用户名: 密码: 验证码:
重组腺病毒介导PUMA基因治疗胰腺癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌是一种高度恶性的肿瘤,其发生发展与多种基因异常有关。胰腺癌手术切除率低,传统的治疗效果差,有待于探讨新的治疗方法。近年来发现,凋亡抑制在胰腺癌的发病机制中起重要作用,因此,通过增加细胞内促凋亡蛋白的表达来诱导细胞凋亡是胰腺癌治疗的有效措施之一。
     PUMA是2001年发现的具有较强的促凋亡作用的P53下游基因,是公认的抑癌基因。PUMA在许多恶性肿瘤中表达缺失或低表达,PUMA低表达与恶性肿瘤的发生发展有关,并且恢复细胞内PUMA表达具有明显的肿瘤生长抑制作用。本课题旨在探讨PUMA在胰腺癌中的表达及意义及PUMA基因在胰腺癌中的作用。
     第一部分PUMA在胰腺癌组织中的表达及临床意义
     目的:研究胰腺癌组织中PUMA蛋白表达与临床病理因素的关系,初步探讨PUMA在胰腺癌发生发展中的作用。
     方法:应用免疫组化Envision方法检测60例胰腺导管癌组织石蜡标本中PUMA,Bcl-2和蛋白表达以及19例正常胰腺组织石蜡标本中PUMA蛋白表达,RT-PCR、Western blotting检测进一步证实免疫组化的检测结果。TUNEL检测细胞凋亡,分析PUMA表达与临床病理学指标的关系以及PUMA与AI、P53、Bcl-2表达的相关性。
     结果:PUMA在胰腺癌组织中的阳性率为30%(18/60),低于正常胰腺组织90%(17/19),差异有显著性(P=0.002);RT-PCR、Western blotting检测证实了免疫组化结果;PUMA表达与肿瘤大小(P<0.05),淋巴结转移(P<0.05)和远处转移有关(P<0.05),而与肿瘤分化程度和TNM分期无关(分别P>0.05);在PUMA阳性和阴性表达的肿瘤组织中,细胞凋亡指数(AI)分别17.63%±6.27%和13.44%±5.86%,差异有显著性(p<0.05);在PUMA阴性表达的肿瘤组织中的细胞凋亡指数明显低于正常胰腺组织(16.12 %±5.72 %),差异有显著性(p<0.05);P53和Bcl-2在胰腺癌中的表达率分别为46.7%(28/60)和41.7%(25/60),PUMA与P53和Bcl-2表达分别有显著的负相关性(p=0.013和P=0.046)。
     结论:胰腺癌细胞凋亡抑制及肿瘤转移与PUMA蛋白表达缺失有关,PUMA可能是胰腺癌预后的判断指标和基因治疗的靶点。
     第二部分胰腺癌细胞CAR受体表达与5型腺病毒转导效率的关系
     目的:通过体外、体内实验探讨胰腺癌肿瘤细胞CAR表达水平与腺病毒转导效率的关系,为腺病毒相关的生物制剂在胰腺癌患者个体化应用提供实验依据。
     方法:先将载有绿色荧光蛋白的Ad5型腺病毒(Ad-GFP)以100MOI分别感染人胰腺癌细胞系AsPC-1、CaPan-1、BxPC-3、Panc-1细胞6~96h,再以20~1000 MOI的Ad-GFP感染AsPC-1、CaPan-1、BxPC-3、Panc-1细胞24 h。感染结束后分别通过流式细胞术检测Ad-GFP在不同细胞系的转导效率。采用Western blotting、免疫组化方法检测这些细胞中CAR的表达水平。将CaPan-1、BxPC-3细胞分别接种于裸鼠背部,接种细胞数分别为5×106,建立裸鼠移植瘤模型。待肿瘤长径达10mm时,在裸鼠移植瘤内注射Ad-GFP 1×108 pfu.试验分2组,第一组:1-14天内动态观察肿瘤内荧光的变化,第二组:3天处死裸鼠,剖取瘤组织,荧光显微镜观察冰冻切片中GFP的表达情况以判定腺病毒在瘤体内的转导效率,同时western blot法检测瘤组织内的CAR表达水平。
     结果:4种细胞的转染效率在24小时最高,AsPC-1、CaPan-1细胞在MOI50时,转染效率近100%,Panc-1细胞在200MOI时转染效率接近100%,而BxPC-3在MOI1000时,转染效率为60%。各种细胞的CAR蛋白表达水平与腺病毒的转导效率呈正相关。在注射Ad-GFP的裸鼠移植瘤组织中,3天可见CaPan-1瘤组织内有明显的绿色荧光,而BxPC-3瘤组织内荧光强度少于前者;14天后荧光完全消失。冰冻切片发现CaPan-1细胞内明显点状荧光,而BxPC-3细胞荧光较弱。CAR在CaPan-1移植瘤组织的表达高于BxPC-3移植瘤组织,表明瘤体内CAR表达水平与Ad-GFP的转导效率也呈正相关。
     结论:体内外实验均显示肿瘤细胞的CAR表达水平与5型腺病毒转导效率密切相关,胰腺癌患者治疗前检测组织中CAR表达水平有助于规范腺病毒载体的基因治疗药物个体化使用
     第三部分携带PUMA基因的重组腺病毒(Ad-PUMA)的构建及制备
     目的:构建含有人PUMA的重组腺病毒,为下一步转染人胰腺癌细胞研究奠定基础。
     方法:以重组质粒pCEP4-PUMA中提取的PUMA基因为模板,采用PCR法扩增基因片段。将扩增的基因片段插入穿梭质粒pShuttle-CMV,并转化大肠肝菌BJ-5183。筛选重组质粒pShuttle-CMV-PUMA,与pAdEasy-1一起电转化BJ5183细胞。筛选重组腺病毒质粒pAdEasy-PUMA,用Lipofectamine转染293细胞,制备携带人PUMA基因的重组复制缺陷型腺病毒(Ad-PUMA)。氯化铯密度梯度离心法纯化Ad-PUMA病毒颗粒,并测定病毒滴度。
     结果①经限制性内切酶酶切,证实Ad-PUMA构建成功②限制性内切酶酶切确定穿梭质粒重组于病毒骨架;显微镜下观察HEK293细胞形态,证实病毒包装复制成功③病毒滴度2.032×1010pfu/ml,达到进一步体内、外实验要求。
     结论:成功构建了重组腺病毒Ad-PUMA,为了解PUMA在胰腺癌中的治疗作用奠定基础。
     第四部分Ad-PUMA治疗胰腺癌的体外研究
     目的:探讨Ad-PUMA对体外胰腺癌细胞的凋亡促进作用和生长抑制作用.
     方法:以不同MOI值的Ad-PUMA作用AsPC-1、CaPan-1、BxPC-3、Panc-1细胞,MTT检测PUMA对细胞增殖的影响,PI染色、DNA Ladder、流式细胞仪检测PUMA对细胞凋亡的影响;Western blotting检测细胞内PUMA蛋白表达的变化以及Bax、Bcl-2、细胞色素C、Caspase-9,3表达的影响,流式细胞仪检测细胞内Caspase活性
     结果: Ad-PUMA抑制胰腺癌细胞系细胞增殖和生长,并且PUMA抑制胰腺癌细胞生长表现出时间依赖性和剂量依赖性,但PUMA对不同胰腺癌细胞的生长抑制作用并不相同,在相同条件下,Aspc-1细胞的生长抑制最明显,而BxPC-3的生长抑制不明显。DNA Ladder、FCM、PI染色分析检测到明显的Ad-PUMA诱导的细胞凋亡。Western blotting发现,在PUMA表达上调的同时,细胞内Bax、Bcl-2、细胞色素C、Caspases蛋白表达也随着变化,caspases酶的活性明显提高。
     结论:PUMA通过促进凋亡而抑制胰腺癌细胞生长,PUMA通过线粒体途径发挥作用.
