用户名: 密码: 验证码:
吲哚美辛对COPD营养不良模型大鼠骨骼肌蛋白质分解代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察吲哚美辛(IND)对COPD营养不良模型大鼠骨骼肌蛋白质分解代谢的影响以及大鼠体内TNF-α的变化。
     方法:100只健康Wistar大鼠随机分为模型组80只,对照组20只。采用气道内滴猪胰弹性蛋白酶加烟熏方法建立COPD大鼠模型。造模第68天以低于正常对照组大鼠平均体重的90%作为判断营养不良的标准,把模型大鼠分为营养不良组(n=40)和营养正常组(n=37)。营养不良组按随机区组设计分为A、B、C、D四组。A组、对照组和COPD营养正常组每天予等量生理盐水灌胃,B、C、D组每天予不同剂量IND灌胃(B组:IND 0.5mg/kg.d,C组:IND 1mg/kg.d,D组:IND 2mg/kg.d),干预14天后,饲养14天。称大鼠体重,采用双抗体夹心ABC-ELISA法测定血清、膈肌和伸趾长肌匀浆中肿瘤坏死因子-α的浓度;采用高效液相色谱技术检测膈肌、伸趾长肌匀浆中3-甲基组氨酸和酪氨酸的含量。
     结果:(1)干预C组大鼠体重增长速度显著高于干预B、D组和干预A组(P=0.001,P=0.002,P=0.00),与正常对照组、COPD营养正常组相比均无显著性差异(P均>0.05)。干预B组与D组之间无明显差异(P>0.05)。干预B、D组大鼠体重增长速度比干预A组稍有增高,无统计学差异(P>0.05),低于COPD营养正常组和对照组,有统计学差异(P<0.05,P<0.01)。
     (2)干预前,干预A、B、C、D组大鼠血清、骨骼肌匀浆中TNF-α浓度均明显高于COPD营养正常组(P<0.01)及对照组(P<0.01),COPD营养正常组明显高于对照组(P<0.01)。干预后,干预B、C、D组大鼠血清TNF-α浓度较干预前均明显降低(P<0.01),并明显低于干预A组(P<0.01),其中以干预C组最明显。
     (3)模型组大鼠血清TNF-α浓度与体重呈显著负相关(R=-0.846,P<0.01);与膈肌、伸趾长肌重量均呈显著负相关(R=-0.778,P<0.01:R=-0.772,P<0.01)。
     (4)干预A组膈肌、伸趾长肌3-甲基组氨酸、酪氨酸含量均明显高于对照组(P<0.01)、COPD营养正常组(P<0.01)、干预B、C、D组(P<0.01),干预C组明显低于COPD营养正常组(P<0.01),低于干预B、D组(P<0.05),干预B、D组之间无显著性差异(P>0.05)。
     结论:(1)TNF-α参与了COPD营养不良、骨骼肌萎缩的发生。(2)1mg/kg剂量的吲哚美辛可以降低COPD营养不良大鼠血清、骨骼肌匀浆中TNF-α的水平,同时也可降低COPD营养不良大鼠骨骼肌蛋白分解代谢率,可部分改善COPD营养不良大鼠骨骼肌萎缩。(3)0.5mg/kg、2mg/kg剂量的吲哚美辛并不具有更显著的作用。
Objective:To observe the influence of indomethacin on skeletal muscle protein catabolism and the changes of tumor necrosis factor(TNF) -alpha in COPD malnutrition rats.
     Methods:100 healthy male adult Wistar rats were randomly divided into two groups:model group(n=80) and normal control group(n=20). Model group was performed with intratracheal instillation of porcine pancreatic elastase and exposed to cigarette smoke to establish COPD models.On the 68th day of modeling,malnutrition was defined if the body weights of the rats in the model group were lower than 90%of the mean body weight of the control group.Model rats were divided into two groups:the non-malnutrition COPD group(n=37) and the malnutrition COPD group(n=40).The malnutrition group rats were divided by randomized block design into four groups(group A,B,C,D).Isotonic physiologic saline was administered to group A,the control group and the non-malnutrition COPD group,and different doses of oral indomethacin were administered to groups B,C,and D daily(group B:IND 0.5mg/kg.d,C:IND 1mg/kg.d,D:IND 2mg/kg.d).After 14 days of intervention,they were changed to normal feeding for 14 days,and then the weights of each rat body were scaled.The concentrations of TNF-αlpha in the serum,the diaphragm and extensor digitorum longus muscle homogenates from these rats were measured by double-antibody sandwiched ABC-ELISA method.The contents of 3-methyl-histidine and tyrosine in the diaphragm and extensor digitorum longus muscle homogenates were detected by high-performance liquid chromatography.
     Results:(1) The body weight growth rate of the intervention group C rats was significantly higher than the intervention groupB,D and A (P=0.001,P=0.002,P=0.00),and compared with the normal control group and the non-malnutrition COPD group respectively,the difference is not significant(P>0.05).There was no significant difference between the intervention groups B and D(P>0.05).The body weight growth rates of the intervention groups B and D rats were slightly higher than the intervention group A,with no significant difference(P>0.05);they were lower than the non-malnutrition COPD group and the control group with significant difference(P<0.05,P<0.01).
     (2) Before the intervention,the TNF-αlpha concentrations of the serum and the skeletal muscle homogenate of rats of the intervention groups A,B,C and D were significantly higher than those of normal nutrition COPD group(P<0.01) and the control group(P<0.01).The COPD normal nutrition group was obviously higher than the control group(P<0.01).The TNF-αconcentrations of the serum and the skeletal muscle homogenate of rats of the intervention groups B,C andD after the intervention were significantly lower than before the intervention (P<0.01),and were significantly lower than the intervention group A(P<0.01),the most significant is the intervention group C.
