用户名: 密码: 验证码:
新型无硫磷有机钼添加剂的制备与摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,为了节省能源和提高燃料的经济性,对润滑油添加剂的性能要求越来越高,同时,环保要求又对润滑油提出了无(低)硫磷的要求,保护尾气的三元催化装置,降低二烷基二硫代磷酸锌添加剂的使用量和取代二烷基二硫代磷酸锌已是必然。因此研究开发“无硫磷”、“无锌”润滑油添加剂和探索其摩擦磨损机理有很重要的理论价值和实用价值。
     本课题从环保、节能、低投入及材料磨损的角度出发,以国内资源丰富、耐磨寿命最长和长期性能好的钼与不同碳链的羧酸为原料,合成了五种水溶性无硫磷有机钼添加剂和两种油溶性无硫磷有机钼添加剂,利用红外光谱对其结构进行表征。
     文中对5种含钼水基润滑液采用四球机综合评定了承载能力、抗烧结能力和长时间摩擦磨损性能,端面试验机测试其对钢/紫铜、钢/铝摩擦副的摩擦磨损性能,疲劳试验机检测其耐疲劳寿命,结果表明,5种水溶性无硫磷有机钼添加剂均能大幅度提高水的承载能力、抗磨减摩性能;对钢/紫铜、钢/铝摩擦副均有较好的抗磨减摩性能;同时具有较好的抗疲劳性能。其中,a5的综合性能最好。
     文中采用四球机综合评定了两种油溶性无硫磷有机钼(b1、b2)与市场产品ZDDP、MoDTP的承载能力和长时间摩擦磨损性能。试验结果表明,b1、b2的承载能力不如ZDDP和MoDTP,但抗磨减摩性能优于ZDDP和MoDTP;其中3%b1的抗磨减摩性能最好,摩擦系数和磨斑分别比150SN提高了51%和48%;无硫磷有机钼与T203有较好的抗磨减摩协同性;无硫磷有机钼对CF-4再生油也有较好的极压减摩抗磨效果。
     对无硫磷有机钼化合物的摩擦磨损机理进行探讨,分析结果表明,无硫磷有机钼化合物在摩擦过程中与摩擦副表面发生化学反应,生成一层主要由有机氮吸附膜和铁的氧化物、三氧化钼沉积膜组成的边界复合润滑膜,从而起到了较好的极压减摩抗磨作用。
The issues of environment and energy sources have become international hotspots nowadays. And, environment regulations have been introduced to restrict the permissible level of phosphorus and sulphur (PS) because these can poison the catalysts that are used to remove pollutants from engine exhaust gas. These restrictions are leading to the development of low or zero PS additives which necessitate a reduction in the level of ZDDP employed in crankcase oils. So far, considerable study has been made by research institutions and additive companies to replace ZDDPs by another highly cost-effective compound, but the efforts have proved of little avail.
     Molybdenum is well known for its lamella-layered structure and low-shear strength that provide excellent friction reduction characteristics in high-pressure contacts. In this study five kinds of water-soluble molybdenum-containing substitutes (WMCS) and two kinds of oil-soluble molybdenum-containing substitutes (OMCS) were synthesized by means of chemical reactions between a molybdenum source and a fatty acid salt of ethanol amine, and then characterized by FT-IR.
     The four ball test results showed that all WMCS had obvious beneficial effect on the improvement of water lubricity; the results of end-face friction and wear tester on the steel/aluminum and steel/red copper friction pairs show that the WMCS have good impact on reducing the friction coefficient and wear; the results of fatigue test show that WMCS have good anti- fatigue properties. Thereof, a5 has the best over-all properties.
     The four-ball tribotest results exhibited that the carrying capacity of b1, b2 is worse than that of ZDDP and MoDTP, but the friction-reduction and antiwear of b1, b2 are better. There into the average friction coefficient and WSD of b1 with concentration of 3.0% are the lowest of all, which are lower than 150SN base oil up to 51%, 48% respectively. What’s more, the SP-free organic molybdenum compounds can exhibit good antiwear and friction- reducing synergism with ZDDP.
     The mechanism of extreme-pressure,antiwear and friction-reducing by these SP- free organic molybdenum compounds have also been discussed,showing that on the rubbing surface a protective film consisting of a reaction layer (FeO, Fe2O3 and FeOOH), a complicated organic nitrogen adsorption film and a sediment film MoO3 was formed as a result of decomposition of SP- free organic molybdenum.
