用户名: 密码: 验证码:
PPARδ对胰岛β细胞脂代谢及胰岛素分泌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     PPAR是一组核受体超家族成员,有PPARα、δ或β、γ三种亚型。目前关于PPARα和PPARγ的结构和功能基本上已经明确。但是PPARδ作为最后鉴定的PPAR,其功能目前尚无深入研究。研究发现,PPARδ分布相当广泛,在胰岛、心肌、骨骼肌、脂肪组织、皮肤、脑组织中均有较高表达。研究还发现在骨骼肌、心肌、脂肪组织中,PPARδ均能够增强脂肪酸的氧化和利用,是脂肪酸氧化酶的上游调节因子。因此PPARδ被看作代谢综合征的新的强有力的治疗靶点。但是也有研究发现,在巨噬细胞中PPARδ能够促进胆固醇内流和脂质沉积。这些研究提示PPARδ在脂质代谢中的作用可能具有组织特异性。
     脂毒性导致的胰岛β细胞功能障碍是代谢综合征发病的中心环节之一,改善胰岛β细胞脂代谢可能对代谢综合征的防治起着重要作用。虽然目前有较多的提示性证据表明PPARδ可能在调节胰岛β细胞脂代谢和胰岛素分泌中起作用,但是其在胰岛β细胞中的确切功能却无直接的实验研究报道。为此我们采用Adeasy系统,构建了PPARδ、PPARδ显性负性突变体PPARδ-DN、PPARδ-shRNA的腺病毒载体,观察了它们对INS-1细胞脂代谢相关酶的表达、细胞内甘油三酯浓度、胰岛素释放及相关基因表达的影响,以期明确PPARδ对胰岛β细胞脂代谢和胰岛素分泌的影响及初步机制。
     方法
     1.在葡萄糖浓度分别为3 mmol/L、11 mmol/L、20 mmol/L培养条件下,分别用RT-PCR和western blot检测PPARδmRNA和蛋白的表达变化。
     2.在软脂酸浓度分别为0.125 mmol/L、0.25 mmol/L、0.5 mmol/L培养条件下,分别用RT-PCR和western blot检测PPARδmRNA和蛋白的表达变化。
     3.采用Adeasy系统,构建PPARδ和PPARδ的显性负性突变体PPARδ-DN的重组腺病毒载体。
     4.在构建了PPARδsiRNA表达质粒的基础上,采用Adeasy系统构建PPARδ-shRNA的重组腺病毒载体。
     5.分别用PPARδ腺病毒、PPARδ-DN腺病毒、PPARδ-shRNA腺病毒感染INS-1细胞,RT-PCR检测其对INS-1细胞脂代谢相关基因ACO、CPT1、FATP1、LCAD表达的影响。同时检测细胞内甘油三酯浓度;
     6.分别用PPARδ腺病毒、PPARδ-DN腺病毒、PPARδshRNA腺病毒感染INS-1细胞,RT-PCR检测它们对INS-1细胞Preproinsulin基因表达和放免法检测它们对INS-1细胞胰岛素释放的影响。
     7.分别用PPARδ腺病毒、PPARδ-DN腺病毒、PPARδshRNA腺病毒感染INS-1细胞,RT-PCR分别检测它们对GLUT2、PDK4、UCP-2 mRNA表达的影响。
     结果
     1. INS-1细胞的PPARδmRNA及蛋白表达随着葡萄糖浓度的升高而逐渐降低;
     2. INS-1细胞的PPARδmRNA及蛋白表达随着软脂酸浓度的升高而逐渐升高。
     3.成功构建了PPARδ和PPARδ的显性负性突变体PPARδ-DN的腺病毒载体。
     4.成功构建了PPARδ的siRNA表达载体,并在此基础上,成功构建了PPARδ-shRNA腺病毒表达载体。
     5. PPARδ腺病毒感染INS-1细胞后,INS-1细胞脂代谢相关基因ACO、CPT1、FATP1、LCAD的表达明显升高,细胞内甘油三酯含量明显降低。而PPARδ-DN腺病毒、PPARδ-shRNA腺病毒感染INS-1细胞后,ACO、CPT1、FATP1、LCAD的表达明显降低,细胞内甘油三酯含量明显升高。
     6. PPARδ腺病毒感染INS-1细胞后,INS-1细胞培养基中胰岛素含量明显减少,Preproinsulin表达明显下降。而PPARδ-DN腺病毒、PPARδ-shRNA腺病毒感染INS-1细胞后,INS-1细胞培养基中胰岛素含量明显上升,Preproinsulin表达明显增高。
     7. PPARδ腺病毒感染INS-1细胞后,UCP-2、PDK4的表达明显升高, GLUT2的表达明显下降。而PPARδ-DN腺病毒、PPARδshRNA腺病毒感染INS-1细胞后,UCP-2、PDK4的表达明显下降,而GLUT2的表达明显增高。
     结论
     1. INS-1细胞中,葡萄糖是PPARδ表达的负向调控因素,而脂肪酸是PPARδ表达的正向调控因素。提示PPARδ在胰岛β细胞的糖脂代谢中起着重要作用。
     2. PPARδ能够促进胰岛β细胞的脂肪酸氧化,减少胰岛β细胞内的甘油三酯沉积,从而可能减轻胰岛β细胞的脂毒性。
     3. PPARδ能够抑制胰岛β细胞的胰岛素分泌。PPARδ抑制胰岛β细胞胰岛素分泌的机制可能包括增强UCP-2、PDK4和下调GLUT2的表达。
     4. PPARδ对胰岛功能的影响可能是多方面的:首先,PPARδ促进胰岛β细胞的脂肪酸氧化,减少胰岛β细胞内的甘油三酯沉积,从而可能减少胰岛β细胞的脂性凋亡;其次,PPARδ能够降低胰岛素分泌从而可能防止长期高脂条件下的胰岛β细胞功能耗竭。最后,在短期内,PPARδ抑制胰岛β细胞胰岛素分泌,这也可能加重胰岛β细胞的糖毒性。因此,PPARδ对胰岛β细胞功能的影响需要进一步的长期的观察。
Background and Objective
     PPAR, which contains three isotypes of PPARα, PPARδ(β) and PPARγ, belongs to the nuclear receptor superfamily. By now, the structure and function of PPARαand PPARγare clear, but as the lastly identified isotype, the function of PPARδremains obscure. PPARδis widly expressed in the islet, cardiac muscle, skeletal muscle, adipose tissue, skin and brain. In the cardiac muscle, skeletal muscle and adipose tissue, PPARδis an important regulator of fatty acid oxidation. The up-regulation of PPARδor activation of PPARδby its agonists could enhance the oxidation and utilization of fatty acids, so PPARδis believed to be the upper regulator of fatty acids oxidase and a potential target for the treatment of metabolic syndrome. By contrast, some specialist reported that PPARδpromoted cholesterol influx and lipid accumulation in macrophage, which is opposite to the result in other tissues. These results indicate that the role of PPARδin lipid metabolism may be tissue-specific.
