12. Wolburg, H. and A. Lippoldt, Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol, 2002. 38(6): p. 323-37.
    13. Hawkins, B.T. and T.P. Davis, The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev, 2005. 57(2): p. 173-85.
    14. McCarthy, K.M., et al., Occludin is a functional component of the tight junction. JCell Sci, 1996. 109 ( Pt 9): p. 2287-98.
    15. Saitou, M., et al., Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol, 1998. 141(2): p. 397-408.
    16. Bolton, S.J., D.C. Anthony, and V.H. Perry, Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience, 1998. 86(4): p. 1245-57.
    17. Dallasta, L.M., et al., Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol, 1999. 155(6): p. 1915-27.
    18. Gonzalez-Mariscal, L., et al., Tight junction proteins. Prog Biophys Mol Biol, 2003. 81(1): p. 1-44.
    19. Piontek, J., et al., Formation of tight junction: determinants of homophilic interaction between classic claudins. Faseb J, 2008. 22(1): p. 146-58.
    20. Honda, M., et al., Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5. Cell Mol Neurobiol, 2006. 26(2): p. 109-18.
    21. Nitta, T., et al., Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol, 2003. 161(3): p. 653-60.
    22. Kubota, K., et al., Ca(2+)-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions. Curr Biol, 1999. 9(18): p. 1035-8.
    23. Del Zoppo, G.J., et al., Vascular matrix adhesion and the blood-brain barrier. Biochem Soc Trans, 2006. 34(Pt 6): p. 1261-6.
    24. Allt, G. and J.G. Lawrenson, Pericytes: cell biology and pathology. Cells Tissues Organs, 2001. 169(1): p. 1-11.
    25. Lai, C.H. and K.H. Kuo, The critical component to establish in vitro BBB model: Pericyte. Brain Res Brain Res Rev, 2005. 50(2): p. 258-65.
    26. Gonul, E., et al., Early pericyte response to brain hypoxia in cats: an ultrastructural study. Microvasc Res, 2002. 64(1): p. 116-9.
    27. Dore-Duffy, P., et al., Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res, 2000. 60(1): p. 55-69.
    28. Lindahl, P., et al., Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 1997. 277(5323): p. 242-5.
    29. Gerhardt, H., H. Wolburg, and C. Redies, N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn, 2000. 218(3): p. 472-9.
    30. Nakagawa, S., et al., Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol, 2007. 27(6): p. 687-94.
    31. Steiner, J., et al., Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci, 2007. 8: p. 2.
    32. Tao-Cheng, J.H. and M.W. Brightman, Development of membrane interactions between brain endothelial cells and astrocytes in vitro. Int J Dev Neurosci, 1988. 6(1): p. 25-37.
    33. Mi, H., H. Haeberle, and B.A. Barres, Induction of astrocyte differentiation by endothelial cells. J Neurosci, 2001. 21(5): p. 1538-47.
    34. Tao-Cheng, J.H., Z. Nagy, and M.W. Brightman, Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci, 1987. 7(10): p. 3293-9.
    35. Abbott, N.J., Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat, 2002. 200(6): p. 629-38.
    36. Dehouck, M.P., et al., An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem, 1990. 54(5): p. 1798-801.
    37. Rubin, L.L., et al., A cell culture model of the blood-brain barrier. J Cell Biol, 1991. 115(6): p. 1725-35.
    38. Schinkel, A.H., P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev, 1999. 36(2-3): p. 179-194.
    39. Haseloff, R.F., et al., In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol, 2005. 25(1): p. 25-39.
    40. Araque, A., et al., SNARE protein-dependent glutamate release from astrocytes. J Neurosci, 2000. 20(2): p. 666-73.
    41. Gee, J.R. and J.N. Keller, Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int J Biochem Cell Biol, 2005. 37(6): p. 1145-50.
    42. Anderson, C.M. and M. Nedergaard, Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci, 2003. 26(7): p. 340-4; author reply 344-5.
    43. Zonta, M., et al., Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci, 2003. 6(1): p. 43-50.
    44. Giaume, C. and K.D. McCarthy, Control of gap-junctional communication in astrocytic networks. Trends Neurosci, 1996. 19(8): p. 319-25.
    45. Kirchhoff, F., R. Dringen, and C. Giaume, Pathways of neuron-astrocyte interactions and their possible role in neuroprotection. Eur Arch Psychiatry Clin Neurosci, 2001. 251(4): p. 159-69.
    46. Suarez, I., G. Bodega, and B. Fernandez, Glutamine synthetase in brain: effect of ammonia. Neurochem Int, 2002. 41(2-3): p. 123-42.
    47. Kacem, K., et al., Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia, 1998. 23(1): p. 1-10.
    48. Abbott, N.J., Dynamics of CNS barriers: evolution, differentiation, and modulation.Cell Mol Neurobiol, 2005. 25(1): p. 5-23.
    49. Weller, R.O., S. Kida, and E.T. Zhang, Pathways of fluid drainage from the brain--morphological aspects and immunological significance in rat and man. Brain Pathol, 1992. 2(4): p. 277-84.