     第五部分Ad-PUMA治疗胰腺癌的体内研究
     目的:探讨Ad-PUMA对体内胰腺癌细胞的生长抑制作用。
     方法:建立裸鼠AsPC-1胰腺癌模型,待瘤体生长到10mm左右。治疗前一天,移植肿瘤局部注射Ad-PUMA1×108PUF/ml/50ul,第3d注射第二次,第6 d注射第3次,从治疗前一天开始测量肿瘤体积,每2d测量一次至第21天。在治疗21天,TUNEL检测细胞凋亡、免疫组化检测ki67了解细胞增殖,western blotting和RT-PCR检测细胞PUMA表达的变化。
     结果:在实验组,肿瘤生长明显减慢,21天后的肿瘤的体积明显低于对照组,而细胞内PUMA表达明显高于对照组;实验组细胞增殖受抑制,细胞凋亡指数增加。
     结论: Ad-PUMA转染促进体内肿瘤细胞凋亡并抑制其生长。
     第六部分Ad-PUMA联合吉西他滨治疗胰腺癌的体内研究
     目的:探讨Ad-PUMA联合吉西他滨对体内外胰腺癌细胞生长的影响。
     方法:将AsPC-1细胞分别暴露于系列浓度的吉西他滨或系列浓度吉他西滨联合5MOI Ad-PUMA 48h,MTT法测定细胞的存活率。按照上述方法建立裸鼠AsPC-1胰腺癌模型,待瘤体生长到10mm左右,吉西他滨、Ad-PUMA或两者联合治疗移植瘤。于0、3、6天,肿瘤局部注射Ad-PUMA 1×109PUF/ml/50ul,吉他西滨的给药方式为腹腔注射,剂量为100mg/kg,于0、3、6天给药。从治疗前一天开始测量肿瘤体积,2d测量一次至21天。
     结果:吉他西滨以剂量依赖方式抑制AsPC-1细胞增殖,但吉他西滨联合Ad-PUMA后对AsPC-1细胞增殖的抑制更加明显,联合后的IC50为(0.0076±0.012)μg/ml,其敏感性较单独吉西他滨作用增加6.9倍。单独以Ad-PUMA治疗,肿瘤生长抑制率为62.7%,单独吉西他滨治疗时,肿瘤生长抑制率为43.2%,联合后的抑制率为82% (P<0.01)。
     结论:PUMA基因转染增强胰腺癌细胞对吉西他滨的化疗敏感性,增强抗肿瘤效果。
The incidence of pancreatic cancer is increasing,so far neither an early diagnosis nor a therapeutic strategy for advanced lesions has been developed.It is an urgent mission for both the clinicians and the scientists who are challenging pancreatic cancer to find a breakthrough using new technologies.Apoptosis, also called programmed cell death, is a genetically encoded program that disposes of unwanted cells. Disruptions of this pathway have been implicated as a cause of cancer. Therefore, genetic restoration of the apoptotic pathway or introduction of pro-apoptotic molecules is an attractive approach for treating tumors, including malignant pancreatic cancer. Recently, p53 upregulated modulator of apoptosis (PUMA) was identified as a p53-inducible pro-apoptotic molecule,. PUMA shares homology with Bcl-2 family proteins within a short stretch of amino acids termed the BH3 domain, a region that allows interaction among the family members. Proteins with similar homology, called BH3-only proteins, constitute the third subgroup of the Bcl-2 family and include Bad, Bid, Bik, and Bim .These proteins play an important role in apoptosis induction.It has been reported PUMA is lost or lower expression in many cancer cells,which is significantly related to tumorgenesis.The therapeutic possibility of PUMA as a gene target in pancreatic cancer was evaluated.
     Pant one The expression and biological function of PUMA in pancreatic carcinoma
     OBJECTIVE: To investigate the expression of PUMA in pancreatic cancers(PC)tissue and its correlations to clinicopathologic features and carcinogenesis
     METHODS:The expression of PUMA ,P53and bcl-2 in 60 specimens of PC were assessed by immunohistochemical staining Envision method ,so was PUMA in 19 speciments of no-cancer pancreatic tissues,PUMA gene was assessed by RT-PCR and Western blot method in 5 cases of newly resected PC tissues and normal PC.Apoptosis index(AI) was determinded with TUNEL method; PUMA correlations to p53、bcl-2、AI and clinicopathologic factors were analyzed .
     RESULTS: The positive rates of PUMA was significantly lower in PC 30%(18/60)than in no-cancer pancreatic tissues90%(17/19()p<0.01), The results of RT-PCR and Western blot verified the results of PUMA expression by IP analysis.PUMA expression in the tumor was correlated with the tumor size (p<0.05) and lymph node (P<0.05) and distant metastasis (P<0.05). No relationship to any other clinical or pathological features were found. The AI was 17.63%±6.27%, 13.44%±5.86% in cancer tissues of positive and negative expression of PUMA, respectively (P < 0.05). the AI in cancer tissues of negative expression of PUMA was lower than that of in normal pancreatic tissues 16.12 %±5.72 %,( p<0.05 ) .The positive rate of p53 and bcl-2 in PC were 46.7%(28/60) and 41.7%(25/60).Spearman rank correlation coefficient test revealed a significant inverse association for PUMA and bcl-2 , PUMA and p53 expression (P<0.05, respectively)
     CONCLUSION: The expression of PUMA is lost or lower in pancreatic cancer, which may be involved in the oncogenesis development and lymph node and distant metastasis,PUMA may be as a new target for the therapy of pancreatic cancer.
     Pant two Relationship between coxsackie adenovirus receptor expression levels and the ad5 transduction eficiency in pancreatic cancer
     0bjective : To investigate the relationship between coxsackie adenovirus receptor(CAR)expression and the eficiency of adenovirus gene transfer,in an effort to provide evidence for the clinical application of adenovirus-related Biopreparations.
     Methods:The pancreatic cancer cell lines(AsPC-1、CaPan-1、BxPC-3、Panc-1) were infected with Ad-GFP(100 MOI) labeled by immunofluorescence:0-96h later we measured the Ad-GFP transduction eficiencies in the above cell lines by flow cytometric analysis,and Ad-GFP(0-1000MOI) infected cells obove for 24h, transduction eficiencies was measured.CAR expression levels in vitro were assayed by Western-blotting and IP.CaPan-1、BxPC-3(5×106)cells were implanted subcutaneously into nude mice.When the tumor sizes reached 10 mm in diameter,the xenografts were injected with Ad-GFP(1×108pfu).During 1-14 days, GFP wsa observed by DCC-3 camara in the first groups,and in another group ,after 72h the mice were killed and the GFP expression were observed by fluorescence microscopy to determine the transduction efficiency.CAR expression was detected by Western blotting in the xenograft tissues.
     Results:We found that Ad transduction efficiencies varied greatly in the pancreatic ce11s of the same tissue 0rigin.The transduction efficiencies in AsPC-1、CaPan-1 (100%,50 MOI), Panc-1(100%,MOI200), BxPC-3(60%,1000MOI) was different.Consistently,GFP expression was much higher in exografts sections resulting from CaPan-1 than thatfrom BxPC-3.Increased CAR expression was predictive for more efficient gene transfer in vitro an d in vivo.
     Conclusion:CAR expression level is closely correlated to Ad transduction efficiency,which suggests that measurement of CAR expression in tumor tissues is useful for individualized adenovirus based gene therapy in clinic.
     Part three Construction and Identification of Recombinant Adenovirus for Expression of PUMA gene
     Objective To construct a recombinant adenovirus for expression of PUMA gene.
     Methods Amplify gene fragment by PCR using the PUMA gene extracted from recombinant plasmid pHA-PUMA as a template insert into shuttle plasmid pShuttle-CMV and transform to E coli DH 5a.Screen recombinant plasmid pShuttle-CMV-PUMA and transform to competent BJ5183 cells previously transformed witll pAdEasy-1.Screen recombinant plasmid pAdEasy-PUMA and transfect to 293 cels in mediation of Lipofectamine to prepare replication-deficient adenovirus Ad-PUMA carrying PUMA gene.Purify the prepared
     Ad-PUMA virus particles by density gradient centrifugation with cesium chloride and determine the titer.
     Results Recombinants were selected by kanamycin resistence and confirmed by PacI.The restrictive endonuclease analysis confirmed that correct recombinant adenovirus plasmid Was constructed(30 kb and 4.5 kb fragments were dotained after PacI digestion). Twenty four hours after transfection,the fluorescence Was observed in 293 cels,and the titer of purified Ad-PUMA was 2.032×1010pfu/ml
     Conclusion Recombinant adenovirus Ad-PUMA for expression of PUMA was successfully constructed ,which provided a basis for gene therapy of tumors.
     Part four Expremental study of Ad-PUMA on pancreatic cancer in vitro
     Objective To study the effect of recombinant adnenovirus vector mediated PUMA(Ad-PUMA)on pancreatic cancer cells (PC)
     Methods AsPC-1、CaPan-1、BxPC-3、Panc-1 cells were infected with Ad-PUMA, respectively. The inhibition rate of PC were examined by MTT,the apoptosis was checked by FCM,PI staining and DNA Ladder. Western blotting was used to examine the expression of PUMA and its downstreaming Bax、Bcl-2、cytochrome c、Caspases-9,3, FCM was used to examine the activity of caspases. Results: The Proliferation rate of PC cell lines were suppressed significantly by Ad-PUMA infection in a viral dose-dependent and time-dependent manner,and significant cell apoptosis was checked through DNA Ladder,FCM,PI staining. The expression of PUMA protein increased with titer of Ad-PUMA, they were all does-dependant and time-dependant.With the PUMA upregulation, Bax、Bcl-2、cytochrome c、Caspases-9,3 protein in cells changed too.The activity of caspase-9,3 increased significantly.
