用户名: 密码: 验证码:
华北地区棉铃虫对Bt棉花抗性监测及抗性种群的蛋白质营养利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从细菌苏云金芽孢杆菌(Bacillus thuringiensis)中获得的杀虫蛋白成功的导入到棉株内获得的抗虫棉,可以有效的抑制靶标害虫的发生和危害,减少了对化学杀虫剂的使用和依赖,并取得了显著的经济效益和生态效益。我国自1997年引进转Bt-CrylAc抗虫棉后,成功的控制了棉铃虫Helicoverpa armigera的为害。但是随着Bt棉花的常年种植,其表达的Cry1Ac毒素对棉铃虫造成了强大的选择压力,棉铃虫对该毒素的抗性演化将严重威胁Bt棉花的使用寿命。本文将单雌系生测法和DNA分子诊断法相结合,对我国华北棉区的棉铃虫种群进行了系统的监测,评估其对转Bt基因棉的抗性发展水平。同时,本研究以胰蛋白酶基因沉默而导致抗性的品系(LF20.0和LF120.0)为研究对象,以室内饲养的敏感品系(96s和LF)为对照,将4龄幼虫饲喂不同蛋白浓度的饲料,比较各品系营养指标和中肠蛋白酶活性的差异,探索蛋白酶改变后对其适应性的影响。
     主要结论如下:
     1在2011-2013年的棉花生长季节,从山东省夏津县和河北省安次县分别收集了1,694和933个棉铃虫单雌家系,在正常饲料和1.0μg/mL的Cry1Ac饲料上进行生物测定。夏津棉铃虫种群的相对平均发育级别(RADR)分别0.59,0.58和0.62,安次种群的相对平均发育级别分别为0.60,0.53和0.62。与2002年的监测结果相比,2011-2013年夏津和安次地区棉铃虫种群的RADR分别上升了1.53-1.63和1.77-2.07倍,而抗性基因频率仍然较低。研究结果表明:与往年相比我国华北地区棉铃虫种群对Cry1Ac的抗性有一定的升高趋势,但并未达到高水平抗性。
     2根据已经报道的与棉铃虫抗性相关的钙粘蛋白(Cadherin)和氨肽酶N(Aminopeptidase N, APN)突变基因位点,设计特异引物,利用PCR诊断技术对田间收集的棉铃虫样品进行分子检测。2009-2013年共有2,391个样品进行了检测,但并未检测到已报道的相同突变基因。
     3将胰蛋白酶改变而导致抗性的棉铃虫抗性品系(LF20.0和LF120.0)和敏感品系(96s和LF)饲喂蛋白含量分别为0%、5%、10%、20%和30%的饲料,发现敏感品系取食蛋白浓度0%-10%的饲料,幼虫体重和蛹重随着蛋白含量的增加而增加,当饲料中蛋白浓度在10%-30%时,反而随饲料中蛋白浓度的增加而降低。但是抗性品系并不遵循这一规律,在任一浓度的饲料上,敏感品系的幼虫质量均显著高于抗性品系,并且在这5种饲料上抗性品系均不能化蛹。表明抗性品系对蛋白的消化吸收能力显著低于敏感品系。
     4将抗性品系(LF20.0和LF120.0)和敏感品系(96s和LF)用不同蛋白浓度的饲料处理,测定幼虫取食后总蛋白酶、类胰蛋白酶和类胰凝乳蛋白酶的活性。结果显示:LF120.0品系取食蛋白浓度为0%和5%的饲料2d时,总蛋白酶活性显著高于其它品系,随着取食时间的延长而降低到与敏感品系无显著差异。当取食蛋白浓度为10%和20%的饲料6d后,敏感品系的类胰蛋白酶和类胰凝乳蛋白酶的活性均显著高于抗性品系。尽管高抗品系LF120.0的类胰蛋白酶活性在取食蛋白浓度为10%的饲料2d后表现最大值,显著高于其它品系,但随着取食时间的延长显著降低,直至低于敏感品系。结果表明,抗性品系在改变蛋白酶产生抗性的同时,中肠相关消化酶活性显著降低影响了对蛋白质的水解作用。
     棉铃虫抗性监测的数据与以前的研究结果相比,田间种群对Cry1Ac的抗性水平有一定的升高趋势,但未达到高水平的抗性。尽管PCR诊断未检测到已经报道的抗性突变基因,并不排除田间存在其它突变基因的可能。棉铃虫中肠内蛋白酶的改变导致的抗性产生后,消化酶活性显著降低影响了对蛋白的消化吸收,进而影响了抗性品系的适应性。本研究评估了当前棉铃虫自然种群对转Bt基因棉的抗性演化规律,为抗性治理策略的制定和实施提供依据,同时增强了对抗性棉铃虫蛋白质营养代谢的了解,对延缓抗性的产生提供重要的线索。
Transgenic cotton that expresses a gene derived from the bacterium Bacillus thuringiensis (Bt) has been widely adopted because of the economic advantages, reducing the use of conventional insecticides and regional suppression populations of a target pest. In China, Bt cotton was approved in1997for commercial use to control cotton bollworm, Helicoverpa armigera, and has steadily been planted by Chinese cotton growers. The widespread planting of transgenic Bt cotton imposes strong selection pressure on cotton bollworm in the field. Resistance to the Bt toxin Cry1Ac in H. armigera is considered to be a major threat for the long-term effectiveness of Bt cotton. In this study, we evaluated resistance to Bt Cry1Ac toxin by the bioassays of isofemale lines and diagnostic PCR in H. armigera populations in North China. Compared to the susceptible strain (96s and LF), loss of function of a trypsin protease in the resistant populations (LF20.0and LF120.0) was linked to high levels of Cry1Ac resistance, the4th instar larvae were restricted to diets varying in concentration of protein. Compare the differences of nutrition indicators and gut proteases activity in the various strains, to investigate the influence of protease changed on the adaptability in H. armigera.
     The main research results are as follows:
     1A total of1,694lines from Xiajin and933lines from Anci were screened for growth rate on normal artificial diet and the diet containing1.0μg of CrylA(c) toxin per ml. In2011-2013, the mean relative average development rates of H. armigera larvae in the Xiajin population was0.62,0.59,0.59,0.58and0.62, respectively; and the Anci population was0.54,0.58,0.60,0.53and0.62, respectively. Compared to previous results in2002, the RADR of H. armigera during2011-2013, with ratios of1.53-1.63and1.77-2.07in their respective Xiajin and Anci populations, however, the frequency of resistance alleles of H. armigera was remained low. The result suggested that resistance to Cry1Ac has increased in H. armigera populations in North China, but have not reached a high level of resistance.
     2According to the mutant allele of APN or cadherin conferring resistance to Bt toxin Cry1Ac, A DNA-based PCR method was developed to screen the mutation alleles from field populations of H. armigera collected from the main cotton planting areas of China in2009-2013, however, no mutation allele was detected from2,246moths.
     3We used four strains of H. armigera:susceptible strains (96s and LF) and Cry1Ac-resistant strains (LF20.0and LF120.0), the4th instar larvae were restricted to diets varying in concentration of protein (0%、5%、10%、20%and30%). As the protein content of the diet increased, the bigger mass of larval and pupal were observed when bollworm were reared on diet that protein concentration was0%-10%. When the concentration of protein in the diet was10%-30%, the mass of larval and pupal decreased with increasing concentration of protein. But the resistant strains didn't follow this rule, The larvae mass of susceptible strains were significantly higher than that of resistant strains fed on any protein concentration of diets, and the resistant strains couldn't pupate in the5kinds of diet. The results indicated that the ability of protein digestion and absorption of resistant strains was significantly lower than the susceptible strains.
     4The activities of midgut total protease, trypsin-like enzyme and chymotrypsin-like enzyme were estimated after larvae of resistant strains (LF20.0and LF120.0) and susceptible strains (96s and LF) fed on artificial diets containing different concentrations of protein. LF120.0strain feed on lower protein diets (0%and5%) after2days showed significantly higher total protease activity than other strains. However, there was no significant difference between the resistant strains and susceptible strains with the extension of feeding time. Larvae reared on high protein diets (10%and20%) after6d, Trypsin-like activity and chymotrypsin-like activity of the resistant strains were significantly higher than the susceptible strains. The maximum in trypsin-like activity of LF120.0strain feed on artificial diets contains10%concentrations of protein after2d, is significantly higher than other strains, however, as the feeding time was significantly reduced, until it is lower than the sensitive strains. The results showed that the resistant strains at the same time of altered protease lead to resistance to Cry1Ac, reduces the activities of midgut digesting enzyme, and hydrolysis of protein was affected in Cry1Ac-resistant strains.