     (3) The serum TNF-αlpha concentration and body weight of model group rats were negatively correlated(R=-0.846,P<0.01),as well as the diaphragm and extensor digitorum longus muscle weights(R=-0.778, P<0.01;R=-0.772,P<0.01).
     (4) The 3-methyl-histidine and tyrosine levels of the diaphragm and extensor digitorum longus muscles of the intervention group A rats were significantly higher the control group(P<0.01),the normal nutrition COPD group(P<0.01),and the intervention groups B,C and D(P<0.01). The COPD normal nutrition group was higher than the control group obviously(P<0.01).The intervention group C was lower than the COPD normal nutrition group obviously(P<0.05),as well as the intervention groups B and D.There was no significant difference between the intervention groups B and D(P>0.05).
     Conclusion:(1) TNF-αlpha is involved in the occurrence of COPD malnutrition and skeletal muscle amyotrophy.(2) Dose of 1mg/kg indomethacin can reduce the TNF-αlpha levels in the serum and the skeletal muscle homogenate in malnutrition COPD rats,and reduce the catabolic rate of the skeletal muscle proteins in malnutrition COPD rats, which can improve partly the malnutrition COPD rats nutrition and reverse the skeletal muscle atrophy.(3) Dose of 0.5mg/kg or 2mg/kg indomethacin does not have a more remarkable function.
引文
[1]Mannino DM,Gagnon RC,Petty TL.et al.Obstructive lung disease and low lung function in adults in the United States:data from the National Health and Nutrition Examination Survey,1988-1994.Arch Intern Med.2000;160:1683-1689.
    [2]National Heart,Lung and Blood Institute.Morbiditiy & Mortality:1998 Chart Book on Cardiovascular,Lung,and Blood Diseases.Bethesda,MD:National Heart,Lung and Blood Institute;1998:
    [3]陆再英、钟南山.内科学[M].第7版.北京:人民卫生出版社,2008.62-68.
    [4]Brug J,Schols A,Mesters L.et al.Dietary change,nutrition education and chronic obstructive pulmonary disease.Patient Educ Couns,2004,52(3):249-257.
    [5]EzzellL,Jensen GI1Malnutrition in chronic obstructive pulmonary disease.Am J Clin Nutr,2000,72(6):1415214161
    [6]Laaban JPl Nutrition and chronic respiratory failure.Ann InternMed,2000,151(7):54225481
    [7]Schols AM,Slangen J,Volovics L,wouters EF.Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease.Am J Respir Crit Care Med,1998(6 pt 1);157:1791-1797.
    [8]Landbo C,Prescott E,Lange P,Vestbo J,Almdal TP.Prognostic valne of nutritional status in chronic obstructive pulmonary disease.Am J,Respir Crit Care Med,1999,160(6):1856-1861.
    [9]Soler JJ,Sanchez L,Roman P,et al Prevalence of Malnutration in Outpatient s Wit h Stable Chronic Obst ructiv Pulmonary Disease.Arch Bronconeumol,2004,40:2502258.
    [10]Sperk G,Furtinger S,Schwarzer C,et al.GABA and its receptors in epilepsy[J].Adv Exp Med Biol,2004,548:92-103.
    [11]Creutzbery EC,Schols AM,Weling-scheepers CA,et al.Characterization of the nonresponse to high caloric oral nutritional therapy in depleted patients with chronic obstructive pulmonary disease.Am J Respir Crit Care Med,2000,161:745-752.
    [12]De Godoy I,Donahoe M,Calhoun WJ.et al.Elevated TNF-α production by peripheral blood monocytes of weight- lossing COPD patients.Am J Respir Crit Care Med,1996;153(2):633-637.
    [13]Ferreira IM,Brooks D,Lacasse Y.et al.Nutritional support for individual with COPD -a meta-analysis.Chest,2000,117:672-678.
    [14]Martinez-Llorens JM,Orozco-Levi M,Msdeu MJ,et al.Global muscle dysfunction and exacerbation of COPD a cohort study.Med Clin(Bare) 2004,122(14):521-527.
    [15]Schols AM.TNF-αlpha and hypermetabolism in chronic obstructive pulmonary disease.Clin Nutr,1999,18(5):255-257.
    [16]Nguyen LT,Bedu M,Caillaud D.et al.Increased resting energy expenditure is related to plasma TNF-αlpha concentration in stable COPD patients.Clin Nutr.1999,18(5):269-274.
    [17]徐卫国,罗勇,吴靖川等.不同营养状况慢性阻塞性肺疾病肿瘤坏死因子-a 的测定.[J].中国实用内科杂志.1999,22:854-855.
    [18]Berry JK,Baum C.Reversal of chronic obstructive pulmonary disease associateed weight loss:are there pharmacological treatment options? Drugs,2004,64(10):10 41-1052.
    [19]周伟,江志伟,刘放南等.吲哚美辛对癌性恶病质小鼠肌肉泛素-蛋白质酶途径的影响.[J].肠外与肠内营养.2004,11(6):348-352.
    [20]赵亚丽,孙圣华,刘纯等.COPD营养不良与细胞因子的关系及消炎痛干预实验研究.[J].医学临床研究 2006,23(10):1572-1577.