     Conclusions Recombimant adenoviral-mediated PUMA gene increase the cell-killing effect by improve the cell apoptosis,which is through the way of mitochondrion.
     Part five Experimental study of Ad-PUMA on pancreatic cancer in vito
     Objective To study the effect of Ad-PUMA in vito
     Methods To establish tumors for model system,5×106AsPC-1 cells were injected subcutaneously onto the flanks of the femals SCID-Bg mice.After approximately 21-28ds,palpable tumors developed.These animals were then treated with Ad-PUMA,Ad-GFP and injection of PBS.At 0,3,6 days,BPS(50ul), Ad-GFP and Ad-PUMA plasmids(3×108PUF/ml/50ul)was injected to the tumor. Tumor growth at different time points was record in 21 days,and after 21d,and the apoptosis index and ki67 were examined by TUNEL and IP,the expression of PUMA and PUMA mRNA protein were examine by western blotting and RT-PCR method.
     Results Ad-PUMA had a dramatic effect on tumor volume in the first 14days following injection,this effect diminished over time ,but still resulted in a 44.2 %(P<0.05)decrease in tumor after 21 days.Treatment with the Ad-GFP control virus did not substantially alter tumor in this model system(p>0.05).The apoptosis indix in Ad-PUMA groups was higher than than of in control groups,and the ki-67 expression was lower in Ad-PUMA groups.The expression of PUMA and PUMA-mRNA was much higher in Ad-PUMA groups than other groups (p<0.05).
     Conclusions Recombimant adenoviral-mediated PUMA inhibited growth of tumor in vitro.
     Part six Experimental study of gemcitabine combined with Ad-PUMA on pancreatic cancer in vito
     Objective To study the effect of recombinant adnenovirus vector mediated PUMA combined with gemcitabine on pancreatic cancer in vitro and vivo .
     Methods:Pancreatic cancer cells AsPC-1 transfected by PUMA(5MOI) or not reseparately treated with serial concentrations of gemcitabine. The sensitivity of cells to gemcitabine was determined by MTT assay. To establish tumors for model system as part five. These animals were then treated with Ad-PUMA (1×109puf/ml/50ul)at0,3,6days,along with viral injection,animals recived a 100ul intraperitoneal injection of gemcitabine(100mg/kg) on days0,3,6,Ad-GFP was as the control. Tumor growth at different points was record in 21d
     Results Gemcitabine inhibited AsPC-1 cell proliferation in a dose dependent manner,but the cell proliferation was more significant in gemcitabine combined with PUMA expression clones than in parental AsPC-1cells.The IC50(0.0076±0.012)μg/ml in combined groups increased 6.9 times than that of IC50(0.053±0.001)μg/ml in gemcitabine groups. When Ad-PUMA or gemecitabine was injected as a single agent it resultd in reduction in 62.75(P<0.01 vs control) or 42.3% (p<0.05 vs control)tumor growth ,however, the combination of Ad-PUMA with gemcitabine reduced tumor volume by more than 82%(P<0.001 vs control)on day 21.
     Conclusion PUMA significantly enhances chemosensitivity of AsPC-1 to gemcitabine, and PUMA and gemcitabine exert anadditive anti-tumor effect in vivo.
引文
1. L?hr JM.Medical treatment of pancreatic cancer.Expert Rev Anticancer Ther. 2007;7(4):533-44
    2. Claude L, Mornex F.Chemoradiation in pancreatic carcinoma,Cancer Radiother. 2003;7(4):254-65.
    3. Yeh JJ, Der CJ.Targeting signal transduction in pancreatic cancer treatment.Expert Opin Ther Targets.2007;11(5):673-94.
    4. Rao S, Cunningham D.Advanced pancreatic cancer-5 years on.Ann Oncol. 2002;13(8):1165-8.
    5. Yu J, Zhang L, Hwang PM, PUMA induces the rapid apoptosis of colorectal cancer cells.Mol Cell. 2001;7(3):673-82.
    6. Ghaneh P, Costello E, Neoptolemos JP.Biology and management of pancreatic cancer.Gut.2007;56(8):1134-52.
    7. Kelley JR, Fraser MM, Hubbard JM, CaSm antisense gene therapy: a novel approach for the treatment of pancreatic cancer.Anticancer Res. 2003;23(3A):2007-13
    8. Bhattacharyya M, Lemoine NR.Gene therapy developments for pancreatic cancer.Best Pract Res Clin Gastroenterol. 2006;20(2):285-98.
    9. Yu J,Zhang L,Hwang PM,et al.PUMA induces the rapid apoptosis of colorectal cancer cell[J].Molecular Cell,2001,7:673-682
    10. Nakano, K.H. Vousden. PUMA, a novel proapoptotic gene, is induced by p53[J].Mol. Cell ,2001,12(7):67
    11. Related Articles, Links Mimeault M, Recent advances on the molecular mechanisms involved in pancreatic cancer progression and therapies. Pancreas. 2005;31(4):301-16.
    12. Related Articles, Linksm,Westphal S.Apoptosis: targets in pancreatic cancer.Mol Cancer. 2003,7;2:6.
    13. Related Articles, ,Ghaneh P, Kawesha A, Evans JD. Molecular prognostic markers in pancreatic cancer.J Hepatobiliary Pancreat Surg. 2002;9(1):1-11.
    14. Guinan P, Sobin LH, Algaba F, TNM staging of renal cell carcinoma: Workgroup No. 3. Union International Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer. 1997 , 1;80(5):992-3
    15. Jansson A, Arbman G, Sun XF. mRNA and protein expression of PUMA in sporadic colorectal cancer[J]. Oncol Rep. 2004 ,12(6):1245-9. Karst AM,Dai DL,Martinka M,et al .PUMA expression is significantly reduced in human cutaneous melanomas[J].Oncogene,2005,24(3):1111-
    1. Yu J,Zhang L,Hwang PM,et al.PUMA induces the rapid apoptosis of colorectal cancer cell[J].Molecular Cell,2001,7:673-682
    2. Nakano, K.H. Vousden. PUMA, a novel proapoptotic gene, is induced by p53[J].Mol. Cell ,2001,12(7): 683–694.
    3. Chipuk JE,Bouchier-Hayes L,Kuwana T,et al.PUMA couples the nuclear and cytoplamic proapoptosis function of p53[J] .Science, 2005,309(5741)17 32-1735
    4. Yu J, Wang Z, Kinzler KW, PUMA mediates the apoptotic response to p53 in colorectal cancer cells,Proc Natl Acad Sci U S A. 2003 ,18;100(4):1931-6.,
    5. Yu J, Zhang L.No PUMA, no death: implications for p53-dependent apoptosis.Cancer Cell. 2003;4(4):248-9.
    6. Callus BA, Ekert PG, Heraud JE, Cytoplasmic p53 is not required for PUMA-induced apoptosis.Cell Death Differ. 2008;15(1):213-5.
    7. You X, Boyle DL, Hammaker D。PUMA-mediated apoptosis in fibroblast-like synoviocytes does not require p53.Arthritis Res Ther. 2006;8(6):R157.
    8. Ito H, Kanzawa T, Miyoshi T, Therapeutic efficacy of PUMA for malignant glioma cells regardless of p53 status.Hum Gene Ther. 2005;16(6):685-98.
    9. Yu J, Wang Z, Kinzler KW, PUMA mediates the apoptotic response to p53 in colorectal cancer cells.Proc Natl Acad Sci U S A. 2003,18;100(4):1931-6.
    10. Jansson A, Arbman G, Sun XF. mRNA and protein expression of PUMA in sporadic colorectal cancer[J]. Oncol Rep. 2004 ,12(6):1245-9.
    11.江河江孝清周绪红,等.喉鳞状细胞癌中PUMA、P53基因的表达及其临床意义.武汉大学学报(医学版).2006,27(1):57-59
    12. Karst AM,Dai DL,Martinka M,et al .PUMA expression is significantly reduced in human cutaneous melanomas[J].Oncogene,2005,24(3):1111-1114
    13. Welsch T, Kleeff J, Friess H. Molecular pathogenesis of pancreatic cancer: advances andchallenges。Curr Mol Med. 2007;7(5):504-21
    14. Adrian TE , Inhibition of pancreatic cancer cell growth. Cell Mol Life Sci. 2007;64(19-20):2512-21.
    15. Related Articles, Links Mimeault M, Recent advances on the molecular mechanisms involved in pancreatic cancer progression and therapies. Pancreas. 2005;31(4):301-16.
