用户名: 密码: 验证码:
模式约束三维变分资料同化技术及其在台风数值预报中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数值天气预报作为初边值问题,初始场的改进对于提高模式的整体预报性能具有重要的作用。近年来资料同化技术得到了长足的发展,其中具有代表性的是3DVar(三维变分同化)和4DVar(四维变分同化)技术及其业务化应用。但是在变分资料同化技术的应用中依然存在一些问题,其中包括背景误差协方差的确定,4DVar中伴随模式的建立,区域模式同化中边界条件的影响等。在应用中的问题还包括如何减小4DVar的计算量,如何在3D-和4D-Var中滤除由于观测资料的引入引起的高频扰动。本研究的目的即是通过引入模式弱约束条件提出了模式约束3DVar(MC-3DVar:Model constrained 3DVar)技术并建立了相应的同化系统,该技术一方面能从物理机制上滤除在同化过程中由于观测信息的引入导致的高频扰动,从而使同化结果中模式变量间更协调,另一方面相对于同样采用模式作为约束条件的4DVar来说,大大节省了计算资源。
     论文在提出MC-3DVar技术,并建立了MC-3DVar同化系统的基础上进行了同化AMSU-A,QuikSCAT,卫星云导风资料的试验,最后进行了采用多种资料进行循环同化的试验。
     本文结构如下:
     第一章:绪论
     对资料同化技术的发展进行了全面回顾,并指出需要解决的一些问题,在此基础上提出本文研究的主要目的和内容。
     第二章:模式约束三维变分同化技术的提出
     通过在4DVar中引入模式变量的时间倾向作为约束条件,从而引入了模式的动力和热力过程作为同化的弱约束条件。在将同化的时间窗口缩短到一个时间步长后,提出了模式约束3DVar技术(MC-3DVar)。通过浅水波方程模式对该技术进行了理想试验,试验结果表明了该技术的有效性。
     第三章:模式约束三维变分同化技术的应用研究
     利用MM5-4DVar系统的切线、伴随模式,在MM5模式基础上建立了MC-3DVar同化系统。使用该同化系统对2002年11个热带气旋进行了23次同化AMSU-A反演温度的试验。试验结果表明采用该技术同化AMSU-A反演温度资料具有明显的正效应。同时对Vongfong个例进行了同化AMSU-A反演温度、QuikSCAT海面风及卫星云导风的试验,结果表明,通过多种资料能更明显地提高预报效果。
     第四章:台风个例的多种资料循环同化研究
     由于MC-3DVar技术计算量相对较少,因此可以在有限的计算资源下进行循环同化。另一方面,在台风初始场形成技术中,通常的Bogus技术构造的台风涡旋由于与模式不能很好协调,因此需要在模式中进行较长时间的调整。而采用MC-3DVar技术不仅能通过同化观测资料改善对台风结构的描述,同时通过模式动力和热力过程的约束能使得初始场与模式更为协调,因此该章进行了采用多种观测资料对台风进行循环同化调整的试验。结果表明通过循环同化明显改善了对台风结构的描述,提高了路径预报精度。
     第五章:结论及讨论
     对各章的内容进行系统的归纳和总结,并指出还存在的问题以及今后要进一步开展的工作。
Data assimilation technique plays a very important role in numerical weather prediction (NWP) that is a typical problem of initial and boundary conditions. In the past decads, the 3D- and 4D-Var data assimilation techniques were improved quikly not only in the theoretical researches but also in the NWPs of operational centers. However, there are still some problems which limit the wide use of Variational data assimilation techniques. The open questions include how to define the coVariance matrix of background error, how to handle the boundary conditions, how to reduce the computing cost of 4DVar, how to eliminate the high-frequency disturbance which are incurred by the insert of observation information and so on. In this dissertation, the efforts are focused on improving the Variational data assimilation technique and applying of this method to numerical forecast of tropical cyclone.
     In the review of the development of the data assimilation technique in Chapter 1, it is pointed out that a disadvantage of 3-dimensional Variational data assimilation (3DVar) technique is its lack of complicated constraints such as the dynamics and physics in a numerical model, which are used in the 4-dimensional Variational data assimilation (4DVar) technique. On the other hand, however, using a numerical model and its adjoint in the 4DVar technique requires a large amount of computer resources, and thus limits its practical applicability.
     In Chapter 2, a new 3DVar method is proposed by adding a numerical model constraint. This method minimizes the distance between observation and model Variables and time tendency of model Variables, so that the optimized initial conditions not only fit the observations but also satisfy the constraints of full dynamics and physics of the numerical model. The forward and adjoint models used in this method are as same as those in the 4DVar method but are only integrated one time step to calculate the time tendency. Because observations are only used at one time slice and meanwhile model constraints are applied, the method is called the model-constrained 3DVar (MC-3DVar).
     A set of ideal experiments based on a shallow water equation model indicates that the model constraints used in MC-3DVar can spread the observation information spatially and balance the model Variables.
     In Chapter 3, the MM5 (National Center for Atmospheric Research/Penn State Mesoscale Model 5) MC-3DVar system is established using the same forward and adjoint models of MM5 4DVar system. In the MC-3DVar system, the forward and adjoint models are only integrated one time step to calculate the time tendency and gradient.