     Compared with previous studies, resistance to Cry1Ac has increased in H. armigera populations in northern China, but not reached a high level of resistance. Although PCR diagnosis has not detected resistance mutations which have been reported, does't excluded the possibility that there were other resistance alleles occured in field population. A laboratory-reared resistant strain that altered protease resulted in resistance to Cry1Ac, the digestion and absorption of protein was affected by digestive enzyme activity decreased significantly, and the adaptability of resistant strains was affected. The present study evaluated the level of Bt toxin susceptibility of cotton bollworm larvae from field populations, provide the basis for resistance management strategy formulation and implementation. Meanwhile, enhances the understanding of protein nutrition metabolism of Cry1Ac-resistant H. armigera, and providing leads that could be delay resistance to Bt cotton.
引文
1.龚佩瑜,李秀珍.饲料含氮量对棉铃虫发育和繁殖的影响.昆虫学报,1992,35:40-46
    2.郭予元.棉铃虫的研究.北京:中国农业出版社,1998
    3.李云寿,胡萃.茶尺镬幼虫在茶叶和人工饲料上的取食行为.云南农业大学学报,1990,5:89-96
    4.刘晨曦.Bt-CrylAc敏感与抗性棉铃虫中肠转录组分析.[博士后研究工作报告].北京:中国农业科学院植物保护研究所,2011
    5.钦俊德.昆虫与植物的关系一论昆虫与植物的相互作用及其演化.北京:科学出版社,1987
    6.王琛柱,钦俊德.棉铃虫幼虫中肠主要蛋白酶活性的鉴定.昆虫学报,1996,39:7-13
    7.吴坤君,李明辉.棉铃虫营养生态学研究:取食不同蛋白质含量饲料时的种群生命表.昆虫学报,1993,36:21-28
    8.曾益良,龚佩瑜,姜立荣等.施氮量对棉株和棉铃虫的影响.昆虫学报,1982,24(1):16-23
    9.张洋,张帅,崔金杰.黄河流域田间棉铃虫对转Bt基因棉抗性监测.棉花学报,2010,4:297-303
    10. Akhurst RJ, James W, Bird LJ, et al. Resistance to the Cry 1 Acδ-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera:Noctuidae). J Econ Entomol,2003,96:1290-1299
    11. Alcantara E, Estrada A, Alpuerto V, et al. Monitoring CrylAb susceptibility in Asian corn borer (Lepidoptera:Crambidae) on Bt corn in the Philippines. Crop Prot, 2011,30:554-559
    12. Ali MI and Luttrell RG. Susceptibility of bollworm and tobacco budworm (Noctuidae) to Cry2Ab2 insecticidal protein. J Econ Entomol,2007,100: 921-931.
    13. Ali, MI, Luttrell RG, Young SY. Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera:Noctuidae) populations to Cry1Ac insecticidal protein. J Econ Entomol,99,164-175 (2006).