引文
Arai K, Tomizawa H. Lubricating oil composition. US, 5605880, 1997
    Barry H F. Factors relating the performance of MoS2 as a lubricant. Lubr. Eng., 1997, 33:475~487
    Bec S, Tonck A, Georges J M, Roper G W. Synergistic effects of MoDTC and ZDTP on frictional behaviour of tribofilms at the nanometer scale. Tribol. Lett. , 2004, 17: 797~809
    Black A L, Dunsler R W, Sanders J V. Comparative study of surface deposites and behaviour of MoS2 particles and molybdenum dialkyl-dithio-phosphate. Wear, 1969, 119, 13~15
    Daniel G. Process for Preparation of Organo– Molybdenum Composition. US, 0070073, 2007 De V L, King J. Antioxidant combinations of molybdenum complexes and aromatic amine compounds. US, 4370246, 1983
    Eugene V R, Thomas J K and Farmer H. Organic molybdenum complexs. US, 4889647, 1989
    Farr J P. Molybdenum disulfide in lubrication-a review. Wear, 1975, 35: 1~25
    Gatto V J, Devlin M T. Lubricant containing molybdenum compound and secondary diarylamine. US, 5650381, 1997
    Hu J Q, Wei X Y, Yao J B, Han L, Zong Z M. Evaluation of molybdate ester as a synergist for arylamine antioxidant in lubricants. Tribol Int. 2006, 39 (11):1469~1473
    Inoue K, Kurahashi T, Negishi T, Akiyama K, Ashimura K, Tasaka K. Effects of phosphorus and ash contents of engine oils on deactivation of monolithic three-way catalysts and oxygen sensors. SAE Technical Paper. 1992, 920654
    Isoyama H, Sakurai T. The lubricating mechanisms of Diu-thiodithio-bis (diethyldithiocarbamate) dimolybdenum during extreme pPressure lubrication.Tribol Int. 1971, 7:151~160
    Jain V K, Shukla D S. Study of the EP activity of water-soluble inorganic metallic salts for aqueous cutting fluids. Wear 1996, 193:226~234
    Joby V J. Molybdenum-Sulfur Additives. US, 0132627, 2004
    Kathryn C. Additives demand report projects small growth. Lubricants World, 2000, 10 (9): 24~25
    Kumar S, Ferrari V, Burk P L, Deeba M, Rogalo J. Influence of phosphorus poisoning on TWCcatalysts. SAE Technical Paper. 2003, 01:3735
    Ma H B, Li J, Yu Y, Zuo G Z, Ren T H. Tribological behaviors and film analysis of two ashless phosphorus/sulfur-containing additives in rapeseed oil. Acta Phys.Chim.Sin, 2008, 24 (5): 799~804
    McFadden C S, Nicholas D S. Adsorption and surface chemistry in tribology. Tribology International, 1997, 30 (12): 881~ 888
    Mould R W, Silver H B, Syrent R J. Investigation of the activity of oil additives. Part V the EP activity of some water-based fluids, Lub.Eng. , 1997, 33 (6): 291~298
    Moritsugu K. Lubricating Oil Composition. US, 0082233, 2009
    Rigney D A. Comments on the sliding wear of metals. Tribology International, 1997, 30 (5): 361~367
    Shaub H. Mixed antioxidant composition. US, 6306803, 2001
    Spikes H A. Tribology research in the twenty-first century. Tribology international, 2001, 34: 789~799
    Spikes H A. Additive-additive and additive-surface interactions in lubrication. Lub.sci. 1989, 2 (1): 3~23
    Szalontai G, Kiss G, Bartha L. Equilibria of mononuclear oxomolybdenum(VI) complexes of triethanolamine. A multinuclear dynamic magnetic resonance study of structure and exchange mechanisms. Spectrochim Acta, Part A 2003; 59: 1995~2007
    Theo M. Wilfried D. Lubricants and Lubrication, German: Weinheim, 2001: 295~500
    Unnikrishnan R, Jain M C, Harinarayan A K, Metha A K. Additive-additive interaction: an XPS study of the effect of ZDDP on the AW/EP characteristics of molybdenum based additives. Wear 2002, 252: 240~249
    Vincent J G, Yvonne L B. The antioxidant properties of oraganomolybdenum compounds in engine oils. Tribology Lubrication Technology, 2003, (10): 40~ 47
    Vincent J G, Edmund F P, Cheng K. Lubricants containing molybdenum compounds, phonates and diary amines. US, 61748421, 2001
    Wagner C D. Handbook of X-ray photoelectron spectroscopy, PerkinElmer, Physical Electronic Division, MI, 1979.