     Using the MC-3DVar system, AMSU-A retrieved air temperatures are assimilated into 32 tropical cyclone (TC) cases. The results show a significant decrease in track forecast errors. Meanwhile, one case study of assimilating AMSU-A temperature, QuikSCAT sea-level winds, and cloud drift winds gives dramatic track error decreases. The study shows that the assimilation of these data with MC-3DVar improves TC forecasts and more satellite data give better performances.
     In Chapter 4, an assimilation cycle is employed to improve the initial conditions using Various data at different time. A case study of typhoon Saomai (2006) from 20BST 8th to 08BST 9th Sep. is carried out in this chapter. The assimilated data include the Cloud Drift Wind, QuikSCAT sea level wind, Dropsonde and Bogus sea level pressure. The 12, 24, 36 and 48 h track forecast of Saomai is improved dramatically after assimilating of these data cycle, and the minimum 48 h track forecasting error is reached by combining the tropical cyclone vortex in the assimilated field and the background field of the output of global model.
     Finally, the conclusions and discussions are given in Chapter 5.
引文
Barker W., Bloom S., Woollen J., Nestler M., Brin E., Schelatter T., and Branstator G., 1987: Experiments with a three-dimensional statistical objective analysis scheme using FGGE data. Mon. Wea. Rev., 115, 272-296.
    Baer F. and J. Tribbia, 1977: On complete filtering of gravity modes through non-linear initalization. Mon. Wea. Rev., 105, 1536-1539.
    Barker D. M., W. Huang, Y.-R. Guo, and A. Bourgeois, 2003: A three-dimensional Variational (3DVar) data assimilation system for use with MM5. NCAR Tech. Note. NCAR/TN-453 1 STR, 68 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307].
    Barker D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results. Monthly Weather Review, 132, 897-914.
    Barnes S.L., 1964: A Technique for Maximizing Details in Numerical Weather Map Analysis. Journal Appl. Meteor. 3, 395-409.
    Barnes S.L., 1978: Oklahoma Thunderstorms on 29C30 April 1970. Part I: Morphology of a Tornadic Storm. Mon Wea Rev. 106 (5), 673-684.
    Bergthorsson P., B. D??s, S. Frykland, O. Hang and R. Linquist, 1955: Routine forecasting with the barotropics model. Tellus, 7, 329-340.
    Cacuci D.G.,1981a: Sensitivity theory for nonlinear systems. I: Nonlinear functional analysis approach. J. Math. Phy. 12, 2794-2803.
    Cacuci D.G.,1981b: Sensitivity theory for nonlinear systems. II. Extensions to additional classes of responses. J. Math. Phy. 12, 2803-2812.
    Charney, J.G., R. Fj ortoft, John von Neumann, 1950: Numerical Integration of the Barotropic Vorticity Equation, Tellus 2 , 237-254.
    Charney J.G., M. Halem, R. Jastrow, 1969: Use of incomplete historical data to infer the present state of the atmosphere. J. Atmos. Sci. 2, 1160-1163.
    Courtier P.,1985: Experiments in data assimilation using the adjoint model technique. Workshop on High-Resolution Analysis ECMWF (UK) June 1985.
    Courtier P., O.Talagrand, 1987: Variational assimilation of meteorological observations with the adjoint equations Part 2. Numerical results. Q. J. R. Meteorol. Soc. 113, 1329-1347.
    Courtier P., Thepaut JN, A. Hollingsworth, 1994: A Strategy for Operational implementation of 4D-Var, using an incremental approach. Quarterly Journal of the Royal Meteorological Society 120 (519), 1367-1387 Part B.
    Courtier P., Anderson E., Heckley W., 1998: The ECMWF implementation of three-dimensional Variational assimilation (3D-Var). I: Formulation, Q. J. R. Meteorol. Soc., 124, 1783-1807.
    Cressman G.P.,1959: An operational objective analysis system. Mon. Wea Rev. 87, 367-374.
    Daley R., 1991: Atmospheric data analysis. Cambridge University Press, Cambridge.
    Davis H.E., R.E. Turner, 1977: Updating prediction models by dynamic relaxation. An examination of the technique. Q. J. R. Meteorol. Soc. 103, 225-245
    Derber J.C., 1985: The Variational four dimensional assimilation of analysis using filtered models as constraints. Ph.D. Thesis, Univ. of Wisconsin-Madison, pp 141.
    Derber J., 1989: A Variational continuous assimilation technique. Mon. Wea. Rev., 117, 2437-2446.
    Derber J.C., Parrish D.F. and Lord S. J., 1991: The new global operational analysis system at the National Meteorological Center. Weather Forecasting, 6, 538-547.
    Desroziers G., Hello, G. and Thepaut, J.-N. 2003: A 4D-Var re-analysis of the FASTEX. Q. J. R. Meteorol. Soc., 129,1301-1315.
    Dey C., and Morone L., 1985: Evolution of the National Meteorological Center global data assimilation system: January 1982-December 1983. Mon. Wea. Rev., 113, 304-318.
    Eddy, A., 1964: The objective analysis of horizontal wind divergence fields. Q. J. Roy. Meteor. Soc., 90, 424-440.
    Eddy, A., 1967: The statistical objective analysis of scalar data fields. J. Appl. Meteor., 4, 597-609.