    14. Alvi AHK, Sayyed AH, Naeem M, et al. Field evolved resistance in Helicoverpa armigera (Lepidoptera:Noctuidae) to Bacillus thuringiensis toxin Cry 1 Ac in Pakistan. PLoS ONE,2012,7:47309
    15. Alyokhin A. Scant evidence supports EPA's pyramided Bt corn refuge size of 5%. Nat Biotechnol,2011,529:577-578
    16. Ambika T, Sheshshayee MS, Viraktamathi CA, et al. Identifying the dietary source of polyphagous Helicoverpa armigera (Hubner) using carbon isotope signatures. Curr Science,2005,89:1982-1984
    17. Angelucci C., Barrett-Wilt GA., Hunt DF, et al. Diversity of aminopepti-dases, derived from four lepidopteran gene duplications, andpolycalins expressed in the midgut of Helicoverpa armigera:identification of proteins binding the delta-endotoxin, CrylAcof Bacillus thuringiensis. J Insect Physiol,2008,38: 685-696
    18. Auger M. Low nutritive quality as a plant defense-effects ofherbivore-mediated interactions. Evol Ecol,1995,9:605-616
    19. Awmack CS, Leather SR. Host plant quality and fecundity inherbivorous insects. Annu Rev Entomol,2002,47:817-844
    20. Babic B, Poisson A, Darwish S, et al. Influence of dietary nutritional composition on caterpillar salivary enzyme activity. J Insect Physiol,2008,54:286-296
    21. Bass C, Puinean AM, Andrews M. et al. Mutation of a nicotinic acetylcholine receptor b subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae, BMC Neurosci,2011,12:51
    22. Baxter SW, Badenes-Perez FR, Morrison A, et al. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics 2011.189:675-679
    23. Baxter SW, Badenes-Perez FR, Morrison A, Vogel H, Crickmore N, Kain W, Wang P, Heckel DG & Jiggins CD (2011) Parallel evolution of Bt toxin resistance in Lepidoptera. Genetics 189:675-679.
    24. Boivin T, d'Hieres CC, Bouvier JC, et al. Pleiotropy of insecticide resistance in the codling moth, Cydia pomonella. Ent Exp Appl,2001,99:381-386
    25. Borovsky D and Mahmood F. Feeding the mosquitoAedes aegypti with TMOF and its analogs; effect on trypsinbiosynthesis and egg development. Regul Pept, 1995,57:273-281
    26. Bown DP, Wilkinson HS, Gatehouse JA. Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families. Insect Biochem Mol Biol,1997,27:625-638
    27. Bown DP, Wilkinson HS, Gatehouse JA. Midgut carboxypeptidase from Helicoverpa armigera (Lepidoptera:Noctuidae) larvae:enzyme characterization, cDNA cloning and expression. Insect Biochem Mol Biol,1998,28:739-749
    28. Bown DP, Wilkinson HS, Gatehouse JA. Regulation of expression of genes encoding digestive proteases in the gut of a polyphagous lepidopteran larva in response to dietary protease inhibitors. Physiol Entomol,2004,29:278-290
    29. Bravo A, Sobero M. How to cope with insect resistance to Bt toxins? Trends Biotechnol,2008,26:573-579
    30. Brevault T, Heuberger S, Zhang M, et al. Potential shortfall of pyramided Bt cotton for resistance management. Proc Natl Acad Sci USA,2013,110: 5806-5811
    31. Brookes G, Barfoot P. Economic impact of GM crops:The global income and production effects 1996-2012. GM Crops and Food:Biotechnology in Agriculture and the Food Chain,2014,5:12-11
    32. Cao GC, Zhang LL, Liang GM, et al. Involvement of no binding site proteinases in the development of resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) to CrylAc. JEcon Entomol,2013,106:2514-2521
    33. Chikate Y, Tamhane V, Joshi R, et al. Differential protease activity augments polyphagy in Helicoverpa armigera. Insect Molecul Biol,2013,22:258-272
    34. Chougule NP, Giri AP, Sainani MN, et al. Gene expression patterns of Helicoverpa armigera gut proteases. Insect Biochem Mol Biol,2005,35:355-367
    35. Coetzee M and Koekemoer LL. Molecular systematics and insecticide resistance in the major African malaria vector Anopheles funestus. Annu Rev Entomol,2013, 58:393-412
    36. Desh Gujarat. State wise figures of cotton production in India in last four years, even with lower production Gujarat continues to top.22 March 2013.