    16. Related Articles, Linksm,Westphal S.Apoptosis: targets in pancreatic cancer.Mol Cancer. 2003,7;2:6.
    17. Related Articles, ,Ghaneh P, Kawesha A, Evans JD. Molecular prognostic markers in pancreatic cancer.J Hepatobiliary Pancreat Surg. 2002;9(1):1-11.
    18. Guinan P, Sobin LH, Algaba F, TNM staging of renal cell carcinoma: Workgroup No. 3. Union International Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer. 1997 , 1;80(5):992-3
    19. Yu J, Wang Z, Kinzler KW, et al. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A, 2003, 100(4):1931-1936.
    20. Karst AM,Dai DL,Martinka M,et al.PUMA expression is significantly reduced in human cutaneous melanomas.Oncogene,2005,24(6):1111
    21. Hoque MO,Begum S.PUMA in head and neck cancer.Cancer Lett.2003,199(1):750-756
    22. Kim MR, Jeong EG, Chae B, Pro-apoptotic PUMA and anti-apoptotic phospho-BAD are highly expressed in colorectal carcinomas.Dig Dis Sci. 2007;52(10):2751-6.
    23. Yoo NJ, Lee JW, Jeong EG, Immunohistochemical analysis of pro-apoptotic PUMA protein and mutational analysis of PUMA gene in gastric carcinomas,Dig Liver Dis. 2007;39(3):222-7.
    24. Fujioka S, Schmidt C, Sclabas GM, Stabilization of p53 is a novel mechanism for proapoptotic function of NF-kappaB.J Biol Chem. 2004;279(26):27549-59.
    25.张克君李德春.NF—κBp65、Bcl-2、Bcl—xL蛋白在胰腺癌中的表达及其与P53和凋亡指数的关系,中国癌症杂志-2007:17(2)-105-109
    26. Chen L, Jiang J, Cheng C, p53 Dependent and Independent Apoptosis induced by Lidamycin in Human Colorectal Cancer Cells.Cancer Biol Ther. 2007;6(6):965-73.
    27. Geng Y, Akhtar RS, Shacka JJ, p53 transcription-dependent and -independent regulation ofcerebellar neural precursor cell apoptosis.J Neuropathol Exp Neurol. 2007;66(1):66
    28. Wu B, Qiu W, Wang P, p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia-reperfusion.Gut. 2007;56(5):645-54.
    29. Tango Y, Taki M, Shirakiya Y, Late resistance to adenoviral p53-mediated apoptosis caused by decreased expression of Coxsackie-adenovirus receptors in human lung cancer cells.Cancer Sci. 2004;95(5):459-
    30. Jeffers JR,Parganas E,Lee Y.PUMA is an essential mediator of p53-dependand-independent apoptosic path ways.Cancer Cell,2003,4(4):321-327
    31. Villunger A, Michalak EM, Conltas L, et al. p53- and drug-induced apoptotic responses mediatd by bh3-only proteins PUMA and noxa. Science, 2003, 302(5647):1036-1038.
    32. Ming L,Wang P.PUMA Dissociates Bax and Bcl-X to induce apoptosis in colon cancer cells.J Biol Chem,2006,281(23):16034
    33. Peng Z.Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers.Hum Gene Ther. 2005;16(9):1016-27.
    34. Diallo JS, Aldejmah A, Mouhim AF, Péant B, Fahmy MA, Koumakpayi IH, Sircar K, Bégin LR, Mes-Masson AM, Saad F. NOXA and PUMA expression add to clinical markers in predicting biochemical recurrence of prostate cancer patients in a survival tree model. Clin Cancer Res. 2007 Dec 1;13(23):7044-52
    1. Nimura Y. Treatment of pancreatic cancer--surgical point of view,Gan To Kagaku Ryoho. 2007 J;34(7):993-6
    2. Flandin I, Mornex F, Claude L, Chemoradiation for pancreatic adenocarcinoma,Cancer Radiother. 2004;8 Suppl 1:S80-7.
    3. Claude L, Mornex F.Chemoradiation in pancreatic carcinoma,Cancer Radiother. 2003;7(4):254-65.
    4. Rao S, Cunningham D.Advanced pancreatic cancer-5 years on.Ann Oncol. 2002;13(8):1165-8.
    5. Gordon EM, Cornelio GH, Lorenzo CC,First clinical experience using a 'pathotropic' injectable retroviral vector (Rexin-G) as intervention for stage IV pancreatic cancer.Int J Oncol. 2004;24(1):177-85.
    6. Haag C, Thiede C, Hanig V, et al. Disseminated Intravascular Coagulation (DIC) After Intraarterial Injection of Adenoviral Vector Containing P53 in Patients with Pancreatic Cancer in Study. Proc Am Soc Clin Oncol. 2000;19:345-348.
    7. Krasnykh VN, Douglas JT, vanBeusechem VW. Genetic targeting of adenoviral vectors[J]. Mol Ther,2000,1(15Pt1):391-405
    8. PerssonA, Fan X, Widegren B, et al. Cell type- and region-dependent coxsackie adenovirus receptor expression in the central nervous system[J]. J Neurooncol,2006, 78(1):1-6
    9. Alemany R.Cancer selective adenoviruses.Mol Aspects Med. 2007;28(1):42-58.
    10. Barnett BG, Crews CJ, Douglas JT.Targeted adenoviral vectors.Biochim Biophys Acta. 2002 3;1575(1-3):1-14.
    11. Edelstein ML, Abedi MR, Wixon J.Gene therapy clinical trials worldwide to 2007-an update. Gene Med. 2007;9(10):833-42.
    12. Vattemi E, Claudio PP.Tumor suppressor genes as cancer therapeutics.Drug News Perspect. 2007;20(8):511-20.
    13. Campos SK, Barry MA.Current advances and future challenges in Adenoviral vector biology and targeting.Curr Gene Ther. 2007;7(3):189-204.
    14. Gardner DK, Lane M.Ex vivo early embryo development and effects on gene expression and imprinting.Reprod Fertil Dev. 2005;17(3):361-70.
    15. Perillo A, Ferrandina G, Pierelli L, Stem cell-based treatments for gynecological solid tumors.Eur Rev Med Pharmacol Sci. 2005;9(2):93-102.
    16. Rodriguez-Lecompte JC, Kruth S, Gyorffy S, Cell-based cancer gene therapy: breaking tolerance or inducing autoimmunity?Anim Health Res Rev. 2004;5(2):227-34.
    17. Gelse K, Schneider H.Ex vivo gene therapy approaches to cartilage repair.Adv Drug Deliv Rev. 2006 ;20;58(2):259-84.
    18. Zhong L, Zhao W, Wu J, Maina N, Han Z, Srivastava A.Adeno-associated virus-mediated gene transfer in hematopoietic stem/ progenitor cells as a therapeutic tool.Curr Gene Ther. 2006;6(6):683-98.
    19. Zubler RH.Ex vivo expansion of hematopoietic stem cells and gene therapy development.Swiss Med Wkly. 2006 ;23;136(49-50):795-9
    20. Thompson JG, Mitchell M, Kind KL.Embryo culture and long-term consequences. Reprod Fertil Dev. 2007;19(1):43-52.
    21. Haider HK, Elmadbouh I, Jean-Baptiste M, Non-viral vector gene modification of stem cells for myocardial repair.Mol Med. 2007 ;11;
    22. Nilsson SK, Prince HM, Wall D,.Recent Australian experience with hemopoietic stem and progenitor cell expansion.Cytotherapy. 2007;9(3):231-5.
    23. Sullivan DM, Salladay SA.Gene therapy: restoring health or playing God?J Christ Nurs. 2007;24(4):199-205.
    24. Kawabata K, Sakurai F, Koizumi N, Adenovirus vector-mediated gene transfer into stem cells. Mol Pharm. 2006;3(2):95-103.
    25. Romano G.Current development of nonviral-mediated gene transfer.Drug News Perspect. 2007;20(4):227-31.
    26. Rettig GR, Rice KG.Non-viral gene delivery: from the needle to the nucleus.Expert Opin Biol Ther. 2007;7(6):799-808.
    27. Favaro E, Indraccolo S.Gene therapy of cancer in the clinic: good news in sight from Asia?Curr Opin Mol Ther. 2007;9(5):477-82.
    28. Barnett BG, Crews CJ, Douglas JT.Targeted adenoviral vectors.Biochim Biophys Acta. 2002 ;3;1575(1-3):1-14.
    29. Rein DT, Breidenbach M, Curiel DT.Current developments in adenovirus-based cancer gene therapy.Future Oncol. 2006;2(1):137-43.