    Eliassen, A., 1954: Provisional report on calculation of spatial coVariance and autocorrelation of the pressure field. Rep. No. 5 (Oslo: Videndkaps-Akademiet Institut for Vaerog Klimaforskning).
    Fisher M.,2003: Background Error CoVariance Modelling M Fisher seminar ,Recent developments in data assimilation for atmosphere and ocean, 8-12 September, European Centre for Medium-Range Weather Forecasts
    Gandin L.S., 1965: Objective analysis of meteorological _elds. Leningrad: Gridromet(in Russian) (1963), English translation by the Israel program for scienti_c translations, pp 242.
    Gaspari G., S.E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society 125 (554), 723-757.
    Gaspari G. ,S.E. Cohn ,J. Guo , et al. 2006: Construction and application of coVariance functions with Variable length-fields. Q. J. R. Meteorol. Soc. 132 (619) , 1815-1838 .
    Gauthier , G., and J.-N. Thepaut, 2001: Impact of the digital filter as a weak constraint in the preoperational 4DVar assimilation system of Meteo-France. Mon. Wea. Rev., 129, 2089-2102.
    Gauthier P.C., Cherette L., Fillion L., et al., 1999: Implementation of a 3D Variational data assimilation system at the Canadian Meteorological Center. Part I: The global analysis. Atmos. Ocean, 37(2), 103-156.
    Ghil M., M. Halem, R. Atlas, 1979: Time-continuous assimilation of remote-sounding data and its e_ect on weather forecasting, Mon. Wea. Rev. 107, l40-l7l.
    Gilchrist B., G.P. Cressman, 1954: An experiment in objective analysis. Tellus 6 ,309-318.
    Gustafsson, N., 1992: Use of a digital filter as weak constraint in Variational data assimilation. Proc. Workshop on Variational Assimilation with Special Emphasis on Three-dimensional Aspects, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 327-338.
    Hofimann R.N.,1986: A four dimensional analysis exactly satisfying equations of motion. Mon. Wea. Rev. 114, 388-397.
    Hoke J.E., R.A. Anthes, 1976: The initialization of numerical models by a dynamical initialization technique. Mon. Wea. Rev. 194, 1551-1556.
    Hollingsworth A., P. Lonnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: the wind field. Tellus 38A, 111-136.
    Houtekamer P. L., H. L. Mitchell, G. Pellerin, et al., 2005: Atmospheric data assimilation with an ensemble Kalman filter: results with real observations. Mon. Wea. Rev., 2005, 133(3), 604-620.
    Janiskova M., Thepaut, J.-N. and Geleyn, J.-F. ,1999: Simpliifed and regular physical parameterizations for incremental four-dimensional Variational assimilation. Mon. Weather Rev., 127, 26-45.
    Kalnay E., 2003: Atmospheric modeling, data assimilation and predictability. Cambridge Univ. Press, pp 341.
    Klinker E., Rabier, F., Kelly, G. and Mahfouf, J.-F., 2000: The ECMWF operational implementation of four-dimensional Variational assimilation. III: Experimental results and diagnostics with operational configuration. Q. J. R. Meteorol. Soc.,126, 1191-1215.
    Kruger, H., 1964: A statistical-dynamical objective analysis scheme. Canadian Meteorological Memoirs, No. 18 (Toronto: Meteorological Branch, Department of Transport) , 47-64.
    Le-Dimet F.X., 1981: Une application des methodes de c^ontrole, optimal `a l'analyse Variationnelle," Rapport Scienti_que LAMP, Universite Blaise-Pascal, 63170, Aubiere Cedex, 42 pages.
    Le-Dimet F.X., 1982: A general formalism of Variational analysis, CIMMS Report Le-Dimet, F. X., Y. K. Sasaki, and L. White, : Dynamic initialization with filtering of gravity waves, CIMMS Report No. 40, Norman, OK 73019, 12 pages.
    Le-Dimet F.X., O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations. Tellus 38A (1986) 97-110.
    Louis J.-F. and M. Zivkovific, 1994: Optimizing a Local Weather Forecast System, AER, Inc., Final Report, Cambridge, MA, NSF Grant Number ISI-9100720, 1994.
    Lorenc A.C.,1986: Analysis-methods for numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 112 (474) , 1177-1194.
    Lorenc A.C., S. P. Ballard, R. S. Bell, N. B. Ingleby, P. L. F. Andrews, D. M. Barker, J. R. Bray, A. M. Clayton, T. Dalby, D. Li, T. J. Payne, and F. W. Saunders, 2000:The Met. Office global three-dimensional Variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991-3012.
    Lorenc A.C., Rawlins F. 2005: Why does 4D-Var beat 3D-Var? Quarterly Journal of the Royal Meteorological Society 131 (613), 3247-3257 Part C .
    Lynch, P., and X. Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 1019-1034.
    Marchuk G.I., 1974: Numerical solution of the problem of dynamics of atmosphere and ocean (in Russian). Leningrad, Gidrometeoizdat, pp 303.
    Machenhauer B., 1977: On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Contrib. Atmos. Phys., 50, 253-271.
    McPherson R.D., Progress, 1975: problems, and prospects in meteorological data assimilation. Bulletin of the American Meteorological Society 56 (11), 1154-1166.