    [21]Siafakas NM,Vermeire P,Pride NB,et al.Optimal assessment and management of chronic obstructive pulmonary disease(COPD)[J].Eur Respir,1995,8:1398-1420.
    [22]中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007年修订版)[J].中华结核和呼吸杂志,2007,30(1):8-17
    [23]Pauwels RA,et al.Global strategy for the diagnosis,management,and prevention of chronic obstructive pulmonary disease.NHLBI/WHO global initiative for Chronic Obstructive Lung Disease(GOLD)executive summar[J].Respir Care,2001,46(8):798-825
    [24]施焕中,慢性阻塞性肺疾病.[M],北京,人民卫生出版社,2006,379-380.
    [25]Canning BJ.Modeling asthma and COPD in animals:a pointless exercise[J],Cur Opinion Pharmacol,2003,3:244-250.
    [26]Shore S,Kobzik L,Long NC.Increased airway responsiveness to inhaled methacholine in a rat model of chronic bronchitis[J].Am J Respir Crit Care med,1995,151(6):1931-1938
    [27]许浒,熊密,黄庆华,等.细胞感染导致慢性阻塞性肺疾病.[J].中华结核和呼吸杂志,1999,22:739-742
    [28]曾勉,郭禹标,谢灿茂等.猪胰蛋白酶肺气肿模型复制的实验研究.[J].现代康 复,2004,5(3):59-60
    [29]LiD.et al.Endotoxin-induced airway intro-epithelial neutrophilia.Goblet cell hyperplasia and metaplasia in the rat;a light and electron miroscopic study[J].Eur Respir J,1996,9:424
    [30]Brusselle GG,Bracke KR,Maes,T,et al.Murine models of COPD[J].Pul-monary Pharmacol Therapeut,2006,19:155-165.
    [31]宋一平,崔德健,茅培英,等.慢性阻塞性肺疾病大鼠模型气道重塑及生长因子的研究[J].中华结核和呼吸杂志,2001,24:417-419
    [32]申传安,柴家科,姚咏明等.胰岛素强化治疗对烫伤脓毒症兔骨骼肌蛋白高降解的调节及其机制.中国危重病急救医学,2006,18(3):139-142
    [33]孙圣华,唐文祥,刘纯等.TNF-α对COPD大鼠模型呼吸肌蛋白质分解代谢的影响.中华结核和呼吸杂志,2007,30(3):55-56.
    [34]陈丕仁,崔立1,侯加法.慢性阻塞性肺病动物模型的研究进展.[J],中国实验动物学报,2007,15,(3):238-242.
    [35]陈文彬.诊断学.[M],第五版,北京,人民卫生出版社,2001,540-541.
    [36]冯卒灵,会焱,武维等.屏益气活血化痰方对慢性阻塞性肺疾病模型大鼠肺功能的影响.[J],北京中医药大学学报,2005,28(6):39-42.
    [37].Darling G,Fraker DL,Jensen JC.et al.Cachectic effects of recombinant human tumor necrosis factor in rats.J Cancer Res.1990,50:4008-4013.
    [38]Doherty GM,Lange J R,Langstein HN,et al.Evidence for IFN-γas a Mediator of the Lethality of Endotoxin and Tumor Necrosis Factor-a J Immunol,1992,149(5):1666-1670.
    [39].詹娟,孙圣华.COPD患者缺氧对TNF-α系统的激活及与营养不良的相关性.[J].医学临床研究,2003,20(12):881-884
    [40].Yamamoto C,Yoneda T,Yoshikawa M,et al.The relationship between a decrease in fat mass and serum levels of TNF2alpha in patients wit h chronic obst ructive pulmonary disease.NihonKyobu Shikkan Gakkai Zasshi,1997,35:1191-1195.
    [41]Schols AM,Creutzberg EC,Buurman WA,et al.Plasma Leptin is related to proinflammatory status and dietary intake in patients wit h COPD.Am J Respir Crit Care Med,1999,160:122021226.
    [42]AgustiAGN,Noguera A,Sauleda J,et al.Systemic inflammation in chronic respiratory diseases.Eur Respir J,2003,21:3472360.
    [43]Attaix D,Taillander D.The critical role of the ubiquitin - proteasome pathway in muscle wasting in comparison to lysosmal and Ca~(2+) - dependent systems.Adv Mol Cell Biol,1998,27:235-266.
    [44]Fan CH,Tiao G,James JH,et al.Burn injury stimulates multiple proteolytic pathways in skeletal muscle including the ubiquitin - energy - dependent pathway.J Am Coll Surg,1995,180:161-1701
    [45]郑则广,陈荣昌,钟南山.慢性阻塞性肺疾病的体重减轻和骨骼肌萎缩.[J].国际呼吸杂志,2006,26(3):175-183.
    [46]Yamamoto Y,Gaynor RB.Therapeutic potential of inhibition of the NF-kappa B pathway in the treatment of inflammation and cancer.J Clin Invest,2001,107(2):13.
    [47]周爱儒.生物化学.[M],人民卫生出版社.第五版,2001,168.
    [48]吴焱秋,柴家科.骨骼肌蛋白分解途径的研究进展.国外医学创伤外科基本问题,2001,21(4):216
    [49].Llovera M,Carbo N,Lopez-Soriano J.et al.Different cytokines modulate ubquitin gene expression in rat skeletal muscle.Cancer letters,1998,133:83 87.
    [50].Ciechanover A,Orian A,Schwartz AI.The ubiquitin-mediated proteolytic pathway:mode of action and clinical implications[J].CellBiochem,2000,34(supp1):40
    [51]Costelli P,Bossola M,Muscaritoli Met al.Anticytokine treatment prevents the increase in the activity of ATP2ubiquitin2 and Ca~(2+)- dependent proteolytic systems in the muscle of tumour2bearing rats[J].Cytokine,2002,19(1):125.
    [52]Safford KM,Hicok KC,Saford SD,et al.Neurogenie differentiation of murine and human adipose derived stromal cells[J].Biochem Biophys Res Commun,2002,294(2):371-379.
    [1] Brug J,Schols A,Mesters L.et al. Dietary change, nutrition education and chronic obstructive pulmonary disease.Patient Educ Couns,2004,52(3):249-257.
    