    29. Kanerva A, Hemminki A.Adenoviruses for treatment of cancer.Ann Med. 2005;37(1):33-43.
    30. Park K, Kim WJ, Cho YH,Cancer gene therapy using adeno-associated virus vectors.Front Biosci. 2008 ;1;13:2653-9.
    31. Wei MQ, Mengesha A, Good D, Bacterial targeted tumour therapy-dawn of a new era.Cancer Lett. 2008;18;259(1):16-27.
    32. Law LK, Davidson BL.What does it take to bind CAR?Mol Ther. 2005;12(4):599-609.
    33. Barnett BG, Crews CJ, Douglas JT.Targeted adenoviral vectors.Biochim Biophys Acta. 2002 , 3;1575(1-3):1-14.
    34. Bergelson JM,Cunningham JA,Droguett G,et a1.Isolation of a common receptor for Coxsackie B viruses and adenoviru ses 2 and 5.Science,1997,275(5304):1320.1323.
    35. Borovjagin AV, Krendelchtchikov A, Ramesh N ,Complex mosaicism is a novel approach to infectivity enhancement of adenovirus type 5-based vectors,Cancer Gene Ther. 2005;12(5):475-86
    36. Wang Y,Wang S,Bao Y,et a1.Coxsackievirus and adenovirus receptor expression in non-malignant lung tissues and clinical lung cancers.J Mol Histol,2006,37(3-4)
    37. Yu L, Shimozato O, Li Q, Kawamura K, Adenovirus type 5 substituted with type 11 or 35 fiber structure increases its infectivity to human cells enabling dual gene transfer in CD46-dependent and -independent manners, Anticancer Res. 2007;27(4B):2311-6
    38. Suominen E, Toivonen R, Grenman R, Head and neck cancer cells are efficiently infected by Ad5/35 hybrid virus.J Gene Med. 2006;8(10):1223-31.
    39. Pearson AS, Koch PE, AtkinsonN, et al. Factors limiting adeno Virus-mediated gene transfer into human lung and pancreatic cancer cell lines[J]. Clin CancerRes, 1999, 5(1) : 4208-4213.
    40. Li Y, PongRC, Bergelson JM, et al. Loss of adenoviral receptor expression in human bladder cancer cells: A potential impact onthe efficacyof gene therapy[J]. CancerRes, 1999, 59(2 ): 325-330.
    41. KrasnykhVN, DouglasJT, vanBeusechem VW. Genetic targeting of adenoviral vectors[J]. Mol Ther, 2000, 1(5 Pt1) : 391-405.
    42. Korn WM, MacalM, Christian C, et al. Expression of the cox-Sackievirus and adenovirus receptor in gastrointestinal cancer correlates with tumor differentiation[J]. CancerGene Ther, 2006, 138 : 792-797.
    43. Bao Y, PengW, VerbitskyA, et al. Human coxsackie adenovirus receptor CAR expression in transgenicmouse prostate tumors enhances adenoviral delivery of genes[J]. Prostate, 2005, 64 (4 ):401-407
    44. Okegawa T,NutaharaK,Pong RC.Enhancedtransgene expression in urothelial cancer gene therapy with histone deacetylase inhibitor.J Urol,2005,174(2):747-752.
    45. Watanabe T,Hioki M,Fujiwara THistone deacetylase inhibitor FR901228 enhan ces the an titumor efect of telomerase-specific replication—selective adenoviral agent OBP一301 in human lung cancer cells.Exp Cell Res.2006,312(3):256-265.
    46. PongRC,RoarkR,0u JY,et 0 Mechanism ofincreased coxsackie and adenovirus receptor gene expression and adenovirus uptakeby phytoestrogen and histone deacetylase inhibitor in human bladdercancer cells and the potential clinical application.Cancer Res.2006,66(17):8822-8828.
    47. Zawahry A,Lu P.White SJIn vitro eficacy of AdTRAIL gene therapy of bladder cancer is enhanced by trichostatinamed iated restoration of CAR expression and downregulation of cFLIPand Bcl—XL[J].Cancer Gene Ther,2006,13(3):281-289.
    48. Taki M,Kagawa S,Nishizaki M.Enhanced oncolysis by a Tropism-modified telomerase specific replication—selective adenoviralagent OBP-405(Telomelysin—RGD’) .Oncogene,2005,24(19):3130-3140.
    49. Eto Y,Gao JQ,Sekiguchi F.et a1.PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability,J Gene Med,2005,7(5):604-612.
    50. Tyler MA,Ulasov IV,Borovjagin A.Enhanced transduction of malignant glioma with a double targeted ADS/3一RGD fiber.modified adenovirus.Mol Cancer Ther.2006,5(9)
    51. Krasnykh V,Dmitriev 1,Navarro JG,et a1.Advanced generation adenoviral vectors possess augmented gene transfer eficiency based upon coxsackie adenovirus receptor independent cellular entry capacity ,Cancer Res,2000,6O(24):6784-6787.
    52. Krom YD,Gras JC,Frants RR,et a1.Eficient targeting of adeno-viral vectors to integrin positive vascular cells utilizing a CAR cyclic RGD linker protein,Biochem Biophys Res Commun.2005,338(2):847-854
    53. Kawasumi M, Nghiem P.Chemical genetics: elucidating biological systems with small-molecule compounds.J Invest Dermatol. 2007;127(7):1577-84.
    54. Liu Q, El-Deiry WS, Gazitt Y.Additive effect of Apo2L/TRAIL and Adeno-p53 in the induction of apoptosis in myeloma cell lines ;Exp Hematol. 2001;29(8):962-70
    1. Teng-Chuan He, Shibin Zho,Luis T, Bert Vogelstein. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci. 1998; 95(5): 2509–14.
    2. ImlerJL.Adenovirus vector as recombinant viral vaeeine.Vaccine. 1995,13:1 143-1151
    3. Nielsen LL,Maneval DC. P53 tumor supperssor gene therapy for cancer. Cancer Gene Therapy.2008,5(1):52-63
    4. Hunt KK,Vorburger SA.Hudrles and hopes for cancer treatment [J].Seienee.2002,279(5580):415-416
    5. Coeffey MC,Storng JE,Forsyth AP,et al.Reovirus therapy of tumors with Aetivated Ras Pathway.Seienee,1998,282:1332-1334
    6. 6. MiyakeH,Haarl,Gohii K etal.Enhancement of chemosensitivity in human Bladder cells by adenoviar-mediated P53 gene transfer .Anticaneer Researeh.1998 ,18:3087-3092
    7. 7. Mosry MA,GuMC,Motze IS,e tal.Anadenoviral vector deleted for all viral Coding sequencese rsults an enhanced safty and extended experssion of a Leptin transgene.Porc Nat Aead Sei USA.1998,95:7866-7871
    1. L?hr JM.Medical treatment of pancreatic cancer.Expert Rev Anticancer Ther. 2007;7(4):533-44
    2. Claude L, Mornex F.Chemoradiation in pancreatic carcinoma,Cancer Radiother. 2003;7(4):254-65.
    3. Yeh JJ, Der CJ.Targeting signal transduction in pancreatic cancer treatment.Expert Opin Ther Targets. 2007;11(5):673-94.
    4. Rao S, Cunningham D.Advanced pancreatic cancer-5 years on.Ann Oncol. 2002;13(8):1165-8.
    5. Yu J, Zhang L, Hwang PM, PUMA induces the rapid apoptosis of colorectal cancer cells.Mol Cell. 2001;7(3):673-82.
    6. Ghaneh P, Costello E, Neoptolemos JP.Biology and management of pancreatic cancer.Gut.2007;56(8):1134-52.
    7. Kelley JR, Fraser MM, Hubbard JM, CaSm antisense gene therapy: a novel approach for the treatment of pancreatic cancer.Anticancer Res. 2003;23(3A):2007-13
    8. Vitone LJ, Greenhalf W, McFaul CD, Ghaneh P, Neoptolemos JP.The inherited genetics of pancreatic cancer and prospects for secondary screening.Best Pract Res Clin Gastroenterol. 2006;20(2):253-83.
    9. Maitra A, Kern SE, Hruban RH.Molecular pathogenesis of pancreatic cancer.Best Pract Res Clin Gastroenterol. 2006;20(2):211-26.
    10. Matsuo Y, Takahashi H, Sawai H, Okada Y, Manabe T.Molecular mechanism in pathogenesis in pancreatic neoplasms: NF-kappaB,Nippon Rinsho. 2006;64:44-7.
    11. Ozaki Y, Tatebe S, Ikeguchi M.Molecular mechanism in pathogenesis of pancreatic neoplasms: p-Akt, PTEN.Nippon Rinsho. 2006;64:41-3.