    Miyakoda K., L. Umscheid, D. H. Lee, J. Sirutis, R. Lusen, F. Pratte, 1976: The near-real-time, global, four-dimensional analysis experiment during the GATE period, Part I. Journal of the Atmospheric Sciences, 33 (4), 561-591.
    Mitchell H. L. and P. L. Houtekamer, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130(11), 2791-2808.
    Morel P., O. Talagrand, 1974: Dynamic approach to meteorological data assimilation. Tellus 26 (3), 334-344
    Mu Mu, and J. F. Wang, 2003: A Method for Adjoint Variational Data Assimilation with Physical “On–Off” Processes. J. Atmos. Sci., 60, 2010-2018.
    Navon I.M., X. L. Zou, J. Derber and J. Sela, 1992: Variational data assimilation with an adiabatic version of the NMC Spectral Model. Mon. Wea. Rev. 122, 1433-1446.
    Navon I. M., 1998: Practical and Theoretical Aspects of Adjoint Parameter Estimation and Identifiability in Meteorology and Oceanography, Dynamics of Atmospheres and Oceans. Special Issue in honor of Richard Pfe_er , 27, Nos.1-4, 55-79.
    Navon I.M., Dacian N. Daescu, Z. Liu ,2005: The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM. , V.S. Sunderam et al. (Eds.): Computational Science-ICCS 2005, LNCS 3515, pp 837-844. Springer Verlag, Heidelberg.
    Panofsky H.A., 1949: Objective weather-map analysis. J. Appl. Meteor. 6, 386-392.
    Parrish D.F., J.C. Derber, 1992: The National-Meteorological-Centers' spectral statistical-interpolation analysis system. Mon. Wea. Rev. 120 (8), 1747-1763.
    Penenko V., N.N. Obratsov, 1976: A Variational initialization method for the fields of the meteorological elements. Meteorol. Gidrol. 11, 1-11. (English Translation)
    Petersen D., and Middleton D., 1964: Reconstruction of multidimensional stochastic fields from discrete measurements of amplitude and gradient. Inform. Control., 7, 445-476.
    PolaVarapu, S., M. Tanguay, and L. Fillion, 2000: Four-dimensional Variational data assimilation with digital filter initialization. Mon. Wea. Rev., 128, 2491-2510.
    Thepaut, J.-N., and P. Courtier, 1991: Four-dimensional data assimilation using the adjoint of a multilevel primitive equation model. Quart. J. Roy. Meteor. Soc., 117, 1225-1254.
    Rabier F., A. Mcnally, E. Andersson, et al., 1998: The ECMWF implemntation of three-dimensional Vartaional assimilation (3D-Var). II: Structure functions. Q. J. R. Meteorol. Soc., 124, 1809-1829.
    Rabier F., Jaarvinen, H., Klinker, E., Mahfouf, J.-F. and Simmons, A. 2000, The ECMWF operational implementation of 4D Variational assimilation Part I: experimental results with simpli_ed physics. Q. J. R. Meteorol. Soc., 126, 1143-1170.
    Richardson, L.F., Weather prediction by numerical processes. CambridgeUniversity Press. (1922) Reprinted by Dover (1965, New York). With a New Introduction by Sydney Chapman, pp. xvi+236.
    Sasaki Y.K., 1955: A fundamental study of the numerical prediction based on the Variational principle, J. Meteor. Soc. Japan 33, 262-275.
    Sasaki Y.K.,1958: An objective analysis based on the Variational method, J. Meteor. Soc. Japan 36 , 77-88.
    Sasaki Y.K., 1969: Proposed inclusion of time-Variation terms, observational and theoretical in numerical Variational objective analysis, J. Meteor. Soc. Japan 47, 115- 203.
    Sasaki Y.K., 1970a: Some basic formalisms in numerical Variational analysis, Mon. Wea. Rev. 98, 857-883.
    Sasaki Y.K.,1970b: Numerical Variational analysis formulated under the constraints as determined by long-wave equations as a low-pass filter, Mon. Wea. Rev. 98, 884-898.
    Sasaki Y.K.,1970c: Numerical Variational analysis with weak constraint and application to the surface analysis of severe storm gust, Mon. Wea. Rev. 98, 899-910.
    Sasaki Y.K., 1970d:A theoretical interpretation of anisotropically weighted smoothing on the basis of numerical Variational analysis, Mon. Wea. Rev. 99, 698-707.
    Shaw D., Lonnberg P., Hollingsworth A., and Unden P., 1987: Data assimilation: The 1984/85 revisions of the ECMWF mass and wind analysis. Q. J. Roy. Meteor. Soc., 113, 533-566.
    Talagrand O., K. Miyakoda, 1971: Assimilation of past data in dynamical analysis, Tellus 23(4-5), 318-327.
    Talagrand O.,1981: On the mathematics of data assimilation, Tellus 33 (4), 321-339
    Talagrand O., P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation-Part 1. Theory. Q. J. R. Meteorol. Soc. 113, 1311-1328.
    Thepaut J.N., P. Courtier, 1991: Four-dimensional Variational assimilation using the adjoint of a multilevel primitive-equation model. Q. J. R. Meteorol. Soc. 117 , 1225-1254.
    Thepaut J. -N., Courtier, P., Belaud, G. and Lemaitre, G., 1996: Dynamical structure functions in a four-dimensional Variational assimilation: A case study. Q. J. R. Meteorol. Soc., 122, 535-561.