     Impairment of isletβcells by 1ipotoxicity plays a central role during the development of type 2 diabetes mellitus, and the improvement of lipid metabolism may contribute to the prevention and treatment of metabolic syndrom. By now, there are much indirect data shows that PPARδmay play an important role in the regulation of lipid metabolism and insulin release inβcells. But we don’t find any direct report of the function of PPARδinβcells. So we adopt the Adeasy system to get the adenovirus vector of PPARδ, the dominant negative mutant of PPARδ(PPARδ-DN) and PPARδ-shRNA, by which we could observe the effect of PPARδon the expression of fatty acids oxidase, TG concentration, insulin content and insulin-related genes. Finally we could get the effect of PPARδon lipid metabolism, insulin release of pancreaticβcells and their elementary mechanism.
     Methods
     1. The INS-1 cells were incubated in the media containing 3 mmol/L, 11 mmol/L and 20 mmol/L glucose for 24 hours, respectively, then the PPARδmRNA was detected by RT-PCR and the PPARδprotein level was determined by Western blot.
     2. The INS-1 cells were incubated in the media containing 0.125 mmol/L, 0.25 mmol/L and 0.5 mmol/L PA for 24 hours, respectively, then the PPARδmRNA was detected by RT-PCR and PPARδprotein level was determined by Western blot.
     3. The Adeasy system was used to construct the PPARδand PPARδdominant negative mutant (PPARδ-DN) adenovirus vector.
     4. The PPARδ-shRNA adenovirus vector was constructed after the PPARδsiRNA plasmid pGensil/PPARδwas constructed successfully.
     5. The INS-1 cells were infected by PPARδadenovirus, PPARδ-DN adenovirus and PPARδ-shRNA adenovirus, then the mRNA level of ACO, CPT1, FATP1 and LCAD was detected by RT-PCR. At the same time, the intracellular content of TG was determined.
     6. The INS-1 cells was infected by PPARδadenovirus, PPARδ-DN adenovirus and PPARδ-shRNA adenovirus, then the mRNA level of preproinsulin was detected by RT-PCR and the insulin content was determined by RIA.
     7. The INS-1 cells was infected by PPARδadenovirus, PPARδ-DN adenovirus and PPARδ-shRNA adenovirus, then the mRNA level of GLUT2, PDK4 and UCP-2 was detected by RT-PCR.
     Results
     1. The expression of PPARδmRNA and protein were both down-regulated by glucose.
     2. The expression of PPARδmRNA and protein were both up-regulated by PA.
     3. The PPARδand PPARδ-DN adenovirus vectors were constructed successfully.
     4. The pGensil/PPARδ-shRNA was constructed successfully, and then the PPARδ-shRNA adenovirus vector was constructed.
     5. The mRNA level of ACO, CPT1, FATP1 and LCAD was higher in INS-1 cells infected by PPARδadenovirus than that in the controls. And the level of them was much lower in INS-1 cells infected by PPARδ-DN and PPARδ-shRNA adenovirus. By contrast, the TG content in INS-1 cells infected by PPARδwas much lower than the controls and opposite results were observed in INS-1 cells infected by PPARδ-DN and PPARδ-shRNA adenovirus.
     6. In INS-1 cells infected by PPARδadenovirus, the insulin content and the mRNA level of preproinsulin were lower than the contols. By contrast, the insulin content and the mRNA level of preproinsulin were much higher than the contols in INS-1 cells infected by PPARδ-DN and PPARδ-shRNA adenovirus.
     7. PPARδadenovirus upregulated the mRNA level of PDK4, UCP-2 and down-regulated the expression of GLUT2. But the PPARδ-DN and PPARδ-shRNA adenovirus down-regulated the mRNA level of PDK4, UCP-2 and up-regulated the expression of GLUT2.
     Conclusion
     1. The glucose is a negative regulator and fatty acids is a positive regulator of the PPARδexpression in INS-1 cells, which suggest that PPARδmay play an important role in lipid and glucose metabolism of pancreaticβcells.
     2. PPARδcould enhance the fatty acids oxidation and alleviate the lipid deposition in INS-1 cells, which contribute to lighten the 1ipotoxicity of INS-1 cells.
     3. PPARδcould depress insulin release of INS-1 cells, and its mechanism may involve the upregulation of PDK4、UCP-2 and down-regulation of GLUT2.
     4. The effect of PPARδon islet may be complicated: First, PPARδenhances the fatty acids oxidation and alleviates the lipid deposition, whichi may lighten the 1ipotoxicity-induced apoptosis. Second, PPARδabate the hyperinsulinemia in condition of hyperlipemia to prevent exhausting insulin release capacity. Third, the attenuation of insulin release by PPARδmay aggravate the glucotoxicity on islet. So the prolonged effect of PPARδonβcells need to be studied in the future.
引文
1. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes JT - Diabetes, 2002,51(1):7-18
    2. Gervois P, Fruchart JC, Staels B. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nat Clin Pract Endocrinol Metab JT - Nature clinical practice. Endocrinology & metabolism, 2007,3(2):145-56.
    3. Brown JD, Plutzky J. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation JT - Circulation, 2007, 115(4):518-33.
    4. Liveira AC, Bertollo CM, Rocha LT, et al. Antinociceptive and antiedematogenic activities of fenofibrate, an agonist of PPAR alpha, and pioglitazone, an agonist of PPAR gamma. Eur J Pharmacol JT - European journal of pharmacology, 2007,561(1-3):194-201.
    5. Takahashi S, Tanaka T, Kodama T, et al. Peroxisome proliferator-activated receptor delta (PPARdelta), a novel target site for drug discovery in metabolic syndrome. Pharmacol Res JT - Pharmacological research : the official journal of the Italian Pharmacological Society, 2006,53(6):501-7.
    6. Lee CH, Olson P, Hevener A, et al. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2006,103(9):3444-9.
    7. Kang K, Hatano B, Lee CH. PPARdelta agonists and metabolic diseases. Curr Atheroscler Rep JT - Current atherosclerosis reports, 2007,9(1):72-7.
    8. Hondares E, Pineda-Torra I, Iglesias R, et al. PPARdelta, but not PPARalpha, activates PGC-1alpha gene transcription in muscle. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 2007,354(4):1021-7.
    9. Luquet S, Gaudel C, Holst D, et al. Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochim Biophys Acta JT - Biochimica et biophysica acta, 2005,1740(2):313-7.
    10. Oliver WR Jr, Shenk JL, Snaith MR, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S AJT - Proceedings of the National Academy of Sciences of the United States of America, 2001,98(9):5306-11.