    [2] Sperk G, Furtinger S, Schwarzer C, et al. GABA and its receptors in epilepsy[J].Adv Exp Med Biol, 2004, 548: 92-103.
    
    [3] Schols AM,Slangen J,Volovics L, wouters EF. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med,1998(6pt 1);157:1791-1797.
    
    [4] Landbo C, Prescott E, Lange P, Vestbo J, Almdal TP. Prognostic valne of nutritional status in chronic obstructive pulmonary disease . Am J, Respir Crit Care Med, 1999,160(6): 1856-1861
    
    [5] Schols AM,Soeters PB,Dingemans AMC,et al.Prevalence and characteristcs of mutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation.Am Rev Respir Dis,1993,147:1151-1156.
    
    [6] Zawallack RL, Shoup R, Warner S, et al. Alteration in total and regional body composition in patients with moderate to severe obstructive lung disease. Monsldi Arch Chesst Dis, 1996,51:507-509.
    
    [7] Shoup R, Dalsky G, Warner S. et al. Body composition and health related quality of life in patients with obstructive airway disease. Eur Respir. 1997,10:1576-1580.
    
    [8] Soler JJ ,Sanchez L ,Roman P ,et al . Prevalence of Malnutration in Outpatient s Wit h Stable Chronic Obst ructiv Pulmonary Disease. Arch Bronconeumol, 2004, 40 :2502258.
    
    [9] Marquis K,Debigare R,Lacesse Y,et al.Mid-thigh muscle cross-sectional area is a better predietor of mortality than body mass index in patients with chronic obstructive pulmonary disease.Am J respir Crit Care Med,2002,166:800-813
    
    [10] Gosker HR , Engelen MPKJ , van Mameren H , van Dijk PJ , van der Vusse GJ ,Wouters EFM , and Schol s AMWJ . Muscle fiber type IIX atrophy is involved in t he loss of fat2f ree mass in chronic obstructive pulmonary disease. Am J Clin Nut r,2002,76: 113-119.
    
    [11] Gosker HR ,van Mameren H ,van Dijk PJ ,et al . Skeletal muscle fibre-type shifting and metabolic profile in patient s wit h chronic obstructive pulmonary disease. Eur Respir J ,2002 ,19 :6172625.
    