    12. Sawabu N, Yamaguchi Y, Watanabe H, Ohtsubo K.Molecular mechanism in pathogenesis of pancreatic cancers: P53 oncosuppressive gene.Nippon Rinsho. 2006;64:36-40.
    13. Ohnami S, Aoki K, Yoshida T.Molecular mechanism in pancreatic carcinogenesis: Ras gene.Nippon Rinsho. 2006;64:32-5.
    14. Furukawa T, Horii A.Mechanistic insights for pancreatic carcinogenesis.Nippon Rinsho. 2006;64:27-31.
    15. Furukawa T, Sunamura M, Horii A.Molecular mechanisms of pancreatic carcinogenesis.Cancer Sci. 2006;97(1):1-7.
    16. Aho U, Zhao X, L?hr M, Andersson R.Molecular mechanisms of pancreatic cancer and potential targets of treatment.Scand J Gastroenterol. 2007;42(3):279-96.
    17. Morton JP, Lewis BC.Shh signaling and pancreatic cancer: implications for therapy?Cell Cycle. 2007;6(13):1553-7.
    18. Sarkar FH, Banerjee S, Li Y.Pancreatic cancer: pathogenesis, prevention and treatment.Toxicol Appl Pharmacol. 2007 1;224(3):326-36.
    19. Bhattacharyya M, Lemoine NR.Gene therapy developments for pancreatic cancer.Best Pract Res Clin Gastroenterol. 2006;20(2):285-98.
    20. Nakano K, Vousden KH.PUMA, a novel proapoptotic gene, is induced by p53.Mol Cell. 2001;7(3):683-94
    21. Schaub A, Fütterer A, Pfeffer K.PUMA-G, an IFN-gamma-inducible gene in macrophages is anovel member of the seven transmembrane spanning receptor superfamily.Eur J Immunol. 2001;31(12):3714-25.
    22. Yu J, Wang Z, Kinzler KW, Vogelstein B, PUMA mediates the apoptotic response to p53 in colorectal cancer cells.Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1931-6.
    23. Jeffers JR, Parganas E, Lee Y, Yang C, PUMA is an essential mediator of p53-dependent and -independent apoptotic pathways.Cancer Cell. 2003;4(4):321-8.
    24. Ito H, Kanzawa T, Miyoshi T, Therapeutic efficacy of PUMA for malignant glioma cells regardless of p53 status.Hum Gene Ther. 2005;16(6):685-98.
    25. Giladi N, Dvory-Sobol H, Sagiv E, et al. Gene therapy approach inprostate cancer cells using an active Wnt signal. Biomed Pharmacother, 2007, 61(9):527-530.
    26. Yu J, Wang P, Ming L, Wood MA, SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events.Oncogene. 2007;26(29):4189-98.
    27. Nielsen LL,Maneval DC. P53 tumor supperssor gene therapy for cancer.Cancer Gene Therapy.2008,5(1):52-63
    28. Liu Q, El-Deiry WS, Gazitt Y.Additive effect of Apo2L/TRAIL and Adeno-p53 in the induction of apoptosis in myeloma cell lines.Exp Hematol. 2001;29(8):962-70
    29. Schuler M, Herrmann R, De Greve JL, Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: results of a multicenter phase II study.J Clin Oncol. 2001 ,15;19(6):1750-8.
    30. Jenks S.Gene therapy death--"everyone has to share in the guilt".J Natl Cancer Inst. 2000;92(2):98-100.
    31. Zeimet AG, Marth C.Why did p53 gene therapy fail in ovarian cancer?Lancet Oncol. 2003;4(7):415-22.
    32. Welsch T, Kleeff J, Friess H. Molecular pathogenesis of pancreatic cancer: advances and challenges。Curr Mol Med. 2007;7(5):504-21
    33. Adrian TE , Inhibition of pancreatic cancer cell growth. Cell Mol Life Sci. 2007;64(19-20):2512-21.
    34. Related Articles, Links Mimeault M, Recent advances on the molecular mechanisms involved in pancreatic cancer progression and therapies. Pancreas. 2005;31(4):301-16.
    35. Related Articles, Linksm,Westphal S.Apoptosis: targets in pancreatic cancer.Mol Cancer. 2003,7;2:6.
    36. StepieńA, Izdebska M, Grzanka A.The types of cell death Postepy Hig Med Dosw. 2007 ,9;61:420-8.
    37. Gradzka I.Mechanisms and regulation of the programmed cell death.Postepy Biochem. 2006;52(2):157-65.
    38. Belizário JE, Alves J, Occhiucci JM, Garay-Malpartida M, Sesso A.A mechanistic view of mitochondrial death decision pores.Braz J Med Biol Res. 2007;40(8):1011-
    39. Karunagaran D, Joseph J, Kumar TR.Cell growth regulation..Adv Exp Med Biol. 2007;595:245-68.
    40. Kakkar P, Singh BK.Mitochondria: a hub of redox activities and cellular distress control.Mol Cell Biochem. 2007;305(1-2):235-53..
    41. Armstrong JS.The role of the mitochondrial permeability transition in cell death.Mitochondrion. 2006;6(5):225-34.
    42. Gustafsson AB, Gottlieb RA.Bcl-2 family members and apoptosis, taken to heart.Am J Physiol Cell Physiol. 2007;292(1):C45-51.
    43. Adams JM, Cory S.The Bcl-2 apoptotic switch in cancer development and therapy.Oncogene. 2007;26(9):1324-37. Review.
    44. Danial NN.BCL-2 Family Proteins: Critical Checkpoints of Apoptotic Cell Death.Clin Cancer Res. 2007 ;15;13(24):7254-63
    45. Schwarz M, Andrade-Navarro MA, Gross A.Mitochondrial carriers and pores: key regulators of the mitochondrial apoptotic program?Apoptosis. 2007;12(5):869-76.
    46. Reed JC.Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities.Cell Death Differ. 2006;13(8):1378-86.
    47. Hai Juan Wang HaiLi Quan Jian Yu,Administration of PUMA Adenovirus Increases the sensitivity of esophageal cancer cells to anticancer drugs.Cancer Biology and Therapy.2006;24(6):380-385
    48. Liu Q, El-Deiry WS, Gazitt Y.Additive effect of Apo2L/TRAIL and Adeno-p53 in the induction of apoptosis in myeloma cell lines.Exp Hematol. 2001;29(8):962-70
    49. Komata T, Kondo Y, Koga S, at el. Combination therapy of malignant glioma cells with 2-5A-antisense telomerase RNA and recombinant adenovirus p53 [J]. Gene Ther 2000; 7:2071-9.
    50. Luo X, He Q, Huang Y, Sheikh MS.Transcriptional upregulation of PUMA modulates endoplasmic reticulum calcium pool depletion-induced apoptosis via Bax activation.Cell Death Differ. 2005;12(10):1310-8.
    51. Hao H, Dong Y, Bowling MT, E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation.BMC Cancer. 2007 30;7:24.
    52. Liu FT, Newland AC, Jia L.Bax conformational change is a crucial step for PUMA-mediated apoptosis in human leukemia.Biochem Biophys Res Commun. 2003;310(3):956-62.
    53. Melino G, Bernassola F, Ranalli M, p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation.J Biol Chem. 2004;279(9):8076-83
    54. Sim?es-Wüst AP, Sigrist B, Belyanskaya L, DeltaNp73 antisense activates PUMA and induces apoptosis in neuroblastoma cells.J Neurooncol. 2005;72(1):29-34.
    55. Yee KS, Vousden KH.Contribution of membrane localization to the apoptotic activity of PUMA.Apoptosis. 2008;13(1):87-95.
    56. H?cker G, Weber A.BH3-only proteins trigger cytochrome c release, but how?Arch Biochem Biophys. 2007 15;462(2):150-5.
    57. Shaltouki A, Freer M, Mei Y, Weyman CM.Increased expression of the pro-apoptotic Bcl(2) family member PUMA is required for mitochondrial release of cytochrome C and the apoptosis associated with skeletal myoblast differentiation.Apoptosis. 2007;12(12):2143-54.
    1. Chen Y, Qian H, Wang H, Ad-PUMA sensitizes drug-resistant choriocarcinoma cells to chemotherapeutic agents. Gynecol Oncol. 2007;107(3):505-12.
    2. Ito H, Kanzawa T, Miyoshi T, Therapeutic efficacy of PUMA for malignant glioma cells regardless of p53 status. Hum Gene Ther. 2005;16(6):685-98.
    3. Yu J, Yue W, Wu B, Zhang L.PUMA sensitizes lung cancer cells to chemotherapeutic agents and irradiation. Clin Cancer Res. 2006;12(9):2928-36.