    11. Vosper H, Patel L, Graham TL, et al. The peroxisome proliferator-activated receptor delta promotes lipid accumulation in human macrophages. J Biol Chem JT - The Journal of biological chemistry, 2001,276(47):44258-65.
    12. Lee CH, Chawla A, Urbiztondo N, et al. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science JT - Science (New York, N.Y.), 2003,302(5644):453-7.
    13. Li AC, Binder CJ, Gutierrez A, et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest JT - The Journal of clinical investigation, 2004,114(11):1564-76.
    14. UNGER R H,ZHOU Y T,ORCI L.Regulation offatty acid homeostasis in cells:novel role of leptin.Proc,Natl Acad Sci USA,1999,96(5):2 327—2 332.
    15. Unger RH,Zhou YT .Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes, 2001,50(Suppl 1) :S118-121.
    16. Stein D T,Easer V,Stevemon B E,et u1.Essentiality of circulating fatty acid for glucose stimulat insulin secretion in the fasted rat.J Clin Invest,1996,97:2728-2735.
    17. Zhou Y P,Berggren PO .GrillV E.A fatty acid induced decreased in pymvato dehydrogenase actvity is an important determinant of B cell dysfunoion in obese db/db mouse. Diabetes,1996,45:580-586.
    18. Li B, Nolte LA, Ju JS, et al. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nature medicine, 2000, 6(10):1115-20.
    19. Oliver WR Jr, Shenk JL, Snaith MR, et al. A selective peroxisome proliferators -activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2001,98(9):5306-11.
    1. SERGE LUQUET, JOAQUIN LOPEZ-SORIANO, DORTE HOLST, et al. Roles of peroxisome proliferator activated receptor delta (PPARδ)in the control of fatty acid catabolism. A new target for the treatment of metabolic syndrome. Biochimie, 2004, 86(11): 833-837
    2. YONG-XU WANG, CHIH-HAO LEE, SAMBATH TIEP, et al. Peroxisome – Proliferator -Activated Receptorδ Activates Fat Metabolism to Prevent Obesity. Cell, 2003, 113(2): 159-170
    3. DORTE HOLST, SERGE LUQUET, VERONIQUE NOGUEIRA. et al. Nutritional regulation and role of peroxisome proliferator-activated receptor δin fatty acid catabolism in skeletal muscle. Biochim Biophys Acta, 2003, 1633(1):43-50.
    4. KARIN A. J. M. VAN DER LEE, PETER H. M. WILLEMSEN, et al. Fasting-induced changes in the expression of genes controlling substrate metabolism in the rat heart. J Lipid Res, 2001, 42(11):1752-8
    5. Ravnskjaer K, Boergesen M, Rubi B, et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) potentiates, whereas PPARgamma attenuates, glucose-stimulated insulin secretion in pancreatic beta-cells. Endocrinology JT - Endocrinology, 2005,146(8):3266-76
    6. Gervois P, Fruchart JC, Staels B. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nat Clin Pract Endocrinol Metab JT - Nature clinical practice. Endocrinology & metabolism, 2007,3(2):145-56.
    7. Brown JD, Plutzky J. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation JT - Circulation, 2007,115(4):518-33.
    8. Liveira AC, Bertollo CM, Rocha LT, et al. Antinociceptive and antiedematogenic activities of fenofibrate, an agonist of PPAR alpha, and pioglitazone, an agonist of PPAR gamma. Eur J Pharmacol JT - European journal of pharmacology, 2007, 561(1-3):194-201.
    9. Takahashi S, Tanaka T, Kodama T, et al. Peroxisome proliferator-activated receptor delta (PPARdelta), a novel target site for drug discovery in metabolic syndrome.Pharmacol Res JT - Pharmacological research : the official journal of the Italian Pharmacological Society, 2006,53(6):501-7.
    10. Lee CH, Olson P, Hevener A, et al. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2006,103(9):3444-9.
    11. Kang K, Hatano B, Lee CH. PPARdelta agonists and metabolic diseases. Curr Atheroscler Rep JT - Current atherosclerosis reports, 2007,9(1):72-7.
    12. Hondares E, Pineda-Torra I, Iglesias R, et al. PPARdelta, but not PPARalpha, activates PGC-1alpha gene transcription in muscle. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 2007,354(4):1021-7.
    13. Luquet S, Gaudel C, Holst D, et al. Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochim Biophys Acta JT - Biochimica et biophysica acta, 2005,1740(2):313-7.
    14. Barish GD, Narkar VA, Evans RM. PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest JT - The Journal of clinical investigation, 2006,116(3):590-7.
    15. BRIAUD I, HARMON JS, KELPE CL, et al. Lipotoxicity of the pancreatic β-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes, 2001, 50(2):315–321.
    16. BOUCHER A, LU D, BURGESS SC, et al. Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue. J Biol Chem, 2004, 279(26):27263–27271
    17. RAPHAEL ROUT, JOHAN MORIN, FREDERIC MASSE Glucose Down-regulates the Expression of the Paroxysm Proliferate-activated Receptor-a Gene in the Pancreatic β-Cell. J Biol Chem,2000,275(46):35799-35806.
    18. Roduit R, Morin J, Masse F, et al. Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-alpha gene in the pancreatic beta -cell. J Biol Chem JT - The Journal of biological chemistry, 2000,275(46):35799-806.
    19. .Ravnskjaer K, Boergesen M, Dalgaard LT, et al. Glucose-induced repression of PPARalpha gene expression in pancreatic beta-cells involves PP2A activation and AMPK inactivation. J Mol Endocrinol JT - Journal of molecular endocrinology, 2006,36(2):289-99.
    20. Assimacopoulos-Jeannet F, Thumelin S, Roche E, et al. Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic beta-cell line INS-1. J Biol Chem JT - The Journal of biological chemistry, 1997,272(3):1659-64.
    21. Assimacopoulos-Jeannet F, Thumelin S, Roche E, et al. Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic beta-cell line INS-1. J Biol Chem JT - The Journal of biological chemistry, 1997,272(3):1659-64.
    22. Assimacopoulos-Jeannet F, Thumelin S, Roche E, et al. Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic beta-cell line INS-1. J Biol Chem JT - The Journal of biological chemistry, 1997,272(3):1659-64.
    23. Aubert J, Champigny O, Saint-Marc P, et al. Up-regulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 1997,238(2):606-11.
    24. Tugwood JD, Issemann I, Anderson RG, et al. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J JT - The EMBO journal, 1992,11(2):433-9.
    25. Chevillotte E, Rieusset J, Roques M, et al. The regulation of uncoupling protein-2 gene expression by omega-6 polyunsaturated fatty acids in human skeletal muscle cells involves multiple pathways, including the nuclear receptor peroxisome proliferator -activated receptor beta. J Biol Chem JT - The Journal of biological chemistry, 2001,276(14):10853-60.