    [12] Saey D, Michaud A, Couillard A, Cote CH, Mador MJ, LeBlanc P, Jobin J,Maltais F. Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive pulmonary disease.Am J Respir Crit Care Med2005;171:1109-1115.
    [13]Mattson J and Martin J.Emphysema-induced reductions in locomotory skeletal muscle contractile function.Exp Physiol,July 1,2005;90(4):519-525.
    [14]Mador MJ,Kufei TJ,Pineda L.Quadriceps fatigue after cycleexercise in patients with chronic obstructive pulmonary disease.Am J Respir Crit Care Med,2000,161(2):447-453.
    [15]Sauleda J,Garcia-Palmer FJ,Gonzalez G,et al.The activity ofcytochrome oxidase is increased in circulating lymphocytes of patients with chronic obstructive pulmonary disease,asthma,and chronic arthritis.Am J Respir Crit Care Med,2000,161(1):32-35.
    [16]Sauleda J,Garcia-Palmer F,Wiesner RJ,et al.Cytochrome oxidase activity and Mitochondrial gene expression in skeletalmuscle of patients wit h chronic obst ructive pulmonary disease.Am J Respir Crit Care Med,1998,157(5Pt1):1413-1417.
    [17]Schols AM,Creutzberg EC,Buurman WA,et al.Plasma leptin isrelated to proinflammatory status and dietary intake in patients with chronic obst ructive pulmonary disease.Am J Respir Crit Care Med,1999,160(4):1220-1226.
    [18]Schols AM,Soeters PB,Mostert R,Saris WH,Wouters EF.Energy balance in chronic obstructive pulmonary disease.Am Rev Respir Dis 1991;143:1248-1252.
    [19]苏新明,刘志,刘刚等.慢性阻塞性肺疾病患者静息能量与呼吸力学及气体交换关系的研究[J]中华内科杂志,2003,42(5):324-327.
    [20]李健,罗勇,徐卫国.慢性阻塞性肺疾病能量代谢研究进展[J]中国临床营养杂志2006,14(1):54-57.
    [21]Schols AM1 Pulmonary cachexial Int J Cardiol,2002,85(1):1012-1101.
    [22]Martinez-Llorens JM,Orozco-Levi M,Msdeu MJ,et al.Global muscle dysfunction and exacerbation of COPD a cohort study.Med Clin(Barc) 2004,122(14):521-527.
    [23]van Eeden SF,Tan WC,Suwa T,et al.Cytokines involved in the systemic inflammatory response induced by exposure to particulate mat ter air pollutants (PM10).Am J Respir Crit Care Med,2001,164:8262830.
    [24]AgustiAGN,Noguera A,Sauleda J,et al.Systemic inflammation in chronic respiratory diseases.Eur Respir J,2003,21:3472360.
    [25]Darling G,Fraker DL,Jensen JC.et al.Cachectic effects of recombinant human tumor necrosis factor in rats.J Cancer Res.1990,50:4008-4013
    [26]Goodman MN.Tumor necrosis factor induce skeletal muscle protein breakdown in rats.Am J Physiol,1991,260:E727.
    [27]Zamir O,Hasselgren PO,HIgashiguchi T.et al.tumor necrosis factor(TNF) and interleukin-1(IL-1) induce muscle protealysis through different mechanisms.Mediat Inflam,1992,1:247-252.
    [28]Charters Y.Grimble RF.Effect of recombinant human tumor necrosis factor alpha on protein synthesis in liver,skeletal muscle and skin of rats.BiochemJ,1989,258:493-498.
    [29]Doherty GM,Lange J R,Langstein HN,et al.Evidence for IFN-γas a Mediator of the Lethality of Endotoxin and Tumor Necrosis Factor-a[J].J Immunol,1992,149(5):1666-1670.
    [30]詹娟,孙圣华.COPD患者缺氧对TNF-α系统的激活及与营养不良的相关性.医学临床研究,2003,20(12):881-884.
    [31]Yamamoto C,Yoneda T,Yoshikawa M,et al.The relationship between a decreease in fat mass and serum levels of TNF2alpha in patient s wit h chronic obst ructive pulmonary disease.NihonKyobu Shikkan Gakkai Zasshi,1997,35:119121195.
    [32]Schol s AM,Creutzberg EC,Buurman WA,et al.Plasma Leptin is related to proinflammatory status and dietary intake in patient s wit h COPD.Am J Respir Crit Care Med,1999,160:122021226.
    [33]郑则广,陈荣昌,钟南山.慢性阻塞性肺疾病的体重减轻和骨骼肌萎缩.国际呼吸杂志,2006,26(3):175-183
    [34]Reid,MB,Li YP.Cytokines and oxidative signalling in skeletal muscle[J].Acte Physiol Scandinavica,2001,171(3):225-232.
    [35]Llovera M,Carbo N,Lopez-Soriano J.et al.Different cytokines modulate ubquitin gene expression in rat skeletal muscle.Cancer letters,1998,133:83 87.
    [36]孙圣华,唐文祥,刘纯等.TNF-α对COPD大鼠模型呼吸肌蛋白质分解代谢的影响.中华结核和呼吸杂志,2007,30(3)55-56.
    [37]Patrick M.Cytokine and cacexia.Nutrition,1997,18:225-257.
    [38]Schols AM,Buurman WA,Staal van den Brekel AJ.et al.Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease.Thorax,1996,51:819-824.
    [39]Sandler S,Bendzen K,Eizirik DL.et al.Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro.Endocrinology,1990,126:1288-1294.
    [40]Dentener MA,Creuzberg EC,Schols AMWJ,et al.Systemic Anti-inflammatory mediators in COPD:increase in soluble interleukin 1 receptor Ⅱ during t reatment of exacerbations.Thorax,2001,56:7212726.