    Wei D P, Han X, Wang R L. The Influence of chemical structure of certain nitrogen-containingorganic compounds on their antiwear effectiveness~the critical role of Hydroxy Group. Lubrication Science, 1989, 2 (1): 63~87
    Wei D P, Song H Q. The Behavior of Steel lubricated by some Oxygen-containing Derivatives of Heterocyclic Nitrogen~containing Compounds (HNCC) under Boundary Lubrication Conditions. Lubrication Science, 1992, 4(3): 219~232
    Wei D P, Song H Q, Wang R L. An investigation of the effects of some motor oil additives on the friction and wear behaviour of oil-soluble organomolybdenum compouds. Lubrication Science, 1991, 3(1):51~72
    Wei D P, Spikes H A. The lubricity of diesel fuels. Wear, 1986, 111, 217~235
    William R, Ruhe J R. Reduced Color Molybdenum-Containing Composition and a Method of Making same. US, 0324949, 2003
    Winer W O. Future trends in tribology. Wear, 1990, 136: 19~27
    Zheng P Y, Han X A, Wang R L. The mechanism of friction reduction of sulfurized oxymolybdenum di-(2-ethylhexyl)-phosphorodithioate under boundary lubrication. ASLE preprint No. 86-TC-4E-1
    陈波水.稀土化合物的润滑性能.中国稀土学报,1998,16(4): 358~360
    陈耕.润滑剂与添加剂,北京:高等教育出版社,1993
    范培文.威布尔概率纸在汽车零部件可靠性分析与评价工作中的应用,汽车科技,2002.4
    耿志勇.添加剂对CF-4再生油摩擦学性能的影响研究:[硕士学位论文].北京:中国地质大学(北京),2008
    林峰.水基抗磨剂化学结构与抗磨作用研究: [博士学位论文].上海:华东理工大学,1997
    黄文轩,韩长宁.润滑油与燃料添加剂手册.北京:中国石化出版社,1994
    黄伟九,谭援强,王化培.水溶性润滑添加剂研究概.润滑与密封,2002,(1):72~75
    刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1993
    刘喜梅,罗新民.水基润滑添加剂的理论及应用,合成润滑材料,2001,(1): 9~13
    刘忠,梅焕谋,李茂生.水溶性润滑添加剂的分子设计浅说.润滑与密封,1995,(3): 31~36
    任天辉.含氮杂环化合物及其衍生物用作多功能润滑油添加剂的研究发展现状.摩擦学学报,1994,14 (4) : 371~381
    任天辉.含氮杂环化合物的合成及其摩擦学特性和抗磨减摩机理研究.兰州:中国科学院兰州化学物理研究所固体润滑开放试验室,1993
    任霞,夏延秋,王晓波等. DDP修饰的纳米铜粒子在聚α烯烃中的摩擦学性能.润滑与密封,2005(6) :77~78
    宋海清.有机钼与内燃机油添加剂复合的减磨抗磨机理的研究:[硕士学位论文].上海:华东理工大学,1987
    孙霞,郑发正,李新年等.润滑剂极压抗磨添加剂的发展状况.石油商技,2003,21(5):8~11
    王汝霖.润滑剂摩擦化学.中国石化出版社,1994
    韦淡平.燃料油润滑性的研究(Ⅱ)模型化合物试验.石油学报(石油加工),1988, 4(1): 90~99
    温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2002
    文庆珍,朱金华,姚树人等.钼的化合价对有机钼化物的极压抗磨性能的影响.海军工程化学学报,2001,13(6):37~40
    夏延秋,任霞.润滑油极压抗磨添加剂的应用及发展预测.沈阳工业大学学报,2006,28(3):241~245
    薛群基.摩擦学研究及发展趋势.中国机械工程, 2000,11(l-2): 77~80
    薛群基,党鸿辛.摩擦学研究的发展概况与趋势.摩擦学学报,1993,13(1): 73~81
    颜志光.润滑材料与润滑技术.北京:中国石化出版社.1999
    张杰.几种水基添加剂对葡萄糖微乳液摩擦学性能的影响研究:[硕士学位论文].北京:中国地质大学(北京),2007
    张绪寿,余来贵,陈建敏.表面工程摩擦学研究进展.摩擦学学报,2000,20(2):156~60
    张嗣伟.我国摩擦学工业应用的节约潜力巨大—谈我国摩擦学工业应用现状的调查.中国表面工程,2008,21(2):50~52
    张嗣伟.摩擦学的进展与展望.摩擦学学报,1994,14(1): 84~88
    周仲荣,雷源忠,张嗣伟.摩擦学发展前沿.北京:科学出版社,2006
    周桂如.流体润滑理论.杭州:浙江大学出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700