    26. Wang YX, Lee CH, Tiep S, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell JT - Cell, 2003,113(2):159-70.
    27. PASCAL FERRE. The biology of peroxisome proliferator activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes, 2004, 53(sup11):45 -50.
    28. SERGE LUQUET, CELINE GAUDEL, DORTE HOLST, et al. Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochimica et Biophysica Acta, 2005, 1740(2):313-7
    29. YAN-TING ZHOU, MICHIO SHIMABUKURO, MAY-YUN WANG et al. Role of peroxisome proliferator-activated receptor a in disease of pancreaticβcells. Proc. Natl. Acad. Sci,1998,95:8898-8903
    1. Pesant M, Sueur S, Dutartre P, et al. Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis. Cardiovasc Res JT - Cardiovascular research, 2006,69(2):440-9
    2. Fisher KJ, Choi H, Burda J, et al. Recombinant adenovirus deleted of all viral genes forgene therapy of cystic fibrosis.Virology. 1996, 217:11-22.
    3. Stow ND. Cloning of a DNA fragment from the left hand terminus of the adenovirus type 2 genome and its use on site-directed mutagenesis. Virol. 1981,37(l):171 一 180.
    4. Chinnadurai G, Chinnadurai S, Brussa J. Physical mapping of a large plaquemutation of adenovirus type 2. Virol. 1979, 32(2): 623-628.
    5. Berkner K.L, Sharp PA. Generation of adenorirus by transfection of plasmids. Nucleic Acids Res, 1983, 11(17): 6003 一 021.
    6. Miyake S, Makimura M, KanagaeY, et al. Efficient generation of recombinant adenovirus using adenovirus DNA-terminal protein complex and a cosmidbearing the full-length virus gene. Proc Natl Acad Sci, 1996, 93(3): 1320-1324。
    7. He TC, Zhou S, Costa LT, et al. A simplified system for generating recombinant adenovirus. Proc. Nad. Acad. Sci. 1998, 95(5): 2509-2514.
    8. 尹冰楠,李冬田,李秋香一种简易、廉价、高效构建重组腺病毒载体的方法。天津医科大学学报。2005, 15(7): 171-174.
    9. Drazner MH, Peppel KC, Dyer S, et al. Potention of beta-adrenergic signaling by adenoviral-mediated gene transfer in adult rabbit ventricular myocytes. J Clin Invest. 1997, 99(2): 288-296.
    10. 程金科,林晨,张雪艳等。应用于基因治疗的重组腺病毒的构建方法。遗生 1994, 19(3): 36-38.
    1. TuschlT, BorkhardtA. Small interfering RNAs:are volutionary tool for the analysis of gene function and gene therapy. Mol Intervent, 2002, 2(3):158167.
    2. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol JT - Nature biotechnology, 2004,22(3):326-30
    3. Billy E, Brondani V, Zhang H, et al. Specific interference weth geneexpression by long, double-stranded RNA in mouse embryonalteratocarcinoma cell lines.Proc Natl Acad Sci USA, 2001, 98(25):14428-14433.
    4. Elbashir SM,Lendeckel W,Tuschl T.RNA interference is mediated by 21-and 22 -nucleotide RNAs.Genes Dev,2001,15(2):188-200.
    5. Chu YL, Rana TM. RNAi in human cells, basic structural and functionalfeatures of small interfering RNA. Mol cell, 2002,10(3):537-548
    6. Schwarz DS, Hutvagner G, Haley B, et al. Evidence that siRNAs function asguides, not primers, in the Drosophila and human RNAi pathways. Mol cell,2002;10(3):537-548
    7. Hammond SM,Boettcher S,Caudy AA,et al.Argonaute2,a link betweengenetic and biochemical analyses of RNAi. Science, 2001, 293(5532):1146-1150.
    8. Caudy AA, Myers M, Hannon GJ, et al.Fragile X-related protein and VIGassociate with the RNA interference machinery.Genes Dev, 2002, 16(19):2491-2496.
    9. Lipardi C,Wei Q,Parerson BM. RNAi as random degradative PCR:siRNAprimers convert mRNA into dsRNAs that are degraded to generate newsiRNAs.Cell, 2001,107(3):297-307
    10. Tuschl T, RNA interference and small interference RNAs. Chembiochem, 2001, 2(4):239-245.
    11. Yu JY,DeRuiter SL,Turner DL.RNA interference by expression mammaliancells.Proc Natl Acad Sci USA,2002,99(9):6047-6052.
    12. Yang D, Buchholz F, Huzng Z, et al.short RNA duplexes produced byhydrolysis with Escherichia coli RnaseIII mediate effective RNAinterference in mammalian cells. Proc Natl Acad Sci USA, 2002, 99(15):9942-9947.
    13. Sui G, Soohoo C, Affar B, et al.A DNA vector based RNAi technology tosuppress gene expression in mammalian cells.Proc Natl Acad SciUSA,2002,99(8):5515-5520.
    14. McManus MT, Haines BB, Dillon CP, et al. Small interfering RNA-mediated gene silencing in T lymphocytes. J Immunol, 2002, 169: 5754-5760
    15. Stein P, Svoboda P, Anger M, et al. RNAi: Mammalian oocytes do it without RNA- dependent RNA polymerase. RNA,2003, 9: 187-192
    16. Shen CX,Buck AK, Liu XW, et al. Gene silencing by adenovirus-delivered siRNA. FEBS Letters.2003,539: 111-114.
    17. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, 296:550-553
    1. Takahashi S, Tanaka T, Kodama T, et al. Peroxisome proliferator-activated receptor delta (PPARdelta), a novel target site for drug discovery in metabolic syndrome. Pharmacol Res JT - Pharmacological research : the official journal of the Italian Pharmacological Society, 2006,53(6):501-7.
    2. Lee CH, Olson P, Hevener A, et al. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2006,103(9):3444-9.
    3. Kang K, Hatano B, Lee CH. PPARdelta agonists and metabolic diseases. Curr Atheroscler Rep JT - Current atherosclerosis reports, 2007,9(1):72-7.
    4. Hondares E, Pineda-Torra I, Iglesias R, et al. PPARdelta, but not PPARalpha, activates PGC-1alpha gene transcription in muscle. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 2007,354(4):1021-7.
    5. Luquet S, Gaudel C, Holst D, et al. Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochim Biophys Acta JT - Biochimica et biophysica acta, 2005,1740(2):313-7.
    6. Oliver WR Jr, Shenk JL, Snaith MR, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2001,98(9):5306-11.
    7. Vosper H, Patel L, Graham TL, et al. The peroxisome proliferator-activated receptor delta promotes lipid accumulation in human macrophages. J Biol Chem JT - The Journal of biological chemistry, 2001,276(47):44258-65.