    [41]Engelen MP,Schols AM,Does JD,et al.Skeletal muscle weakness is associated with wasting of extremity fat-free mass but not with airflow obst ruction in patients with chronic obstructive pulmonary disease.Am J Clin Nutr,2000,71(3):733-738.
    [42]Sauleda J,Garcia-Palmer FJ,Gonzalez G,et al.The activity ofcytochrome oxidase is increased in circulating lymphocytes of patients with chronic obstru- ctive pulmonary disease,asthma,and chronic arthritis.Am J Respir Crit Care Med,2000,161(1):32-35.
    [43]CalikogluM,Sahin G,Unlu A,et all Lep tin and TNF-αlpha levels in patientswith chronic obstructive pulmonary disease and their relationship to nutritionall.Resp-iration,2004,71(1):45-50.
    [44]MeierU,GressnerAM1 Endocrine regulation of energy metabolism:review of pathobiochemical and clinical chemicalaspects of lep tin,ghrelin,adiponectin,and resistinl Clin Chem,2004,50(9):1511-1525.
    [45]Cow,dine RV,SinhaML Heiman A,et al.Serum immunoreactive leptin concentrations in normalweight and obese humans[J],N Engl J med.1996,334(5):292.
    [46]Takabatake N,Nakamura H,Abe S,et al1 Circulating leptin in patients with COPD1 Am J Resp ir Crit Care Meal,1999,159(4 Pt 1):1215-12191.
    [47]RosenbaumM,Leibel RL1 The role of lep tin in human physiology.N Engl J Med,1999,341(12):913-915.
    [48]李报春,吴丽等,COPD病人血清瘦素水平与营养状况的关系初探,[J],实用老年医学,2002,(16)2:103-104.
    [49]Creutzberg EC,Wouters EF Vanderhoven-Augustin IM.et al.Disturbances in leptin metabolism are related to energy imbalance during acute exacerbations of chronic obstructive pulmonary disease.Am J respire Crit Care Med 2000,162:1239-1245.
    [50]Watt PW,Corbett ME,Rennie MJ.Stimulation of protein synthesis in pig skeletal muscle by infusion of amino acids during constant insulin availability.AmJ Physiol,1992,263:E453-E460.
    [51]Louard RJ,Fryburg DA,Geelfand RA,et al.Insulin sensitivity of protein and glucose metabolism in human forearm muscle.J Clin Invest,1992,90:2348-2354.
    [52]罗勇 徐卫国 姚迪 吴靖川,不同营养状况慢性阻塞性肺病患者急性期胰岛素测定及其临床意义探讨.[J],中国临床营养杂志,2000,8(3):151-153.
    [53]Zierath JR,Krook A,Wallberg-Henriksson H.Insulin action and insulin resistance in human skeletal muscle.Diabetologia 2000;43:821-835.
    [54]Capaldo B,Lembo G,Napoli R,et al.Skeletal muscle is a primary site of insulin resistance in essential hypertension.Metabolism 1991;40:1320-1322.
    [55]Friedman JE,Dohm GL,Elton CW,et al.Muscle insulin resistance in uremic humans:glucose transport,glucose transporters,and insulin receptors.Am J Physiol 1991;261:E87-94.
    [56]Hasselgren PO,Warner BW,James JH,Takehara H,Fischer JE.Effect of insulin on amino acid uptake and protein turnover in skeletal muscle from septic rats.Evidence for insulin resistance of protein breakdown.Arch Surg 1987;122:228-233.
    [57]Raymond RM,Harkema JM,Emerson TE Jr.Skeletal muscle insulin resistance during Escherichia coli bacteremic shock in the dog.Surgery 1981;90:853-859.
    [58]Strommer L,Permert J,Arnelo U,et al.Skeletal muscle insulin resistance after trauma:insulin signaling and glucose transport.Am J Physiol 1998;275:E351-358.
    [59]Stuart CA,Shangraw RE,Prince MJ,Peters EJ,Wolfe RR.Bed-rest-induced insulin resistance occurs primarily in muscle.Metabolism 1988;37:802-806.
    [60]Weinstein SP,Paquin T,Pritsker A,Haber RS.Glucocorticoid-induced insulin resistance:dexamethasone inhibits the activation of glucose transport in rat skeletal muscle by both insulin- and non-insulin-related stimuli.Diabetes 1995;44:441-445.
    [61]Krebs M,Krssak M,Bernroider E,et al.Mechanism of amino acid-induced skeletal muscle insulin resistance in humans.Diabetes 2002;51:599-605.
    [62]Miles PD,Romeo OM,Higo K,Cohen A,Rafaat K,Olefsky JM.TNF-αlpha-induced insulin resistance in vivo and its prevention by troglitazone.Diabetes 1997;46:1678-1683.
    [63]Jakobsson P,Jorfeldt L,von Schenck H.Insulin resistance is not exhibited by advanced chronic obstructive pulmonary disease patients.Clin Physiol 1995;15:547-555.
    [64]卢方平 胰岛素样生长因子-1与慢性肾衰患者的营养状态.[J]中华肾脏病杂志,1998,14:62-64.
    [65]Rinderknecht E,Humbel RE,The amino acid sequence of human insulin-like growth factor 1 and its structural homology with proinsulin.J Biol chen chen.1978,253:2769-2776.
    [66]Gluckman PD,Douglas RG,Ambler,GR,etal.The endocrine role of insulin-like growth factor 1.Acta Pediatr Scand,1991,372,suppl:97-105.
    [67] Dohm GL,Elton CW,RajuMs,etal. IGF - I stimulated glucose transport in human skeletal muscle and IGF-1 resistance in obesity and NIDDM.Diabetes. 1990,39 :1028-1032.
    