    4. Sun Q, Sakaida T, Yue W,hemosensitization of head and neck cancer cells by PUMA. Mol Cancer Ther. 2007;6(12):3180-8.
    5. Vijaya L Damaraju, David Y Bouffard, Clarence KW Wong,Synergistic activity of troxacitabine (Troxatyl?) and gemcitabine in pancreatic cancer,BMC Cancer 2007, 7:12
    6. 6. Gilly FN,Beaujard A,Bienvenu J et al. Gene therapy with Adv-IL-2 in unresectable digestive cancer: phase I-II study, intermediate report. Hepatogastroenterology.1999 46 Suppl 1: 1268-73.
    1. Rosenberg L. Treatment of pancreatic cancer. Int. J. Pancreatol., 22: 81-93, 1997
    2. Roll L.Adjuvant therapy in patients with pancreatic cancer.Recent Results Cancer Res. 2008;177:49-56.
    3. Oettle H, Neuhaus P.Adjuvant therapy in pancreatic cancer: a critical appraisal.Drugs. 2007;67(16):2293-310.
    4. Burris HA 3rd, Moore MJ, Andersen J: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997, 15(6):2403-2413.
    5. Sylvia S. W. Ng, Ming-Sound Tsao,Inhibition of Phosphatidylinositide 3-Kinase Enhances Gemcitabine-induced Apoptosis in Human Pancreatic Cancer Cells,Cancer Research 60, 5451-5455
    6. Shah AN, Summy JM, Zhang J, Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol. 2007;14(12):3629-37.
    7. Saif MW.Controversies in the adjuvant treatment of pancreatic adenocarcinoma. JOP. 2007;8(5):545-52.
    8. Ahrendt SA, Pitt HA. Surgical management of pancreatic cancer. Oncology (Huntingt)2002; 16:725–34.
    9. Reni M, Cereda S, Galli L. PEFG (cisplatin, epirubicin, 5-fluorouracil, gemcitabine) for patients with advanced pancreatic cancer: the ghost regimen. Cancer Lett. 2007;256(1):25-8.
    10. O'Reilly EM, Abou-Alfa GK,Cytotoxic therapy for advanced pancreatic adenocarcinoma. Semin Oncol. 2007;34(4):347-53.
    11. J. Randolph Hecht2, Rudolph Bedford, James L,A Phase I/II Trial of Intratumoral Endoscopic Ultrasound Injection of ONYX-015 with Intravenous Gemcitabine in Unresectable Pancreatic Carcinoma1 ,Clinical Cancer Research Vol. 2003:9; 555-561
    12. Wang H, Qian H, Yu J, Administration of PUMA adenovirus increases the sensitivity of esophageal cancer cells to anticancer drugs.Cancer Biol Ther. 2006;5(4):380-5.
    13. Sun Q, Sakaida T, Yue W, Gollin SM, Yu J.Chemosensitization of head and neck cancer cells by PUMA.Mol Cancer Ther. 2007;6(12):3180-8.
    14. Chen Y, Qian H, Wang H, Ad-PUMA sensitizes drug-resistant choriocarcinoma cells to chemotherapeutic agents.Gynecol Oncol. 2007;107(3):505-12.
    15. Yu J, Yue W, Wu B, Zhang L.PUMA sensitizes lung cancer cells to chemotherapeutic agents and irradiation.Clin Cancer Res. 2006;12(9):2928-36.
    16. Villunger A,Michalak EM,Coultas L,et al.P53 and drug-induced apoptotic response mediated by BH3-only proteins PUMA and noxa. Science,2003,302(5647):1036
    17. Jiang M,Wei Q,Wang J et al.Regulation of PUMA-alpha by p53 incisplatin induced renal cell apoptosis.Oncogene,2006,25(29):4056-4058
    1. Cory S, Huang DCS, Adams JM: The Bcl-2 family: roles in cellsurvival and oncogenesis. Oncogene 2003, 22:8590-8607.
    2. . Danial NN, Korsmeyer SJ: Cell death: critical control points.Cell 2004, 116:205-219.
    3. Youle RJ, Strasser A.The BCL-2 protein family: opposing activities that mediate cell death.Nat Rev Mol Cell Biol. 2008;9(1):47-59.
    4. Green DR, Kroemer G: The pathophysiology of mitochondrial cell death. Science 2004, 305:626-629.
    5. Logue SE, Martin SJ.Caspase activation cascades in apoptosis.Biochem Soc Trans. 2008;36(Pt 1):1-9.
    6. StepieńA, Izdebska M, Grzanka A.The types of cell death,Postepy Hig Med Dosw (Online). 2007;61:420-8.
    7. Adams JM, Cory S.Bcl-2-regulated apoptosis: mechanism and therapeutic potential.Curr OpinImmunol. 2007;19(5):488-96.
    8. Strasser A: The role of BOP proteins in the immunesystem. Nat Rev Immunol 2005, 5:189-200.
    9. Adams JM: Ways of dying: multiple pathways to apoptosis.Genes Dev 2003, 17:2481-2495.
    10. Chen L,Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, ColmanPM, Day CL, Adams JM, Huang DCS: Differential targeting ofpro-survival Bcl-2 proteins by their BOP ligands allowscomplementary apoptotic function. Mol Cell 2005, 17:393-403.
    11. Shibue T, Taniguchi T.BOP proteins: integrated control point of apoptosis.Int J Cancer. 2006;119(9):2036-43.
    12. Strasser A.The role of BOP proteins in the immune system.Nat Rev Immunol. 2005;5(3):189-200.
    13. Roset R, Ortet L, Gil-Gomez G. Role of Bcl-2 family members on apoptosis: what we have learned from knock-out mice.Front Biosci. 2007;12:4722-30.
    14. Bettaieb A, Dubrez-Daloz L, Launay S, Bcl-2 proteins: targets and tools for chemosensitisation of tumor cells.Curr Med Chem Anticancer Agents. 2003;3(4):307-18.
    15. Labi V, Erlacher M, Kiessling S, Villunger A.BH3-only proteins in cell death initiation, malignant disease and anticancer therapy.Cell Death Differ. 2006;13(8):1325-38.
    16. Kieran D, Woods I, Villunger A, Strasser A, Prehn JH.Deletion of the BH3-only protein PUMA protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice.Proc Natl Acad Sci U S A. 2007;104(51):20606-11. 2007 Dec 11.
    17. Fletcher JI, Huang DC.Controlling the cell death mediators Bax and Bak: puzzles and conundrums.Cell Cycle. 2008;7(1):39-44.
    18. Willis SN, Fletcher JI, Kaufmann T, Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315(5813):856-9.
    19. Uren RT, Dewson G, Chen L,Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak. J Cell Biol. 2007;177(2):277-87.
    20. Pagliari LJ, Kuwana T, Bonzon C, The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc Natl Acad Sci U S A. 2005;102(50):17975-80
    21. Antignani A, Youle RJ.How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane?Curr Opin Cell Biol. 2006;18(6):685-9.
    22. H?cker G, Weber A.BH3-only proteins trigger cytochrome c release, but how?Arch Biochem Biophys. 2007;462(2):150-5.
    23. Steckley D, Karajgikar M, Dale LB, .PUMA is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis.J Neurosci. 2007;27(47):12989-99.
    24. Puthalakath H, O'Reilly LA, Gunn P, Lee L,.ER stress triggers apoptosis by activating BH3-only protein Bim.Cell. 2007;129(7):1337-49.
    25. Inoue S, Riley J, Gant TW, Dyer MJ, Cohen GM.Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa.Leukemia. 2007;21(8):1773-82.
    26. van Delft MF, Huang DC.How the Bcl-2 family of proteins interact to regulate apoptosis.Cell Res. 2006;16(2):203-13.
    27. Shibue T, Taniguchi T.BH3-only proteins: integrated control point of apoptosis.Int J Cancer. 2006;119(9):2036-43.
    28. Zhou XM, Liu Y, Payne G,.Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155.J Biol Chem. 2000;275(32):25046-51.
    29. Datta SR, Katsov A, Hu L, Petros A,.14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation.Mol Cell. 2000;6(1):41-51.
    30. Hekman M, Albert S, Galmiche A,.Reversible membrane interaction of BAD requires two C-terminal lipid binding domains in conjunction with 14-3-3 protein binding.J Biol Chem. 2006;281(25):17321-36.
    31. Oh SH, Lee BH.A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage.Toxicol Appl Pharmacol. 2004;194(3):221-
    32. Lutter M, Perkins GA, Wang X.The pro-apoptotic Bcl-2 family member tBid localizes to mitochondrial contact sites. BMC Cell Biol. 2001;2:22
    33. Day CL, Puthalakath H, Skea G,Localization of dynein light chains 1 and 2 and their pro-apoptotic ligands. Biochem J. 2004;377(Pt 3):597-605.