    8. Lee CH, Chawla A, Urbiztondo N, et al. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science JT - Science (New York, N.Y.), 2003,302(5644):453-7.
    9. Li AC, Binder CJ, Gutierrez A, et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest JT - The Journal of clinical investigation, 2004,114(11):1564-76.
    10. Chao PM, Chao CY, Lin FJ, et al. Oxidized frying oil up-regulates hepatic acyl-CoAoxidase and cytochrome P450 4 A1 genes in rats and activates PPARalpha. J Nutr JT - The Journal of nutrition, 2001,131(12):3166-74.
    11. Cabrero A, Jove M, Planavila A, et al. Down-regulation of acyl-CoA oxidase gene expression in heart of troglitazone-treated mice through a mechanism involving chicken ovalbumin upstream promoter transcription factor II. Mol Pharmacol JT . Molecular pharmacology, 2003,64(3):764-72.
    12. Cabrero A, Merlos M, Laguna JC, et al. Down-regulation of acyl-CoA oxidase gene expression and increased NF-kappaB activity in etomoxir-induced cardiac hypertrophy. J Lipid Res JT - Journal of lipid research, 2003,44(2):388-98.
    13. Tugwood JD, Issemann I, Anderson RG, et al. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J JT - The EMBO journal, 1992,11(2):433-9.
    14. Cheng L, Ding G, Qin Q, et al. Peroxisome proliferator-activated receptor delta activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 2004,313(2):277-86.
    15. Wang YX, Lee CH, Tiep S, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell JT - Cell, 2003, 113(2):159-70.
    16. Wolfgang MJ, Kurama T, Dai Y, et al. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(19):7282-7.
    17. Louet JF, Le May C, Pegorier JP, et al. Regulation of liver carnitine palmitoyltransferase I gene expression by hormones and fatty acids. Biochem Soc Trans JT - Biochemical Society transactions, 2001, 29(Pt 2):310-6.
    18. Binnert C, Koistinen HA, Martin G, et al. Fatty acid transport protein-1 mRNA expression in skeletal muscle and in adipose tissue in humans. Am J Physiol Endocrinol Metab JT - American journal of physiology. Endocrinology and metabolism, 2000, 279(5):E1072-9.
    19. Schaffer JE. A novel adipocyte long chain fatty acid transport protein. Eur J Med Res JT - European journal of medical research, 1996, 1(4):176-80.
    20. Wu Q, Ortegon AM, Tsang B, et al. FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol JT - Molecular and cellular biology, 2006, 26(9):3455-67.
    21. Coe NR, Smith AJ, Frohnert BI, et al. The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J Biol Chem JT - The Journal of biological chemistry, 1999, 274(51):36300-4
    22. Frohnert BI, Hui TY, Bernlohr DA. Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem JT - The Journal of biological chemistry, 1999, 274(7):3970-7.
    23. Battaile KP, McBurney M, Van Veldhoven PP, et al. Human long chain, very long chain and medium chain acyl-CoA dehydrogenases are specific for the S-enantiomer of 2- methylpentadecanoyl-CoA. Biochim Biophys Acta JT - Biochimica et biophysica acta, 1998, 1390(3):333-8.
    24. Lea W, Abbas AS, Sprecher H, et al. Long-chain acyl-CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids. Biochim Biophys Acta JT - Biochimica et biophysica acta, 2000,1485(2-3):121-8.
    25. Wanders RJ, Denis S, Ruiter JP, et al. 2,6-Dimethylheptanoyl-CoA is a specific substrate for long-chain acyl-CoA dehydrogenase (LCAD): evidence for a major role of LCAD in branched-chain fatty acid oxidation. Biochim Biophys Acta JT - Biochimica et biophysica acta, 1998,1393(1):35-40.
    26. Cox KB, Hamm DA, Millington DS, et al. Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Hum Mol Genet JT - Human molecular genetics, 2001,10(19):2069-77.
    27. Schuler AM, Wood PA. Mouse models for disorders of mitochondrial fatty acid beta-oxidation. ILAR J JT - ILAR journal / National Research Council, Institute of Laboratory Animal Resources, 2002, 43(2):57-65
    28. 卜石,杨文英。游离脂肪酸和脂毒性。国外医学内分泌学分册。2001,21(6):308-310。
    29. 向 薇 ,黄忠心 ,施秉银. 脂毒性与胰岛 β 细胞功能障碍的研究进展。医师进修杂志(内科版)。2004,27(5):44-45
    1. Zhou YT, Shimabukuro M, Wang MY, et al. Role of peroxisome proliferator-activated receptor alpha in disease of pancreatic beta cells. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 1998,95(15):8898-903.
    2. Tordjman K, Standley KN, Bernal-Mizrachi C, et al. PPARalpha suppresses insulin secretion and induces UCP2 in insulinoma cells. J Lipid Res JT - Journal of lipid research, 2002,43(6):936-43.
    3. Koh EH, Kim MS, Park JY, et al. Peroxisome proliferator-activated receptor (PPAR)-alpha activation prevents diabetes in OLETF rats: comparison with PPAR- gamma activation. Diabetes JT - Diabetes, 2003,52(9):2331-7.
    4. Holness MJ, Smith ND, Greenwood GK, et al. Acute (24 h) activation of peroxisome proliferator-activated receptor-alpha (PPARalpha) reverses high-fat feeding-induced insulin hypersecretion in vivo and in perifused pancreatic islets. J Endocrinol JT - The Journal of endocrinology, 2003,177(2):197-205.
    5. Patane G, Anello M, Piro S, et al. Role of ATP production and uncoupling protein-2 in the insulin secretory defect induced by chronic exposure to high glucose or free fatty acids and effects of peroxisome proliferator-activated receptor-gamma inhibition. Diabetes JT - Diabetes, 2002,51(9):2749-56.
    6. Ravnskjaer K, Boergesen M, Rubi B, et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) potentiates, whereas PPARgamma attenuates, glucose-stimulated insulin secretion in pancreatic beta-cells. Endocrinology JT - Endocrinology, 2005,146(8):3266-76.
    7. Lupi R, Del Guerra S, Marselli L, et al. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPARgamma2 in the modulation of insulin secretion. Am J Physiol Endocrinol Metab JT - American journal of physiology. Endocrinology and metabolism, 2004,286(4):E560-7.
    8. Dobbins RL, Chester MW, Stevenson BE, et al. A fatty acid- dependent step is critically important for both glucose- and non-glucose-stimulated insulin secretion. J Clin Invest JT - The Journal of clinical investigation, 1998,101(11):2370-6.
    9. Oliver WR Jr, Shenk JL, Snaith MR, et al. A selective peroxisomeproliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2001,98(9):5306-11.