    37. Dhurua S and Gujar GT, Field-evolved resistance to Bt toxin CrylAc in the pink boll worm, Pectinophora gossypiella (Saunders) (Lepidoptera:Gelechiidae), from India. Pest Manage Sci,2011,67:898-903
    38. Downes S, Mahon R and Olsen K. Monitoring and adaptive resistance management in Australia for Bt-cotton:Current status and future challenges. J Invertebr Pathol,2007,95:208-213
    39. Downes S, Mahon RJ, Rossiter L. Adaptive management of pest resistance by Helicoverpa species (Noctuidae) in Australia to the Cry2Ab Bt toxin in Bollgard Ⅱ? cotton. Evol Appl,2010,3:574-584
    40. Downes ST, Parker R. Mahon, Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton, PLoS ONE,2010, e12567
    41. Downes S and Mahon R. Evolution, ecology and management of resistance in Helicoverpa spp. to Bt cotton in Australia. J Invertebr Pathol,2012a,110: 281-286
    42. Downes S and Mahon R. Successes and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia. GM Crops & Food,2012b,3: 228-234
    43. Dunse KM, Stevens JA, Lay FT, et al. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci USA,2010,107:15011-15015
    44. EPA Environmental Protection Agency.2002. Final meeting minutes. FIFRA Scientific Advisory Panel Meeting Held August 27-29,2002. Corn Rootworm Plant-In-corporated Protectant Non-target Insect and Insect Resistance Management Issues. (http://www.epa.gov/scipoly/sap/meetings/2002/082702_mtg. htm#minutes)
    45. EPA Environmental Protection Agency.2013. Current & Previously Registered Section 3 PIP Registrations, (http://www.epa.gov/pesticides/biopesticides /pips/pip_ list.htm)
    46. Escriche B, Tabashnik B, Finson N, et al. Immunohistochemical detection of binding of CrylA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Biochem Biophys Res Commun, 1995,212:388-395.
    47. Fabrick JA, Tabashnik BE. Similar genetic basis of resistance to Bt toxin Cry 1 Ac in boll-selected and diet-selected strains of pink bollworm. PLoS ONE,2012,7: 35658
    48. FAO Food and Agriculture Organization.2011.FAOSTAT:Food and Agricultural commodities production.
    49. Feng FQ, Wu KM, Ni YX, et al. High-altitude windborne transport of Helicoverpa armigera (Lepidoptera:Noctuidae) in mid-summer in northern China. J Insect Behavior,2005,18:335-350
    50. Ferre J, Van Rie J.2002. Biochemistry and Genetics of Insect Resistance to B acillus thuringiensis. Annu Rev Entomol,47:501-533
    51. Ferr6 J, Real MD, Van Rie J, et al. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci USA,1991,88:5119-5123
    52. Fitt GP. The ecology of Heliothis species in relation to agroecosystems. Annu Rev Entomol,1989,34:17-53
    53. Forcada C, Alcacer E, Garcera MD, et al. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Arch Insect Biochem Physiol,1996,31:257-272
    54. Franco OL, Rigden DJ, Melo FR, et al. Activity of wheat alpha-amylase inhibitors towards bruchid alpha-amylases and structural explanation of observed specificities. Euro JBiochem,2000,267:2166-2173
    55. Gahan LJ, Gould F, Heckel DG.. Identification of a gene associated with Bt resistance in Heliothis virescens. Science,2001,393:857-860
    56. Gahan LJ, Pauchet Y, Vogel H, et al. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry 1 Ac toxin. PLoS Genet,2010, 6:e1001248.
    57. Gao YL, Wu KM, Gould F. Frequency of Bt resistance alleles in H. armigera during 2006-2008 in Northern China. Environ Entomol,2009a,38:1336-342
    58. Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, et al. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE,2011,6:22629
    59. Gassmann AJ. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field. J Invertebr Pathol,2012, 110:287-293.
    60. Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, et al. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE,2011,6:e22629
    61. Gatehouse LN, Shannon AL, Burgess EP, et al. Characterization of major midgut proteinasecDNAs from Helicoverpa armigera larvae and changes ingene expression in response to four proteinase inhibitors inthe diet. Insect Biochem Mol Biol,1997,27:929-944
    62. Gothilf S, Beek SD. larval feeding behavior of cabbage looper, Trichoplusia ni. J Insect Physiol,1967,13:1039-1053
    63. Gould F. Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology. Annu Rev Entomol,1998,43:701-726
    64. Gujar GT, Kalia V, Kumari A, et al. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. J Invertebr Pathol,2007,95:214-219
    65. Gujar GT, Will Bt cotton remain effective in India? Nat Biotechnol,2005, 23:927-928.
    66. Gunning RV, Dang HT, Kemp FC, et al. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis CrylAc toxin. Appl Environ Microbiol,2005,71:2558-2563.