    [68] Rommel C, Bodine SC, Clarke BA, et al Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 2001;3:1009-1013.
    
    [69] Gosselink R, Troosters T, Decramer M. Distribution of Muscle Weakness in Patients with Stable Chronic Obstructive Pulmonary Disease. J Cardio pulmonary rehabilitation 2000, 20: 353-360.
    
    [70]SevenoaksMJ, Stockley RA1 Chronic Obstructive Pulmonary Disease,inflammation and co-morbidity a common inflammatory phenotype? Respir Res,2006, 7(1): 701.
    
    [71] Takabatake N, Nakamura H, Abe S, et all The relationship between chronic hypoxia and activation of TNF-α system in patients with chronic obstructive pulmonary diseasel Am J Resp ir Crit CareMed, 2000, 161 (4 Pt 1): 1179-11841
    
    [72]Preedy VR, Smith DM, Sugden PH. The effects of 6 hours of hypoxia on protein synthesis in rat tissues in vivo and in vitro. Biochem J 1985;228:179-185.
    
    [73] Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP- dependent ubiquitin-proteasome pathway. J Clin Invest 1996;97:1447-1453.
    
    [74]Mitch WE. Mechanisms causing loss of lean body mass in kidney disease. Am J Clin Nutr 1998;67:359-366
    
    [75]Creutzberg EC,Wouters EF,Vanderhoven-Augustin IM, et al.Disturbances in leptin metabolism are related to energy imbalance during acute exacerbations of chronic obst ructive pulmonary disease[J]. Am J Respir Crit Care Med,2000, 162(4 Pt1):1239-1245.
    
    [76] Wing SS, Goldberg AL. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Physiol 1993; 264: E668-676.
    
    [77] Mitch WE, Bailey JL, Wang X, Jurkovitz C, Newby D, Price SR. Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting. Am J.Physiol.l999:276:C1132-1138.
    
    [78] Tiao G, Fagan J, Roegner V, et al. Energy-ubiquitin-dependent muscle proteolysis during sepsis in rats is regulated by glucocorticoids. J Clin Invest 1996;97:339—348.
    
    [79] Decramer M, Lacquet LM, Fagard R, Rogiers P. Corticosteroids contribute to muscle weakness in chronic airflow obstruction. Am J Respir Crit Care Med 1994;150:11-16.
    
    [80]Decramer M,Gosselink R,Troosters T,et al. Muscle weakness is related to utilization of health care resources in COPD patients[J]. Eur RespirJ.1997, 10:417-423.
    
    [81] Gayan2Ramirez G, Vanderhoydonc F , Verhoeven G, et al1 Acute treatment with corticosteroids decreases IGF21 and IGF22 expression in the rat diaphragm and gastrocnemiusl Am J Respir Crit Care Med , 1999(1), 159 :283.
    
    [82]Navegantes LC, Resano NM, Migliorini RH, Kettelhut IC. Effect of guanethidine-induced adrenergic blockade on the different pro teolytic systems in rat skeletal muscle. Am J Physiol 1999;277: E883-889.
    
    [83] Navegantes LC, Resano NM, Migliorini RH, Kettelhut IC. Catecholamines inhibit Ca(2+)-dependent proteolysis in rat skeletal muscle through beta(2)-adrenoceptors and cAMP. Am J Physiol Endocrinol Metab 2001;281:E449-454.
    
    [84] Zeman RJ, Ludemann R, Etlinger JD. Clenbuterol, a beta 2-agonist, retards atrophy in denervated muscles. Am J Physiol 1987;252:E152—155.
    
    [85] Van Der Heijden HF, Dekhuijzen PN, Folgering H, Ginsel LA, Van Herwaarden CL. Long-term effects of clenbuterol on diaphragm morphology and contractile properties in emphysematous hamsters. J Appl Physiol 1998;85:215-222.
    
    [86] Burdet L, de Muralt B, Schutz Y, Fitting J-W. Thermogenic effect of bronchodilators in patients with chronic obstructive pulmonary disease. Thorax 1997;52:130-135.
    
    [87] Hofford JM, Milakofsky L , Vogel WH , et al . The nutritional status in advanced emphysema associated with chronic bronchitis , a study of amino acid and catecholamine levels. Am Rev Respir Dis , 1990 ,141 :901-908.
    
    [88] Berry JK,Baum CL.Malnutrition in Chronic obstructive pulmonary disease. Adding insult to injury.Respir Nurs 2001,12(2):210-9.
    
    [89] Rodrigues A de C,Schmalbruch.Satellite cells and myonuclei in long term denervated rat muscles.Anat Rec,1995,243(4):430-437.
    