    Thompson P.D., 1969: Reduction of Analysis Error Through Constraints of Dynamical Consistency. Journal of Applied Meteorology 8, 738-742.
    Wang, B., X. L. Zou and J. Zhu, 2000: Data assimilation and its applications , PNAS, 97(21), 11143-11144.
    Wang D.-L, X.-D. Liang, Y.-H. Duan, J. C.-L. Chan, 2006: Impact of Four-Dimensional Variational Data Assimilation of Atmospheric Motion Vectors on Tropical Cyclone Track Forecasts. Weather and Forecasting, 21, 663-669.
    Wang Z., I. M. Navon and X. Zou, 1993: The adjoint truncated Newton algorithm for large-scale unconstrained optimization. Tech. Rep. FSU-SCRI-92-170, Florida State University, Tallahassee, Florida, pp 44.
    Wee, T.-K., and Y.-H. Kuo, 2004: Impact of a digital filter as a weak constraint in MM5 4DVar: An observing system simulation experiment. Mon. Wea. Rev., 132, 543-559.
    Wu C.-C., K.-H. Chou, Y. Q. Wang, Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional Variational data assimilatoin. J. Atmos. Sci. 63, 2383-2395.
    Xu Q. and C. J. Qiu, 1997: Adjoint matching condition for parameterized discountinuites – A derivation using Lagrangian-form costfunction. Advances in Atmos. Sci., 14, 49-52.
    Zeng Z.-H., Y.-H. Duan, X.-D. Liang, L.-M. Ma, J. C.-L. Chan, 2005: The Effect of Three-Dimensional Variational Data Assimilation of QuikSCAT Data on the Numerical Simulation of Typhoon Track and Intensity. Adv. Atmos. Sci., 22(4), 534-544.
    Zhang Hua, J. S., Xue, G. F. Zhu et al., 2004: Application of direct assimilation of atovs microwave radiances to typhoon track prediction. Advances in Atmos. Sci., 21(2), 283-290.
    Zhang X., B. Wang, Z. Z. Ji, W. T., Lin, 2002: Three-dimensional Variational data assimilation implemented in numerical modeling for Wuhan torrential rain in July 1998. Progress in Natural Science, 12(6), 445-448.
    Zhang X. Y., B. Wang and Z. Z., Ji, et al. 2003: Initializations and simulation of a typhoon using 4-dimensional Variational data assimilation research on typhoon Herb (1996), Advances In Atmos. Sci., 20 (4), 612-622.
    Zhao Y., B. Wang, Z. Z. Ji et al., 2005: Improved track forecasting of a typhoon reaching landfall from four-dimensional Variational data assimilation of AMSU-A retrieved data, J. Geophy. Res. 110
    Zhao Y., B. Wang, 2007: Initialization and simulation of a landfalling typhoon using a Variational bogus mapped data assimilation (BMDA). Submitted to Meteorology and Atmospheric Physics.
    Zhu J, H. Wang, M. Kamachi, 2002: The improvement made by a modified TLM in 4DVar with a geophysical boundary layer model. Advances In Atmos. Sci.,19(4), 563-582 .
    Zhu J., M. Kamachi, G. Zhou, 2002: Nonsmooth optimization approaches to VDA of models with on/off parameterizations: Theoretical issues. Advances In Atmos. Sci.,19(3), 405-424.
    Zou X., I.M. Navon, F.X. Le Dimet, 1992: An optimal nudging data assimilation scheme using parameter estimation. Q. J. R. Meteorol. Soc. 118, 1163-1186.
    Zupanski M.,1993: Regional four-dimensional Variational data assimilation in a quasi-operational forecasting Environment. Mon. Wea. Rev. 121, 2396-2408.