    50. Deane, R. and B.V. Zlokovic, Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res, 2007. 4(2): p. 191-7.
    51. Staddon, J.M. and L.L. Rubin, Cell adhesion, cell junctions and the blood-brain barrier. Curr Opin Neurobiol, 1996. 6(5): p. 622-7.
    52. Ohtsuki, S. and T. Terasaki, Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res, 2007. 24(9): p. 1745-58.
    53. Abbott, N.J., L. Ronnback, and E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006. 7(1): p. 41-53.
    54. Pardridge, W.M., Blood-brain barrier delivery. Drug Discov Today, 2007. 12(1-2): p. 54-61.
    55. Fetler, L. and S. Amigorena, Neuroscience. Brain under surveillance: the microglia patrol. Science, 2005. 309(5733): p. 392-3.
    56. McGeer, P.L., et al., Microglia in degenerative neurological disease. Glia, 1993. 7(1): p. 84-92.
    57. Knott, C., G. Stern, and G.P. Wilkin, Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci, 2000. 16(6): p. 724-39.
    58. Mirza, B., et al., The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience, 2000. 95(2): p. 425-32.
    59. Mackenzie, I.R., Activated microglia in dementia with Lewy bodies. Neurology, 2000. 55(1): p. 132-4.
    60. Jellinger, K.A., Cell death mechanisms in Parkinson's disease. J Neural Transm, 2000. 107(1): p. 1-29.
    61. Lawson, L.J., et al., Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience, 1990. 39(1): p. 151-70.
    62. Li, H., et al., Characterization and distribution of phagocytic macrophages in multiple sclerosis plaques. Neuropathol Appl Neurobiol, 1993. 19(3): p. 214-23.
    63. Bo, L., et al., Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. J Neuroimmunol, 1994. 51(2): p. 135-46.
    64. Brosnan, C.F., et al., Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology, 1995. 45(6 Suppl 6): p. S16-21.
    65. Boyle, E.A. and P.L. McGeer, Cellular immune response in multiple sclerosis plaques. Am J Pathol, 1990. 137(3): p. 575-84.
    66. Barker, C.F. and R.E. Billingham, Immunologically privileged sites. Adv Immunol, 1977. 25: p. 1-54.
    67. Medawar, P.B., Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol, 1948. 29(1): p. 58-69.
    68. Lucchinetti, C., et al., Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol, 2000. 47(6): p. 707-17.
    69. Perry, V.H., A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J Neuroimmunol, 1998. 90(2): p. 113-21.
    70. Perry, V.H., et al., The blood-brain barrier and the inflammatory response. Mol Med Today, 1997. 3(8): p. 335-41.
    71. Brabb, T., et al., Triggers of autoimmune disease in a murine TCR-transgenic model for multiple sclerosis. J Immunol, 1997. 159(1): p. 497-507.
    72. Brabb, T., et al., In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J Exp Med, 2000. 192(6): p. 871-80.
    73. Scott, B., et al., A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity, 1994. 1(1): p. 73-83.
    74. Ploix, C., D. Lo, and M.J. Carson, A ligand for the chemokine receptor CCR7 can influence the homeostatic proliferation of CD4 T cells and progression of autoimmunity. J Immunol, 2001. 167(12): p. 6724-30.
    75. Carson, M.J., J.C. Thrash, and D. Lo, Analysis of microglial gene expression: identifying targets for CNS neurodegenerative and autoimmune disease. Am J Pharmacogenomics, 2004. 4(5): p. 321-30.
    76. Carson, M.J., et al., CNS immune privilege: hiding in plain sight. Immunol Rev, 2006. 213: p. 48-65.
    77. Hendriks, J.J., et al., Macrophages and neurodegeneration. Brain Res Brain Res Rev, 2005. 48(2): p. 185-95.
    78. Greenberg, S., Modular components of phagocytosis. J Leukoc Biol, 1999. 66(5): p. 712-7.
    79. D'Andrea, A., et al., Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor alpha production. J Exp Med, 1995. 181(2): p. 537-46.
    80. Gerber, J.S. and D.M. Mosser, Reversing lipopolysaccharide toxicity by ligating the macrophage Fc gamma receptors. J Immunol, 2001. 166(11): p. 6861-8.
    81. Janeway, C.A., Jr. and R. Medzhitov, Innate immune recognition. Annu RevImmunol, 2002. 20: p. 197-216.
    82. Akira, S., S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity. Cell, 2006. 124(4): p. 783-801.
    83. Lee, H.K. and A. Iwasaki, Innate control of adaptive immunity: dendritic cells and beyond. Semin Immunol, 2007. 19(1): p. 48-55.
    84. Lord, K.A., B. Hoffman-Liebermann, and D.A. Liebermann, Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene, 1990. 5(7): p. 1095-7.
    85. Muzio, M., et al., IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science, 1997. 278(5343): p. 1612-5.
    86. Adachi, O., et al., Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity, 1998. 9(1): p. 143-50.
    87. Kawai, T., et al., Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 1999. 11(1): p. 115-22.
    88. Lu, Y.C., W.C. Yeh, and P.S. Ohashi, LPS/TLR4 signal transduction pathway. Cytokine, 2008. 42(2): p. 145-51.
    89. Swantek, J.L., et al., IL-1 receptor-associated kinase modulates host responsiveness to endotoxin. J Immunol, 2000. 164(8): p. 4301-6.