    67. Harsulkar AM, Giri AP, Patankar AG, et al. Successive use of non-hostplant proteinase inhibitors required for effective inhibition of Helicoverpa armigera gut proteinases and larval growth. Plant Physiol,1999,121:497-506
    68. Hernandez-Martinez P, Navarro-Cerrillo G, Caccia S, et al. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. PLoS ONE,2010,17:e12795
    69. Herrero S, Gechev T, Bakker PL, et al. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics,2005,24:6-96.
    70. Herrero S, Oppert B, Ferre J. Different mechanisms of resistance to Bacillus thuringiensis toxins in the Indian meal moth. Appl Environ Microbiol, 2001,67: 1085-89
    71. Huang F, Ghimire MN, Leonard BR, et al. Extended monitoring of resistance to Bacillus thuringiensis CrylAb maize in Diatraea saccharalis (Lepidoptera: Crambidae). GM Crops & Food,2012,3:245-254
    72. Huang YC, Joe WN, Andrew BB, et al. Neu-ropeptide F and the corn earworm, Helicoverpa zea:a midgutpeptide revisited. Peptides,2010,32:483-492.
    73. Ingle S, Trivedi N, Prasad R, et al. Aminopeptidase-N from the Helicoverpa armigera (Hiibner) brush border membrane vesicles as a receptor of Bacillus thuringiensis Cry1Ac δ-endotoxin. Curr Microbiol,2001,43:255-259
    74. Jackson RE, Catchot A, Gore J, et al. Increased survival of bollworms on Bollgard II cotton compared to lab-based colony, pp.2011,893-894
    75. James C. Global status of commercialized biotech/GM Crops:2007. (ISAAA Briefs 37, Ithaca, NY, USA,2007)
    76. James C. Global Status of Commercialized Biotech/GM Crops:2010. (ISAAA Briefs 42, Ithaca, NY, USA,2010)
    77. James C. Global status of commercialized biotech/GM Crops:2013. (ISAAA Briefs 37, Ithaca, NY, USA,2013)
    78. James C. Global status of commercialized biotech/GM Crops:2012. ISAAA brief no.44. International Service for the Acquisition of Ag-biotech Applications, Ithaca, NY.
    79. Janmaat AF, Wang P, Kain W, et al. Inheritance of resistance to Bacillus thuringiensis subs kurstaki in Trichoplusia ni. Appl Environ Microbiol,2004,70: 5859-5867.
    80. Jayaraman KS. Indian Bt gene monoculture, potential time bomb. Nat Biotechnol.2005,23:158
    81. Jin L, Wei Y, Zhang L, et al. Dominant resistance to Bt cotton and minor cross-resistance to Bt toxin Cry2Ab in cotton bollworm from China. Evol Appl, 2013,6:1222-1235
    82. Johnston KA, Lee MJ, Gatehouse JA, et al. The partial purification and characterization of serine protease activity in midgut of larval Helicoverpa armigera. Insect Bioch,1991.21:389-397
    83. Johnston KA, Lee MJ, Gatehouse JA, et al. The partial purification and characterization of serineprotease activity in midgut of larval Helicoverpa armigera. Insect Biochem,1991,21:389-397
    84. Jurat-Fuentes JL, Karumbaiah L, Jakka SRK, et al. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS ONE,2011,6:e17606
    85. Karumbaiah L, Oppert B, Jurat-Fuentes JL, et al. Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and-resistant Heliothis virescens (Lepidoptera:Noctuidae). Comp Biochem Physiol B,2007,146:139-146
    86. Keller M, Sneh B, Strizhov N, et al. Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to Cry1C. Insect Biochem Mol Biol,1996,26:365-373
    87. Khajuria C, Buschman LL, Chen MS, et al. Identification of a novel aminopeptidase P-like gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis). PLoS ONE,2011,6:e23983
    88. Knight J. Agency'ignoring its advisors'over Bt maize. Nature,2003,422:5
    89. Kotkar HM, Sarate PJ, Tamhane VA, et al. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. J Insect Physiol,2009, 55:663-670
    90. Kotkar HM, Bhide AJ, Gupta VS, et al. Amylase gene expression patterns in Helicoverpa armigera upon feeding on a range of host plants. Gene,2012,501: 1-7
    91. Kranthi S, Dhawad CS, Naidu S, et al. Susceptibility of the cotton bollworm Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) to the Bacillus thuringiensis toxin Cry2Ab before and after the introduction of Bollgard-II. Crop Prot,2009,28:371-375
    92. Kranti KR and Kranti NR. Modelling adaptability of cotton bollworm, Helicoverpa armigera(Hubner) toBt-cotton in India. Curr. Sci.2004:87, 1096-1107
    93. Kruger M, Van Rensburg JBJ and Van den Berg J. Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Prot.2009.28:684-689.