    34. Puthalakath H, Villunger A, O'Reilly LA, Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science.2001;293(5536):1784-5.
    35. Puthalakath H, Villunger A, O’Reilly LA, Beaumont JG, Coultas L,Cheney RE, Huang DCS, Strasser A: Bmf: a pro-apoptotic BOP protein regulated by interaction with the myosin Vactin motor complex, activated by anoikis. Science 2001,293:1829-1832.
    36. Lei K, Davis RJ: JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc NatlAcad Sci USA 2003, 100:2432-2437.
    37. Reginato MJ,Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J,Muthuswamy SK, Brugge JS: Integrins and EGFR coordinatelyregulate the pro-apoptotic protein Bim to prevent anoikis.Nat Cell Biol 2003, 5:733-740.
    38. Harada H, Quearry B, Ruiz-Vela A, Korsmeyer SJ: Survival factorinduced extracellular signal-regulated kinase phosphorylatesBIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci USA 2004, 101:15313-15317.
    39. Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G,Auberger P: Phosphorylation of Bim-EL by Erk1/2 on serine 69promotes its degradation via the proteasome pathway andregulates its proapoptotic function. Oncogene 2003,22:6785-6793.
    40. Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ: Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BOP protein,Bim. J Biol Chem 2003, 278:18811-18816.
    41. Putcha GV, Le S, Frank S, et al.: JNK-mediated BIMphosphorylation potentiates BAX-dependent apoptosis.Neuron 2003, 38:899-914.
    42. Akiyama T, Bouillet P,Miyazaki T, Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BOP Bcl-2 family member Bim. EMBO J 2003, 22:6653-6664.
    43. Biswas SC, Ryu E, Park C, PUMA and p53 play required roles in death evoked in a cellular model of Parkinson disease. Neurochem Res. 2005;30(6-7):839-45.
    44. Hutcheson J, Scatizzi JC, Bickel E,.Combined loss of proapoptotic genes Bak or Bax with Bim synergizes to cause defects in hematopoiesis and in thymocyte apoptosis.J Exp Med. 2005;201(12):1949-60.
    45. Villunger A, Michalak EM, Coultas L, Mu¨llauer F, Bo¨ck G,Ausserlechner MJ, Adams JM,Strasser A: p53- and druginducedapoptotic responses mediated by BOP proteinsPUMA and Noxa. Science 2003, 302:1036-1038.
    46. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J,MacLean KH, Han J, Chittenden T, Ihle JN et al.: PUMA is anessential mediator of p53-dependent and -independentapoptotic pathways. Cancer Cell 2003, 4:321-328.
    47. Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A,Morishita Y, Akira S, Taniguchi T, Tanaka N: Integral role ofNoxa in p53-mediated apoptotic response. Genes Dev 2003,17:2233-2238.
    48. Ranger AM, Zha J, Harada H, Datta SR, Danial NN, Gilmore AP,Kutok JL, Le Beau MM, Greenberg ME, Korsmeyer SJ: Baddeficientmice develop diffuse large B cell lymphoma. Proc NatlAcad Sci USA 2003, 100:9324-9329.
    49. Liu X, Dai S, Zhu Y, Marrack P, Kappler JW: The structure of aBcl-xL/Bim fragment complex: Implications for Bim function.Immunity 2003, 19:341-352.
    50. Yan N, Gu L, Kokel D, Chai J, Li W, Han A, Chen L, Xue D, Shi Y: Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4.Mol Cell 2004, 15:999-1006.
    51. Chen L,Willis SN,Wei A.at a1.Differential targeting of prosurvivalBcl-2 proteins by their BH3-only ligands allows complementary apoptotic function.Mol Cell,2005,17:393-403.
    52. Suzuki M, Youle RJ, Tjandra N: Structure of Bax: coregulation ofdimer formation and intracellular localization. Cell 2000,103:645-654.
    53. Letai A, Bassik M, Walensky L, Sorcinelli M, Weiler S, Korsmeyer S:Distinct BH3 domains either sensitize or activatemitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002, 2:183-192.
    54. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA,Green DR, Newmeyer DD: BH3 domains of BOP proteinsdifferentially regulate Bax-mediated mitochondrial membranepermeabilization both directly and indirectly. Mol Cell 2005,32:12;1562-1569
    55. Terrones O, Antonsson B, Yamaguchi H, Wang HG, Liu J, Lee RM,Herrmann A, Basanez G: Lipidic pore formation by theconcerted action of proapoptotic BAX and tBID. J Biol Chem 2004,279:30081-30091.
    56. Hinds MG, Lackmann M, Skea GL, Harrison PJ, Huang DCS,Day CL: The structure of Bcl-w reveals a role for the C-terminalresidues in modulating biological activity. EMBO J 2003,22:1497-1507.
    57. Karst AM,Dai DL,Martinka M,et al .PUMA expression is significantly reduced in human cutaneous melanomas[J].Oncogene,2005,24(3):1111-1114
    58. Jansson A, Arbman G, Sun XF. mRNA and protein expression of PUMA in sporadic colorectal cancer[J]. Oncol Rep. 2004 ,12(6):1245-9.
    59.张克君,李德春等. PUMA蛋白在胰腺癌组织中的表达及临床意义.世界华人消化杂志,2008;16(5):488-492
    60. Zinkel SS, Ong CC, Ferguson DO, Iwasaki H, Akashi K,Bronson RT, Kutok JL, Alt FW, Korsmeyer SJ: Proapoptotic BIDis required for myeloid homeostasis and tumor suppression.Genes Dev 2003, 17:229-239.
    61. Egle A, Harris AW, Bouillet P, Cory S: Bim is a suppressor of Myc-induced mouse B cell leukaemia. Proc Natl Acad Sci USA 2004, 101:6164-6169.
    62. :Yu J, Zhang L, Hwang PM, PUMA induces the rapid apoptosis of colorectal cancer cells.Mol Cell. 2001 Mar;7(3):673-82.
    63. Karst AM, Dai DL, Martinka M, PUMA expression is significantly reduced in human cutaneous melanomas. Oncogene. 2005 3;24(6):1111-6.
    64. Wu WS, Heinrichs S, Xu D, Garrison SP, Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing PUMA. Cell. 2005 Nov 18;123(4):545-8.
    65. Zhang Y, Adachi M, Kawamura R,.Bmf contributes to histone deacetylase inhibitor-mediated enhancing effects on apoptosis after ionizing radiation.Apoptosis. 2006;11(8):1349-57.
    66. Voortman J, Checinska A, Giaccone G,.Bortezomib, but not cisplatin, induces mitochondria-dependent apoptosis accompanied by up-regulation of noxa in the non-small cell lung cancer cell line NCI-H460.Mol Cancer Ther. 2007;6(3):1046-53.
    67. Gomez-Bougie P, Wuillème-Toumi S, Ménoret E,.Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma.Cancer Res. 2007 Jun1;67(11):5418-24
    68. Fennell DA, Chacko A, Mutti L.BCL-2 family regulation by the 20S proteasome inhibitor bortezomib.Oncogene. 2007 10;217-223
    69. Nikrad M, Johnson T, Puthalalath H,.The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim.,Mol Cancer Ther. 2005;4(3):443-9.
    70. Fernandez Y, Verhaegen M, Miller TP, Rush JL, Steiner P,Opipari AW Jr, Lowe SW, Soengas MS: Differential regulation of noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res 2005, 65:6294-6304.
    71. Kuroda J, Puthalakath H, Cragg,.Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic.Proc Natl Acad Sci U S A. 2006;103(40):14907-12.
    72. Tan TT, Degenhardt K, Nelson DA, Beaudoin B, Nieves-Neira W,Bouillet P,Villunger A, Adams JM, White E: Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 2005, 7:227-238.
    73. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD,Wagner G, Verdine GL, Korsmeyer SJ: Activation of Apoptosisin vivo by a hydrocarbon-stapled BH3 helix. Science 2004,305:1466-1470.
    74. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, AugeriDJ, Belli BA, BrunckoM, Deckwerth TL, Dinges J, Hajduk PJ et al.:An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005, 435:677-681.
    75. van Delft MF, Wei AH, Mason KD,.The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized.Cancer Cell. 2006;10(5):389-99.
    76. Adams JM, Huang DC, Strasser A,.Subversion of the Bcl-2 life/death switch in cancer development and therapy.Cold Spring Harb Symp Quant Biol. 2005;70:469-77.
    77. Kuroda J, Kimura S, Andreeff M,.ABT-737 is a useful component of combinatory chemotherapies for chronic myeloid leukaemias with diverse drug-resistance mechanisms.Br J Haematol. 2008;140(2):181-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700