    10. Komatsu M, Sato Y, Yamada S, et al. Triggering of insulin release by a combination of cAMP signal and nutrients: an ATP-sensitive K+ channel-independent phenomenon. Diabetes. 2002 ,51 Suppl 1:529-32
    11. Guillam MT, Dupraz P, Thorens B: Glucose uptake, utilization, and signaling in GLUT2 null islets. Diabetes , 2000,49:1485-1491
    12. Tan NS, Michalik L, Desvergne B, et al. Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes. J Steroid Biochem Mol Biol JT - The Journal of steroid biochemistry and molecular biology, 2005, 93(2-5):99-105.
    13. Kim HI, Kim JW, Kim SH, et al. Identification and functional characterization of the peroxisomal proliferator response element in rat GLUT2 promoter. Diabetes JT - Diabetes, 2000,49(9):1517-24.
    14. Li B, Nolte LA, Ju JS, et al. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nature medicine, 2000, 6(10):1115-20.
    15. Wang MY, Shimabukuro M, Lee Y, et al. Adenovirus-mediated overexpression of uncoupling protein 2 in pancreatic islets of Zucker diabetic rats increases oxidative activity and improves beta-cell function. Diabetes 48: 1020--1025.
    16. Chan CB, De Leo D, Joseph JW et al. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 2001, 50(6): 1-302-13 10.
    17. Joseph JW, Koshkin V, Saleh MC,et al. Free fatty acid-induced beta-cell defects are dependent on uncoupling protein 2 expressions. J Biol Chem. 2004, 279(49): 5104951056.
    18. Zhang CY, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell JT - Cell, 2001,105(6):745-55
    19. Mori Y, Tokutate Y, Oana F, et al. Bezafibrate-induced changes over time in the expression of uncoupling protein (UCP) mRNA in the tissues: a study inspontaneously type 2 diabetic rats with visceral obesity. J Atheroscler Thromb.2004; 11(4): 224231.
    20. Wang YX, Lee CH, Tiep S, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell JT - Cell, 2003,113(2):159-70.
    21. Cheng L, Ding G, Qin Q, et al. Peroxisome proliferator-activated receptor delta activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 2004,313(2):277-86.
    22. Sugden MC, Holness MJ. Therapeutic potential of the mammalian pyruvate dehydrogenase kinases in the prevention of hyperglycaemia. Curr Drug Targets Immune Endocr Metabol Disord JT - Current drug targets. Immune, endocrine and metabolic disorders, 2002,2(2):151-65.
    23. Zhang Y, Ma K, Sadana P, et al. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression. J Biol Chem JT - The Journal of biological chemistry, 2006,281(52):39897-906.
    24. Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans JT - Biochemical Society transactions, 2003,31(Pt 6):1143-51.
    25. Sugden MC, Holness MJ. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem JT - Archives of physiology and biochemistry, 2006,112(3):139-49.
    26. Prentki M, Joly E, El-Assaad W, et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes JT - Diabetes, 2002,51 Suppl 3:S405-13
    27. Prentki M, Joly E, El-Assaad W, et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes JT - Diabetes, 2002,51 Suppl 3:S405-13
    28. Prentki M, Joly E, El-Assaad W, et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes JT - Diabetes, 2002,51 Suppl 3:S405-13
    1. J.Berger and D.E. Moller, The mechanisms of action of PPARs. Annu. Rev. Med. 2002; 53: 409–435。
    2. Choonjans K, Staelh B. Au2rx J.The peroxisome proliferator activated receptors (PPARs) and their effect on lipid metabolism and adipocyte differentiation.Bio- chim Biophys Acta. 1996;1302(2):93-109。
    3. EZ. Amri, F. Bonino, G. Ailhaud, N.A. Abumrad, P.A. Grimaldi, Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes: homology to peroxisome proliferator-activated receptors, J. Biol. Chem. 1995;270: 2367–2371。
    4. R. Hertz, I. Berman, D. Keppler, J. Bar-Tana, Activation of gene transcription by prostacyclin analogues is mediated by the peroxisome-proliferator-activated receptor (PPAR), Eur. J. Biochem. 1996; 235: 242–247。
    5. N. Shaw, M. Elholm, N. Noy, Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor b/d, J. Biol.Chem. 2003; 278 : 41589–41592
    6. Benoit P, Emmanuel F, Caillaud JM, et al. Somatic gene transfer of human ApoA-I inhibits atherosclerosis progression in mouse models. Circulation JT - Circulation, 1999,99(1):105-10.
    7. Wilson PW, Abbott RD, Castelli WP. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis JT - Arteriosclerosis (Dallas, Tex.), 1988,8(6):737-41.
    8. Miller NE, Thelle DS, Forde OH, et al. The Tromso heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet JT - Lancet, 1977,1(8019):965-8.
    9. Oliver WR Jr, Shenk JL, Snaith MR, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2001,98(9):5306-11.
    10. van der Veen JN, Kruit JK, Havinga R, et al. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res JT - Journal of lipid research, 2005,46(3):526-34.
    11. Leibowitz MD, Fievet C, Hennuyer N, et al. Activation of PPARdelta alters lipid metabolism in db/db mice. FEBS Lett JT - FEBS letters, 2000,473(3):333-6.
    12. Hansen JB, Zhang H, Rasmussen TH, et al. Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling. J Biol Chem JT - The Journal of biological chemistry, 2001,276(5):3175-82.
    13. Bastie C, Luquet S, Holst D, et al. Alterations of peroxisome proliferator-activated receptor delta activity affect fatty acid-controlled adipose differentiation. J Biol Chem JT - The Journal of biological chemistry, 2000,275(49):38768-73.
    14. Jehl-Pietri C, Bastie C, Gillot I, et al. Peroxisome-proliferator-activated receptor delta mediates the effects of long-chain fatty acids on post-confluent cell proliferation. Biochem J JT - The Biochemical journal, 2000,350 Pt 1:93-8.
    15. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab JT - The Journal of clinical endocrinology and metabolism, 2004,89(6):2548-56.
    16. Carr DB, Utzschneider KM, Hull RL, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes JT - Diabetes, 2004,53(8):2087-94.
    17. Yanovski SZ, Yanovski JA. Obesity. N Engl J Med JT - The New England journal of medicine, 2002,346(8):591-602.
    18. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. National Institutes of Health. Obes Res JT - Obesity research, 1998,6 Suppl 2:51S-209S.
    19. Wang YX, Lee CH, Tiep S, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell JT - Cell, 2003,113(2):159-70.
    20. Tanaka T, Yamamoto J, Iwasaki S, et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2003,100(26):15924-9.
    21. Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech JT - Microscopy research and technique, 2000,50(6):500-9.
    22. He J, Watkins S, Kelley DE. Skeletal muscle lipid content and oxidative enzymeactivity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes JT - Diabetes, 2001,50(4):817-23.