    94. Kruger MJ, van Rensburg JBJ. van den Berg J. Transgenic Bt maize:farmers' perceptions, refuge compliance and reports of stem borer resistance in South Africa. JAppl Entomol,2012,136,38-50
    95. Li GP, Wu KM, Gould F, et al. Bt toxin resistance gene frequencies in Helicoverpa armigera populations from the Yellow River cotton farming region of China. Entomol Exp Appl,2004b,112:135-143
    96. Li GP, Wu KM, Gould F, et al. Increasing tolerance to CrylAc cotton from cotton bollworm was confirmed in Bt cotton farming area of China. Ecol Entomol, 2007b,32:366-375
    97. Li H, Bushman LL, Huang F, et al. Dipel-selected Ostrinia nubilalis larvae are not resistant to transgenic corn expressing Bacillus thuringiensis CrylAb. J Econ Entomol,2007a,100:1862-1870
    98. Li H, Oppert B, Higgins RA, et al. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and-susceptible Ostrinia nubilalis. Insect Biochem Mol Biol,2004a,34:753-762
    99. Liang GM, Wu KM, Gould F, et al. Study on screening and mode of inheritance to Bt transgenic cotton in Helicoverpa armigera. Acta Entomol Sin,2000,43: 57-62
    100.Liang GM, TanWJ, and Guo YY. An improvement in the technique of artificial rearing cotton bollworm. Plant Prot,1999,25:15-17
    101.Liao CY, Trowell S, Akhuist R. Purification and characterization of CrylAc toxin binding proteins from the brush border membrane of Helicoverpa armigera midgut. Curr Microbiol,2005,51:367-371
    102.Liu FX, Xu ZP, Chang JH, et al. Resistance allele frequency to Bt cotton in field populations of Helicoverpa armigera (Lepidoptera:Noctuidae) in China. J Econ Entomol,2008,101:933-943
    103.Lu BQ, Downes S, Wilson L, et al. Preferences of field bollworm larvae for cotton plant structures:impact of Bt and history of survival on Bt crops. Entomol Experiment et Appl,2011,140:17-27
    104.Luttrell RG., and Jackson RE. Helicoverpa zea and Bt cotton in the United States. GM Crops Food 2012,3:213-227
    105.Luttrell RG.,Ali I, Allen K C, et al. Resistance to Bt in Arkansas populations of cotton bollworm. Proceedings of the Beltwide Cotton Conferences,2004. 1373-1383.
    106.Ma G, Rahman MM, Grant W, et al. Insect tolerance to the crystal toxins Cry1ac and Cry2Ab is mediated by binding of monomeric toxin to lipophorin glycolipids causing oligomerization and sequestration reactions. Dev Comp Immunol,2012, 37:184-192
    107.Mahon RJ, Olsen KM, Downes S, et al. Frequency of alleles conferring resistance to the Bt toxins CrylAc and Cry2Ab in Australian population of Helicoverpa armigera (Lepidoptera:Noctuidae). J Econ Entomol,2007,100: 1844-1853
    108.Masson L, Mazza A, Brousseau R et al. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutellaxylostella. JBiol Chem,1995,270:11887-11896.