    90. Lomaga, M.A., et al., TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev, 1999. 13(8): p. 1015-24.
    91. Gohda, J., T. Matsumura, and J. Inoue, Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol, 2004. 173(5): p. 2913-7.
    92. Sato, S., et al., Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol, 2005. 6(11): p. 1087-95.
    93. Kulkarni, S., et al., Stress and hypertension. Wmj, 1998. 97(11): p. 34-8.
    94. Kuang, F., et al., Extravasation of blood-borne immunoglobulin G through blood-brain barrier during adrenaline-induced transient hypertension in the rat. Int J Neurosci, 2004. 114(6): p. 575-91.
    95. Gotow, T. and P.H. Hashimoto, Plasma membrane organization of astrocytes in elasmobranchs with special reference to the brain barrier system. J Neurocytol, 1984. 13(5): p. 727-42.
    96. Xu, J. and E.A. Ling, Studies of the ultrastructure and permeability of the blood-brain barrier in the developing corpus callosum in postnatal rat brain using electron dense tracers. J Anat, 1994. 184 ( Pt 2): p. 227-37.
    97. Blanco, A.M., et al., Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol, 2005. 175(10): p. 6893-9.
    98. Kim, D.C., et al., Effect of rottlerin, a PKC-delta inhibitor, on TLR-4-dependent activation of murine microglia. Biochem Biophys Res Commun, 2005. 337(1): p. 110-5.
    99. Mukhopadhyay, S., et al., The potential for Toll-like receptors to collaborate with other innate immune receptors. Immunology, 2004. 112(4): p. 521-30.
    100. Daeron, M., Fc receptor biology. Annu Rev Immunol, 1997. 15: p. 203-34.
    101. Gessner, J.E., et al., The IgG Fc receptor family. Ann Hematol, 1998. 76(6): p. 231-48.
    102. Ravetch, J.V., Fc receptors. Curr Opin Immunol, 1997. 9(1): p. 121-5.
    103. Song, X., et al., Fcgamma receptor I- and III-mediated macrophage inflammatory protein 1alpha induction in primary human and murine microglia. Infect Immun, 2002. 70(9): p. 5177-84.
    104. Greenberg, S., P. Chang, and S.C. Silverstein, Tyrosine phosphorylation of the gamma subunit of Fc gamma receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J Biol Chem, 1994. 269(5): p. 3897-902.
    105. Rowley, R.B., et al., Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Ig alpha/Ig beta immunoreceptor tyrosine activation motif binding and autophosphorylation. J Biol Chem, 1995. 270(19): p. 11590-4.
    106. Denning, T.L., et al., Expression of IL-10 receptors on epithelial cells from the murine small and large intestine. Int Immunol, 2000. 12(2): p. 133-9.
    107. Suzuki, Y., et al., IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii. J Immunol, 2000. 164(10): p. 5375-82.
    108. Chaudhary, A., T.M. Fresquez, and M.J. Naranjo, Tyrosine kinase Syk associates with toll-like receptor 4 and regulates signaling in human monocytic cells. Immunol Cell Biol, 2007. 85(3): p. 249-56.
    109. Olson, J.K. and S.D. Miller, Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol, 2004. 173(6): p. 3916-24.
    110. Bowman, C.C., et al., Cultured astrocytes express toll-like receptors for bacterial products. Glia, 2003. 43(3): p. 281-91.
    111. Akira, S. and S. Sato, Toll-like receptors and their signaling mechanisms. Scand J Infect Dis, 2003. 35(9): p. 555-62.
    112. Zhang, X., et al., Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood, 2007. 110(1): p. 228-36.
    113. Romagnani, S., The Th1/Th2 paradigm. Immunol Today, 1997. 18(6): p. 263-6.
    114. Trinchieri, G., Interleukin-12: a cytokine at the interface of inflammation andimmunity. Adv Immunol, 1998. 70: p. 83-243.
    115. Underhill, D.M., Macrophage recognition of zymosan particles. J Endotoxin Res, 2003. 9(3): p. 176-80.
    116. Lucas, M., et al., Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion. J Immunol, 2003. 171(5): p. 2610-5.
    117. Sutterwala, F.S., et al., Selective suppression of interleukin-12 induction after macrophage receptor ligation. J Exp Med, 1997. 185(11): p. 1977-85.
    118. Brightbill, H.D., et al., Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science, 1999. 285(5428): p. 732-6.
    119. Herx, L.M. and V.W. Yong, Interleukin-1 beta is required for the early evolution of reactive astrogliosis following CNS lesion. J Neuropathol Exp Neurol, 2001. 60(10): p. 961-71.
    120. Ding, L., et al., IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol, 1993. 151(3): p. 1224-34.
    121. Fiorentino, D.F., et al., IL-10 inhibits cytokine production by activated macrophages. J Immunol, 1991. 147(11): p. 3815-22.
    122. Abbott, N., Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat, 2002. 200(5): p. 527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700