    [90]Alvar GN, Agusti, Jaume S, et al. Skeletal Muscle Apoptosis and Weight loss in Chronic Obstructive Pulmonary Disease [J].A m J Respir Crit Care Med.2002, 166(4):485-489.
    [91]Oudijk EJ,Lammers JW,Koenderman L.Systemic inflammation in chronic obstructive pulmonary disease.European Respiratory Journal 2003,22(Supplement 46):5-13
    [92].杨海平.低氧运动对大鼠骨骼肌细胞凋亡及bcl-2bax表达的影响,[J].中国运动医学,[J].2006,25(6):706-709.
    [93]袁益明,王曾礼,刘春涛.血清瘦素对慢性阻塞性肺疾病患者营养状态影响的初步研究.2000,23(5):292-297.
    [94]Wilson DO,Rogers RM,Wright EC,et al.Body weight in chronic obstructive pulmonary disease:the National Institutes of Health intermittent positive - pressure breathing trial[J].Am.Rev.Respir.Dis,1989,139(6):1435-1438.
    [95]陈敏,黄慧,王润秀,吴斌.重组人生长激素对COPD患者GH和营养状况的影响,[J].赣南医学院学报 2007,27(1):39-40.
    [96].Kamischke A,Kemper DE,Castel MA,et al.Testosterone levels in men with chronic obstructive pulmonary disease with or without glucocorticoid therapy.Eur Respir J 1998;11:41-45.
    [97].Bhasin S,Woodhouse L,Storer TW.Proof of the effect of testosterone on skeletal muscle.J Endocrinol 2001;170:27-38.
    [98].Urban RJ,Bodenburg YH,Gilkison C,et al.Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis.Am J Physiol 1995;269:E820-826.
    [99].Bhasin S,Javanbakht M.Can androgen therapy replete lean body mass and improve muscle function in wasting associated with human immunodeficiency virus infection?.J Parenter Enteral Nutr 1999;23:S195-201.
    [100]Schols AMWJ,Sorters PB,Mostert R,et al.Physiological efects of nutritional support and anabolie steroids in patients with ehrunie obstructive puhnonary disease.Am J Respir Crit Care Med,1995,152(4):1268-1274.
    [101]Bulger EM,Maier RV.Antioxidants in critical illness.Archives of Surgery,2001,136(10):1201-1207.
    [102]Cantin AM,Fells GA,Hubbard RC,et al.Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract[J].J Clin Investig,1990,86(3):962-971.
    [103]Rahman I,Skwarska E,MacNee W.Attenuation of oxidant/antioxidantimbalance during treatment of exacerbations of chronic obstructive pulmonary disease.Thorax,1997,52:565-568.
    [104]Kondo,H.Miura,M.;Itokawa,Y.Antioxidant enzyme systems in skeletal muscle atrophied by immobilization.Pfl(u|")gers Arch.422:404-406;1993.
    [105]Kondo,H.;Nakagaki,I.;Sasaki,S.;Hori,S.;Itokawa,Y.Mechanism of oxidative stress in skeletal muscle atrophied by immobilization.Am.J.Physiol.265:E839-E844;1993.
    [106]Kondo,H,Kodama,J.;Kishibe,T.;Itokawa,Y.Oxidative stress during recovery from muscle atrophy.FEBS Lett.326:89-191;1993.
    [107]Appell,H.-J.;Duarte,J.A.R.;Soores,J.M.C.Supplementation of Vitamin E may attenuate skeletal muscle immobilization atrophy,Int.J.Sports Med.18:157-160;1997.
    [108]Attaix D,Taillander D.The critical role of the ubiquitin - proteasome pathway in muscle wasting in comparison to lysosmal and Ca2 + - dependent systems.Adv Mol Cell Biol,1998,27:235-266.
    [109]Fan CH,Tiao G,James JH,et al.Burn injury stimulates multiple proteolytic pathways in skeletal muscle including the ubiquitin - energy - dependent pathway.J Am Coll Surg,1995,180:161-1701.
    [110]周爱儒.生物化学.[M],人民卫生出版社.第五版:168.
    [111]吴焱秋,柴家科.骨骼肌蛋白分解途径的研究进展.国外医学创伤外科基本问题,2001,21(4):216.
    [112]Ciechanover A,Orian A,Schwartz AI.The ubiquitin-mediated proteolytic pathway:mode of action and clinical implications[J].Cell Biochem,2000,34(suppl):40.
    [113]Chiang HL,Terlecky SR,Plant CP et al.Science,1989:246(10):382-385.
    [114]Lowell BB,Ruderman NB,Goodman MN.Biochen J,1986,234(2):237-240.
    [115]Turk V,Turk B,Turk D.Lysosomal cysteine proteases:facts and opportunities.EM- BOJ,2001,20:4629-0633.
    [116]Goil DE,Thompson VF/Christiansen JA.Biochimie.1992,74(3):225-237.
    [117]Hasselgren PO,Fischer TE.Muscle cachexia:current concepts of intracellular mechanisms and molecular regulation.Annals of Surger.2001,233(1):9-17.
    [118]Wolf DH.Hilt W.Sommer T.Death gives birth life:the essential role of the ubiquitin-proteasome system in biology CJ3.Biochim Biophys Aeta,2004,1695:1-2
    [119]Pickart CM.Eddins MJUbiquitin:structures,functions mechanisms.Bioehim Biophys Acta,2004,1695:55-72.
    [120]Strickland E,Hakala K,Thomas PJ,et al.Recognition of misfolding proteins by PA700,the regulatory subcomplex of the 26 S proteasome.J Biol Chem,2000,275:5565-5572.
    [121]Chung CH,Baek SH.Deubiquitinating enzymes:their diversity and emerging roles.Biochem Biophys Res Commun,1999,266:633-640.
    [122]赵洪玉,钱雯.泛素-蛋白酶体途径与各种病理状况下的骨骼肌代谢.[J].中国运动医学杂志.2004,23,(6):715-718.
    [123]Tanaka K.Molecular biology of proteasomes.Mol Biol Rep,1995,21:21-26.
    [124]Willems AR,Lanker S,Patton EE,et al.Cdc53 targets phosphorylated G1cyclins for degradation by the ubiquitin proteolytic pathway.Cell,1996,86:453-463.
    [125]Baracos VE,DeVivo C,Hoyle DHR,et al.Activation of the ATP - ubiquitin -proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma.AmJ Physiol,1995,268:E996-E1006.
    [126]Hobler SC,Tiao G,Fischer J E,et al.The sepsis - induced increase in muscle proteolysis is blocked by specific proteasome inhibitors.Am J Physiol,1998,274:R30-R37.
    [127]Bai C,Sen P,Hofmann K,et al.SKP1 connects cell cycle regulatore to the ubiquitin proteolysis machinery through a novel motif,the F - Box.Cell,1996,86:263-274.
    [128]Weissman JS,Sigler PB,Horwich AL.From the cradle to the grave:ring complexs in the life of a protein.Science,1995,268:523-524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700