    23. Mercier J, Perez-Martin A, Bigard X, et al. Muscle plasticity and metabolism: effects of exercise and chronic diseases. Mol Aspects Med JT - Molecular aspects of medicine, 1999,20(6):319-73.
    24. Hughes SM, Chi MM, Lowry OH, et al. Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice. J Cell Biol JT - The Journal of cell biology, 1999,145(3):633-42.
    25. Kamei Y, Miura S, Suzuki M, et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem JT - The Journal of biological chemistry, 2004,279(39):41114-23.
    26. McCullagh KJ, Calabria E, Pallafacchina G, et al. NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2004,101(29):10590-5.
    27. Wang YX, Zhang CL, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol JT - PLoS biology, 2004,2(10):e294.
    28. Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology JT - Endocrinology, 1996,137(1):354-66.
    29. Luquet S, Lopez-Soriano J, Holst D, et al. Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J JT - The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2003,17(15):2299-301.
    30. Solanes G, Pedraza N, Iglesias R, et al. Functional relationship between MyoD and peroxisome proliferator-activated receptor-dependent regulatory pathways in the control of the human uncoupling protein-3 gene transcription. Mol Endocrinol JT - Molecular endocrinology (Baltimore, Md.), 2003,17(10):1944-58.
    31. Abbot EL, McCormack JG, Reynet C, et al. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells. FEBS JJT - The FEBS journal, 2005,272(12):3004-14.
    32. Hickey MS, Carey JO, Azevedo JL, et al. Skeletal muscle fiber composition is related to adiposity and in vitro glucose transport rate in humans. Am J Physiol JT - The American journal of physiology, 1995,268(3 Pt 1):E453-7.
    33. Higashiura K, Ura N, Takada T, et al. Alteration of muscle fiber composition linking to insulin resistance and hypertension in fructose-fed rats. Am J Hypertens JT - American journal of hypertension : journal of the American Society of Hypertension, 1999,12(6):596-602.
    34. Kriketos AD, Pan DA, Lillioja S, et al. Interrelationships between muscle morphology, insulin action, and adiposity. Am J Physiol JT - The American journal of physiology, 1996,270(6 Pt 2):R1332-9.
    35. Kelley DE, Goodpaster B, Wing RR, et al. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol JT - The American journal of physiology, 1999,277(6 Pt 1):E1130-41.
    36. M, Mingrone G, Greco AV, et al. Insulin resistance directly correlates with increased saturated fatty acids in skeletal muscle triglycerides. Metabolism JT - Metabolism: clinical and experimental, 2000,49(2):220-4.
    37. Kramer DK, Al-Khalili L, Perrini S, et al. Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator-activated receptor delta. Diabetes JT - Diabetes, 2005,54(4):1157-63.
    38. Watt MJ, Southgate RJ, Holmes AG, et al. Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) alpha and delta and PPAR coactivator 1alpha in human skeletal muscle, but not lipid regulatory genes. J Mol Endocrinol JT - Journal of molecular endocrinology, 2004,33(2):533-44.
    39. Mahoney DJ, Parise G, Melov S, et al. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J JT - The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2005,19(11):1498-500.
    40. Sakai J. [Activation of "fat burning sensor" peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome]. Seikagaku JT - Seikagaku. The Journal of Japanese Biochemical Society,2004,76(6):517-24.
    41. Lazennec G, Canaple L, Saugy D, et al. Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators. Mol Endocrinol JT - Molecular endocrinology (Baltimore, Md.), 2000,14(12):1962-75.
    42. Gelman L, Michalik L, Desvergne B, et al. Kinase signaling cascades that modulate peroxisome proliferator-activated receptors. Curr Opin Cell Biol JT - Current opinion in cell biology, 2005,17(2):216-22.
    43. Long YC, Widegren U, Zierath JR. Exercise-induced mitogen-activated protein kinase signalling in skeletal muscle. Proc Nutr Soc JT - The Proceedings of the Nutrition Society, 2004,63(2):227-32.
    44. Coffey VG, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J JT - The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2006,20(1):190-2.
    45. Chin ER. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol JT - Journal of applied physiology (Bethesda, Md: 1985), 2005,99(2):414-23.
    46. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev JT - Physiological reviews, 2005,85(3):1093-129.
    47. Cheng L, Ding G, Qin Q, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med JT - Nature medicine, 2004,10(11):1245-50.
    48. Cheng L, Ding G, Qin Q, et al. Peroxisome proliferator-activated receptor delta activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 2004,313(2):277-86.
    49. Planavila A, Rodriguez-Calvo R, Jove M, et al. Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc Res JT - Cardiovascular research, 2005,65(4):832-41.
    50. Planavila A, Laguna JC, Vazquez-Carrera M. Nuclear factor-kappaB activation leads todown-regulation of fatty acid oxidation during cardiac hypertrophy. J Biol Chem JT - The Journal of biological chemistry, 2005,280(17):17464-71.
    51. Feingold K, Kim MS, Shigenaga J, et al. Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. Am J Physiol Endocrinol Metab JT - American journal of physiology. Endocrinology and metabolism, 2004,286(2):E201-7.
    52. Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell JT - Cell, 2001,104(4):503-16.
    53. Vosper H, Patel L, Graham TL, et al. The peroxisome proliferator-activated receptor delta promotes lipid accumulation in human macrophages. J Biol Chem JT - The Journal of biological chemistry, 2001,276(47):44258-65.
    54. Li AC, Binder CJ, Gutierrez A, et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest JT - The Journal of clinical investigation, 2004,114(11):1564-76.
    55. Lee CH, Chawla A, Urbiztondo N, et al. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science JT - Science (New York, N.Y.), 2003,302(5644):453-7.
    56. Welch JS, Ricote M, Akiyama TE, et al. PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2003,100(11):6712-7.
    57. Graham TL, Mookherjee C, Suckling KE, et al. The PPARdelta agonist GW0742X reduces atherosclerosis in LDLR(-/-) mice. Atherosclerosis JT - Atherosclerosis, 2005,181(1):29-37.
    58. Shao J, Sheng H, DuBois RN. Peroxisome proliferator-activated receptors modulate K-Ras-mediated transformation of intestinal epithelial cells. Cancer Res JT - Cancer research, 2002,62(11):3282-8.
    59. Park BH, Vogelstein B, Kinzler KW. Genetic disruption of PPARdelta decreases the tumorigenicity of human colon cancer cells. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2001,98(5):2598-603.
    60. Tong BJ, Tan J, Tajeda L, et al. Heightened expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor-delta in human endometrial adenocarcinoma. Neoplasia JT - Neoplasia (New York, N.Y.), 2000,2(6):483-90.
    61. Stephen RL, Gustafsson MC, Jarvis M, et al. Activation of peroxisome proliferator-activated receptor delta stimulates the proliferation of human breast and prostate cancer cell lines. Cancer Res JT - Cancer research, 2004,64(9):3162-70.