    丑纪范,1961:天气数值预报中使用过去资料的问题(油印本)。
    丑纪范,1971:天气数值预报中使用过去资料的问题。中国科学,6,635-644。
    端义宏,梁旭东,李永平,2000:四维变分同化技术在优化Z-C预测模式初始场中的应用试验。气象学报,58,523-533。
    沈桐立, 闵锦忠, 吴诚鸥, 温市耕,1996:有限区域卫星云图资料变分分析的试验研究,高原气象,15,58-67。
    沈桐立,陈宏尧,陈春丽,1994:适用于中尺度数值模式的最优插值客观分析方法的研究。空军气象学院学报,15(3),191-201。
    沈桐立,温市耕,周彗喜,1996:MOMS中尺度模式的多元最优插值客观分析方法。应用气象学报,7(2),195-202。
    廖洞贤,1992:近十年数值天气预报的回顾和展望。应用气象学报,3(3),340-346。
    刘成思,薛继善,2005:关于集合卡尔曼滤波的理论和方法的发展。热带气象学报,21(6),628-633。
    蒲朝霞,丑纪范,1994:对中尺度遥感资料进行四维同化的共轭方法及其数值研究。高原气象,13,419-429。
    邱崇践,2001:变分同化中使用背景场时尺度匹配的数值研究。大气科学,25,103-110。
    裘国庆,陶士伟,马清云,1992:国家气象中心和欧洲中期预报中心的中期数值预报业务系统客观分析的对比。应用气象学报,S1,28-34。
    上海气象局研究所数值预报组,1979:高空图的业务客观分析。大气科学,3(2),184-189。
    盛华,纪立人,1991:三维多元最优插值的区域性试验。气象学报,49(2),151-161。
    屠伟铭,1994:近十年来国家气象中心业务客观分析技术介绍。应用气象学报,5(4),477-482。
    王斌,赵颖,2005:一种新的资料同化方法。气象学报,20(3),275-282。
    王栋梁,梁旭东, 2004: 台风数值模拟中 bogus 涡旋四维变分同化的研究。 南京气象学院学报, 27(4), 502-510。
    王云峰,王斌, 马刚, 王雨顺,2003:多种观测资料的四维变分同化对台风路径预报的影响。科学通报,48(增 2),82-86。
    章基嘉,廖洞贤,陈受钧,朱抱真,1985:关于两年来我国数值预报业务的初步报告。北京气象中心论文集,1985,198-210。
    张昕,2002:变分资料同化、暴雨数值模拟和模式并行计算。中国科学院博士学位研究生学位论文。
    张华,薛继善,庄世宇等,2004:GRAPeS三维变分同化系统的理想试验。气象学报,62(1),31-41。
    庄世宇,薛继善,朱国富等,2005:GRAPeS全球三维变分同化系统-基本设计方案与理想试验。大气科学,29(6),872-884。
    庄照荣,薛继善,朱宗申等,2006:非线性平衡方案在三维变分同化系统中的应用。气象学报,64(2),137-148。
    朱江,曾庆存,郭东建,刘卓,1997:IAP正压模式的伴随模式的二阶伴随模式的构造。中国科学(D辑),27,277-283。
    朱江,徐启春,王赐震,李许花,1995:海温数值预报资料同化试验。海洋学报,17(5),9-20。
    朱江,闫长香,2005: 三维变分资料同化中的非线性平衡约束。中国科学D辑:地球科学,35(12),1187-1192。
    朱江,周广庆,闫长香,符伟伟,游小宝,2007:一个三维变分海洋资料同化系统的设计和初步应用。中国科学D辑,37(2),261-271。
    Brausseur, P., 1991: A Variational inverse method for the reconstruction of general circulation field in the northern Bering Sea. J. Geophys. Res., 96, 4891-2907.
    -----------, and J. Haus, 1991: Application of a three-dimensional Variational inverse model to the analysis of ecohydrodynamic data in the Bering and Chukchi Seas. J. Mar. Syst., 1, 383-401.
    Chao, W. C., and L. P. Chang, 1992: Development of a four-dimensional analysis system using the adjoint method at GLA, Part I: dynamics. Mon. Wea. Rev., 120, 1661-1673.
    Courtier, P., J.-N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367-1387.
    --------------, and Coauthors, 1998: The ECMWF implementation of three-dimensional Variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 1783-1808.
    Daley, R., and E. Barker, 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129, 869-883.
    Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A Variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128-2142.
    Gauthier , G., and J.-N. Thepaut, 2001: Impact of the digital filter as a weak constraint in the preoperational 4DVar assimilation system of Meteo-France. Mon. Wea. Rev., 129, 2089-2102.
    Gustafsson, N., 1992: Use of a digital filter as weak constraint in Variational data assimilation. Proc. Workshop on Variational Assimilation with Special Emphasis on Three-dimensional Aspects, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 327-338.
    Ishikawa, Y., T. Awaji, and N. Komori, 2001: Dynamical initialization for the numerical forecasting of ocean surface circulations using a Variational assimilation system. J. Phys. Oceanogr., 31, 75-93.
    Klinker, E., F. Rabier, G. Kelly, and J.-F. Mahfouf, 2000: The ECMWF operational implementation of four-dimensional Variational assimilation. III: Experimental results and diagnostics with operational configuration. Quart. J. Roy. Meteor. Soc., 126A, 1191-1210.
    Liang Xudong, B. Wang, Johnny CL Chan, Y.-H. Duan, D.-L. Wang, Z.-H. Zeng, L.-M. Ma, 2007a: Tropical cyclone forecasting with model-constrained 3D-Var. I: Description. Quart. J. Roy. Meteor. Soc. 133, 147-153.
    Kuo, Y.-H., X. Zou, and Y.-R. Guo, 1996: Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part I: Moisture retrieval and sensitivity experiments. Mon. Wea. Rev., 124, 122-147.
    Le Dimet, E. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97-110.
    Lewis, J. M., and J. C. Derber 1985: The use of adjoint equations to solve a Variational adjustment problem with adjective constraints. Tellus, 37A, 309-322.
    Lorenc, A. C., and Coauthors, 2000: The Met. Office Global three-dimensional Variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991-3012.
    Lynch, P., and X. Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 1019-1034.
    Mahfouf, J. F., and F. Rabier, 2000: The ECMWF operational implementation of four dimensional Variational assimilation. Part II: Experimental results with improved physics. Quart. J. Roy. Meteor. Soc., 126, 1171-1190.
    Mcintosh, P., C., and G. Veronis, 1993: Solving underdetermined tracer inverse problems by spatial smoothing and cross validation. J. Phys. Oceanogr., 23, 716-730.
    Navon, I. M., X. Zou, J. Derber, and J. Sela, 1992: Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Wea. Rev., 120, 1433-1446.
    Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.
    PolaVarapu, S., M. Tanguay, and L. Fillion, 2000: Four-dimensional Variational data assimilation with digital filter initialization. Mon. Wea. Rev., 128, 2491-2510.
    Rabier, F., H. Jarvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional Variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126A, 1143-1170.
    Sun, J., and N. A. Crook, 1994: Wind and thermodynamic retrieval from single-Doppler measurements of a gust front observed during Phoenix II. Mon. Wea. Rev., 122, 1075-1091.
    ------, and -------, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642-1661.
    -------, and ------, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm, J. Atmos. Sci., 55, 835-852.
    -------, and ------, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117-132.
    Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. Part I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1313-1330.
    Thepaut, J.-N., and P. Courtier, 1991: Four-dimensional data assimilation using the adjoint of a multilevel primitive equation model. Quart. J. Roy. Meteor. Soc., 117, 1225-1254.
    Verlinde, J., and W. R. Cotton, 1993: Fitting microphysical observations of nonsteady convective cloud to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model. Mon. Wea. Rev., 121, 2776-2793.
    Wee, T.-K., and Y.-H. Kuo, 2004: Impact of a digital filter as a weak constraint in MM5 4DVar: An observing system simulation experiment. Mon. Wea. Rev., 132, 543-559.
    Zou, X., I. M. Navon, and J. Sela, 1993: Variational data assimilation with moist threshold processes using the NMC spectral model. Tellus, 45A, 370-387.
    ----------, Y.-H. Kuo, and Y.-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123, 2229-2250.
    ----------, H. Liu, J. Derber, J. G. Sela, R. Treadon, I. M. Navon, and B. Wang, 2001: Four-dimensional Variational data assimilation with a diabatic version of the NCEP global spectral model: System development and preliminary results. Quart. J. Roy. Meteor. Soc., 127, 1095-1122.
    ----------, and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a Variational bogus data assimilation scheme. J. Atmos. Sci., 57, 836-860.
    Zupanski, D., 1993: The effects of discontinuities in the Betts-Miller cumulus convection scheme on four-dimensional Variational data assimilation. Tellus, 45A, 511-524.
    --------------, and F. Mesinger, 1995: Four-dimensional Variational assimilation of precipitation data. Mon. Wea. Rev., 123, 1112-1127.
    --------------, 1997: A general weak constraint applicable to operational 4DVar data assimilation systems. Mon. Wea. Rev., 125, 2274-2292.
    Zupanski, M., 1993: Regional four-dimensional Variational data assimilation in a quasi-operational forecasting environment. Mon. Wea. Rev., 121, 2396-2408.
    --------------, D. Zupanski, D. F. Parish, E. Rogers, and G.. Dimego, 2002: Four-dimensional Variational data assimilation for the blizzard of 2000. Mon. Wea. Rev., 130, 1967-1988.
    Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, J. Pfaffilin and E. Ziegler (Eds.), 1, No. 1, Gordon and Breach, 50-85.
    Bormann N., S. saarinen, G. Kelly, and J. Thepaut, 2003: The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Mon. Wea. Rev., 131, 706-718.
    Brausseur, P., 1991: A Variational inverse method for the reconstruction of general circulation field in the northern Bering Sea. J. Geophys. Res., 96, 4891-2907.
    -----------, and J. Haus, 1991: Application of a three-dimensional Variational inverse model to the analysis of ecohydrodynamic data in the Bering and Chukchi Seas. J. Mar. Syst., 1, 383-401.
    Brian, J. S., S. V. Christopher, and E. T. Robert, 2001: The impact of satellite winds on experimental GFDL hurricane model forecasts. Mon. Wea. Rev., 129, 835-852.
    Burk, S. D., and W. T. Thompson, 1989: A vertically nested regional numerical prediction model with second-order closure physics. Mon. Wea. Rev., 117, 2305-2324.
    Chan, J. C. L., F. M. F. Ko and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 1317-1336.
    Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107.
    Fujita T., 1952: Pressure distribution within a typhoon. Geophys Mag, 23, 437-451.
    Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A Variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128-2142.
    Goeress, J. S., C. S. Velden, and J. D. Hawkins, 1995: The impact of multispctral GOES-8 wind information on Atlantic tropical cyclone forecasts in 1995, Part II: NOGAPS forecasts. Mon. Wea. Rev., 126, 1219-1227.
    Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev., 121, 764-787.
    Ishikawa, Y., T. Awaji, and N. Komori, 2001: Dynamical initialization for the numerical forecasting of ocean surface circulations using a Variational assimilation system. J. Phys. Oceanogr., 31, 75-93.
    Leidner, S. M., L. Isaksen, and Ross N. Hoffman, 2003: Impact of NSCAT winds on tropical cyclones in the ECMWF 4DVar assimilation system. Mon. Wea. Rev., 131, 3-26.
    Liang X., B. Wang, J. C L Chan, Y. Duan, D. Wang, Z. Zeng, and L. Ma, 2007a: Tropical cyclone forecasting with a model-constrained 3D-Var, Part I: Description. Quart. J. Roy. Meteor. Soc.. 133, 147-153.
    Liang X., B. Wang, J. C L Chan, Y. Duan, D. Wang, Z. Zeng, and L. Ma, 2007b: Tropical cyclone forecasting with a model-constrained 3D-Var, Part II: Improved cyclone track forecasting using AMSU-A, QuikSCAT and cloud-drift wind data. Quart. J. Roy. Meteor. Soc.. 133, 155-165.