    62. Glinghammar B, Skogsberg J, Hamsten A, et al. PPARdelta activation induces COX-2 gene expression and cell proliferation in human hepatocellular carcinoma cells. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 2003,308(2):361-8.
    63. Luquet S, Lopez-Soriano J, Holst D, et al. Roles of peroxisome proliferator-activated receptor delta (PPARdelta) in the control of fatty acid catabolism. A new target for the treatment of metabolic syndrome. Biochimie JT - Biochimie, 2004,86(11):833-7.
    64. He TC, Chan TA, Vogelstein B, et al. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell JT - Cell, 1999,99(3):335-45.
    65. Barak Y, Liao D, He W, et al. Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2002,99(1):303-8.
    66. Reed KR, Sansom OJ, Hayes AJ, et al. PPARdelta status and Apc-mediated tumourigenesis in the mouse intestine. Oncogene JT - Oncogene, 2004,23 (55):8992-6.
    67. Harman FS, Nicol CJ, Marin HE, et al. Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis. Nat Med JT - Nature medicine, 2004,10(5):481-3.
    68. Gupta RA, Wang D, Katkuri S, et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-delta accelerates intestinal adenoma growth. Nat Med JT - Nature medicine, 2004,10(3):245-7.
    69. Saez E, Tontonoz P, Nelson MC, et al. Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med JT - Nature medicine, 1998,4(9):1058-61.
    70. Lefebvre AM, Chen I, Desreumaux P, et al. Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors inC57BL/6J-APCMin/+ mice. Nat Med JT - Nature medicine, 1998,4(9):1053-7.
    71. Schoeller DA. The importance of clinical research: the role of thermogenesis in human obesity. Am J Clin Nutr JT - The American journal of clinical nutrition, 2001,73(3):511-6.
    72. Peters JM, Lee SS, Li W, et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Mol Cell Biol JT - Molecular and cellular biology, 2000,20(14):5119-28.
    73. Bishop-Bailey D, Hla T. Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Delta12, 14-prostaglandin J2. J Biol Chem JT - The Journal of biological chemistry, 1999,274(24):17042-8.
    74. Zhang J, Fu M, Zhu X, et al. Peroxisome proliferator-activated receptor delta is up-regulated during vascular lesion formation and promotes post-confluent cell proliferation in vascular smooth muscle cells. J Biol Chem JT - The Journal of biological chemistry, 2002,277(13):11505-12
    1. UNGER R H,ZHOU Y T,ORCI L.Regulation offatty acid homeostasis in cells:novel role of leptin.Proc,Natl Acad Sci USA,1999,96(5):2 327—2 332.
    2. Unger RH,Zhou YT .Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes, 2001,50(Suppl 1) :S118-121.
    3. Bonner-Weir S.I ire and death of the pancreatic βcells.Trends Endocrinol M etabol,2000,I1:375 378.
    4. Piro S,Anello M ,Dipietro C,et a1.Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets:possible role of oxidative stress.Metabolism. 2002,51(10):1340-1347
    5. Lupi R,Dotta F,Marselli et a1. Prolonged exposure to free fatty acids has cystostatic and proapoptotic effects on human pancreatic islets:evidence that beta cell death is caspase m ediated partially dependent on ceramide pathway.and Bcl 一 2 regulated.Diabetes,2002,51(5):1437 1452.
    6. Wrede CE,Dickson I M,I ingohr MK,et a1.Fatty acid and phorbol ester mediated interference of m itogenic signaling via novel protein kinase C isoforms in pancreatic beta-cells(INS-1).J Mol Endocrinol. 2003,30:271-286.
    7. Eitel K,Staiger H,Rieger J,et a1.Protein kinase C3 activation and translocation to the nucleus are required for fatty acid induced apotosis of insulin—secreting cellsI-J].Diabetes?2003,52:991-997
    8. Christian EW ,Lorna M.Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreaticβCells (INS-1).J Biol Chem. 2002,51:49676- 49684
    9. YOSHIKAWA H,TAJIRI Y,SAKO Y.Efects offlee fatty acids on beta-cell functions:a possible involvement ofperoxisonae prolfemtor-activated receptors alpha pancreatic/duodenal homeo box.Metabolism,2001,50(5):613—618.
    10. JOHNSON J D,AHMED N T,LUCIANI D S,et a/.Increased islet apoptosis in PDX1+/-mice.J Clin Invest, 2003, 111(8):1 147 一 60
    11. Kushner JA, Ye J, Schubert M, et al. Pdx1 restores beta cell function in Irs2 knockout mice. J Clin Invest JT - The Journal of clinical investigation, 2002,109(9):1193-201.
    12. Piro S,Anello M ,Dipietro C,et a1.Chronic exposure to free fatty acids or high glucoseinduces apoptosis in rat pancreatic islets:possible role of oxidative stress.Metabolism?2002,51(10):134O
    13. 1347Lupi R,Dotta F,Marselli I ?et a1.Prolonged exposure to free fatty acids has cystostatic and proapoptotic effects on human pancreatic islets:evidence that beta cell death is caspase m ediated partially dependent on ceramide pathway.and Bcl 一 2 regulated.Diabetes,2002,51(5):1437 1452.
    14. 何庆,王保平,刘铭等。高浓度 FFA 对胰岛β细胞凋亡及相关基因表达的影响.天津医药,2004,32( 5):293-295
    15. Burks DJ,White MF.IRS proteins and beta cell function.Diabetes,2001 ? 50(suppl 1):s140- s145.
    16. Nozaki J,Kubot8 H,Yoshida M,et a1. Fhe endoplasmic reticulum stress response isstimulated through the continuous activation of transcription factors ATF6 and XBP1 in Ins2‘/Akita pancreatic beta cellsl,.Gens Cells,2004,9:261—270.
    17. Kharroubi I,Ladriere I ,Cardozo AK?et a1.Free fatty acids and cytokines induce pancreatic beta cell apoptosis by different mechanisms: role of nuclear factor—kappa B and endoplasmic reticulum stressl,.Endocrinology,2004,145:5087—5096.
    18. Maedler K,Spinas G A, Dyntar D, et al .Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes, 2001 , 50(1):69-76
    19. Stein D T,Easer V,Stevemon B E,et u1.Essentiality of circulating fatty acid for glucose stimulat insulin secretion in the fasted rat.J Clin Invest,1996,97:2728.2735.
    20. Zhou Y P,Berggren PO .GrillV E.A fatty acid induced decreased in pymvato dehydrogenase actvity is an important determinant of B cell dysfunoion in obese db/db mouse. Diabetes,1996,45:580.586.
    21. Li B, Nolte LA, Ju JS, et al. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nature medicine, 2000, 6(10):1115-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700