    Lynch, P., and X. Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 1019-1034.
    Mcintosh, P., C., and G. Veronis, 1993: Solving underdetermined tracer inverse problems by spatial smoothing and cross validation. J. Phys. Oceanogr., 23, 716-730.
    Sun, J., and N. A. Crook, 1994: Wind and thermodynamic retrieval from single-Doppler measurements of a gust front observed during Phoenix II. Mon. Wea. Rev., 122, 1075-1091.
    ------, and -------, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642-1661.
    -------, and ------, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm, J. Atmos. Sci., 55, 835-852.
    -------, and ------, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117-132.
    Velden, C. S., C. M. Hayden, W. P. Menzel, J. L. Franklin, and Lynch, 1992: The impact of satellite-derived winds on the hurricane track forecasting. Wea. Forecasting, 7, 107-119.
    Wang D. L., X. D. Liang, and Y. H. Duan, 2006: Impact of four-dimensional Variational data assimilation of the cloud drift wind data on tropical cyclone track numerical forecast. Wea. Forecasting, Vol. 21, No. 4, 663–669.
    Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a Variational Bogus data assimilation scheme. Mon. Wea. Rev., 128, 2252-2269.
    -----------, X. Zou, and M. Pondeca, 2002: Impact of GMS-5 and GOES-9 satellite-derived winds on the prediction of a NORPEX extratropical cyclone. Mon. Wea. Rev., 130, 507-528.
    Xu, Jianmin, Q. S. Zhang, and X. Fang, 1997: Height assignment of cloud motion winds with infrared and water vapour channels (in Chinese ). Acta Meteor. Sinica, 55, 408-417.
    Zeng Z.-H., Y.-H. Duan, X.-D. Liang, L.-M. Ma, J. C.-L. Chan, 2005: The Effect of Three-Dimensional Variational Data Assimilation of QuikSCAT Data on the Numerical Simulation of Typhoon Track and Intensity. Adv. Atmos. Sci., 22(4), 534-544.
    Zhu, T., D.-L. Zhang, and F. Weng, 2002: Impact of the advanced microwave sounding unit measurements on hurricane prediction. Mon. Wea. Rev., 130, 2416-2432.
    Zou, X., F. Vandengerghe, M. Pondeca, and Y.-H. Kuo, 1997: Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Technical Note, NCAR/TN-435- STR, 110, National Center for Atmospheric Research, Boulder, Co.
    ----------, and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a Variational bogus data assimilation scheme. J. Atmos. Sci., 57, 836-860.
    Kurihara Y., Bender M. A., Ross R. J., 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121:2030-2045.
    Kurihara Y., M. A. Bender, R. E. Tuleya, and J. R. Rebecca, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123:2791-2801.
    Kyungjeen Park and X. Zou, 2004: Toward developing an objective 4DVar BDA scheme for hurricane initialization based on TPC observed parameters. Mon. Wea. Rev., 132, 2054-2069.
    Pu, Z. –X. W.-K. Tao, S. Braun, J. Simpson, Y. Jia, H. Halverson, W. Olson, and A. Hou, 2002: The impact of TRMM data on mesoscale numerical simulation of supertyphoon Paka, Mon. Wea. Rev., 130, 2448-2458.
    Ueno, M., 1989:Operational bogussing and numerical prediction of typhoon in JMA. JMA/NPD Technical Report No. 28, 48pp.
    Wang, B., zou, X., and Zhu, J., 2000: Data assimilation and its application. Proc. Natl. Acad. Sci. USA, 97, 11143~11144.
    Xiao, Q., X. Zou and B. wang, 2000a: Initialization and simulation of a landfalling hurricane using a Variational bogus data assimilation scheme, Mon. Wea. Rev., 128, 2252~2269. ------, X. Zou, and Y.-H. Kuo, 2000b: Incorporating the SSM/I derived precipitation water and rainfall rate into a numerical model: A case study for ERICA IOP-4 cyclone, Mon. Wea. Rev., 128, 87~108.
    -------, X. Zou, and M. Pondeca, 2002: Impact of GMS-5 and GOES-9 satellite-derived winds on the prediction of a NORPEX extratropical cyclone, Mon. Wea. Rev., 130, 507~528.
    Zhang, X.-Y., Wang B. and Ji, Z., 2003: Initialization and simulation of a typhoon using 4-Dimensional Variational data assimilation-research on typhoon Herb (1996). Adv. Atmos. Sci., 20, 612~622.
    Zhao, Y., Wang B., et al., 2005: Improved track forecasting of a typhoon reaching landfall from four-dimensional Variational data assimilation of AMSU-A retrieved data, J. Geophys. Res., 110
    Zou, X., Xiao Qingnong, 1999: Studies on the initialization and simulation of a mature hurricane using a Variational Bogus data assimilation scheme. J. Atmo. Sci., 57, 836~860.
    许健民,张其松,方翔,1997:用红外和水汽两个通道的卫星测值指定云迹风的高度。气象学报,55(4),408-417。
    方翔,许健民,张其松,2000:高密度云导风资料所揭示的发展和不发展热带气旋的对流层上部环流特征。热带气象学报,16(3),218-224。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700