    109.McGaughey WH. Insect resistance to the biological insecticide Bacillus thuringiensis. Science,1985,229:193-195
    110.Monsanto.2010. Cotton in India. Updated 5 May 2010. (http://www.monsanto. com/newsviews/Pages/india-pink-bollworm.aspx)
    111.Morin S, Biggs RW, Sisterson MS, et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci USA, 2003,100:5004-5009
    112.Morin S, Henderson SJA, Fabrick Y, et al. DNA-based detection of Bt resistance alleles in pink bollworm. Insect Biochem Mol Biol,2004,34:1225-1233
    113.Neunzig HH. The biology of the tobacco budworm and the corn earworm in North Carolina with particular reference to tobacco as a host. North Carolina Agricultural Experiment Station. Technol Bulletin,1969,196:63
    114.Oppert B, Kramer KJ, Johnson D, Upton SJ, McGaughey WH. Luminal proteases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. Insect Biochem Molec Biol,1996,26:571-583
    115.Oppert B, Kramer KJ, Beeman RW, et al. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. Biol Chem,1997,272:23473-23476.
    116.Pardo-Lopez L, Soberon M and Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins:mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev,2013,37:3-22
    117.Patankar AG, Giri AP, Harsulkar AM, et al. Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochem Mol Biol,2001,31:453-464
    118.Patankar AG, Giri AP., Harsulkar AM, et al. Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochem Mol Biol,2001,31:453-464.
    119.Pauchet Y, Muck A, Svatos A, et al. Mapping the larval midgut lumen proteome of Helicoverpa armigera, a generalist herbivorous insect. J Proteome Research, 2008,7:1629-1639.
    120.Pereira PJB, Lozanov V, Patthy A, et al. Specific inhibition of insect alpha-amylases:yellow mealworm alpha-amylase in complex with the Amaranth alpha-amylase inhibitor at 2.0A resolution. Structure 1999,7:1079-1088
    121.Porter P, Cullen E, Sappington T, et al. Comment submitted by Patrick Porter, North Central Coordinating Committee 2012, NCCC46
    122.Puinean AM, Lansdell SJ, Collins T, et al. A nicotinicacetylcholine receptor transmembrane point mutation (G275E) associatedwith resistance to spinosad in Frankliniella occidentalis. JNeurochem,2013,124:590-601
    123.Purcell JP, Greenplate JT, Douglas Sammons R. Examination of midgut luminal proteinase activities in six economically important insects. Insect Biochem Mol Biol,1992.22(1):41-47
    124.Rahman MM, Roberts HL, Sarjan M, et al. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc Natl Acad Sci USA,2004,101:2696-2699
    125.Rajagopal R, Arora N, Sivakumar S, et al. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Biochem J,2009,419:309-316
    126.Rajagopal R, Sivakumar S, Agrawai N, et al. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem,2002,277:46849-46851
    127.Rajapakse CNK, Walter GH. Polyphagy and primary host plants:oviposition preference versus larval performance in the lepidopteran pest Helicoverpa armigera. Arhropod-Plant Interact,2007,1:17-26
    128.Ryan CA. Protease inhibitors in plants:genes for improv-ing defenses against insects and pathogens. Ann Rev Phy-topathol,1990,28:425-449.
    129.Sanahuja G, Banakar R, Twyman RM, et al. Bacillus thuringiensis:a century of research, development and commercial applications. Plant biotechnolo J,2011,9: 283-300.
    130.Sarate P, Tamhane V, Kotkar H, et al. Developmental and digestive flexibilities in the midgut of a polyphagous pest, the cotton bollworm, Helicoverpa armigera. J Insect Physiol Science,2012,12.
    131.SAS Institute. SAS/STAT user,s guide, release 6.03 Edition. SAS Institute,1998, Cary,NC
    132.Shalaby HA. Antihelmintics resistance; How to overcome it? Iran. J. Parasitol, 2013,8:18-32.
    133.Simpson S, Abisgold J. Compensation by locusts for changes in dietary nutrients: behavioural mechanisms. Physiol Entomol,1985,10:443-452.
    134.Simpson SJ, Raubenheimer D. A multilevel analysis of feeding behaviour:The geometry of nutritional decisions. Philosophical Transactions of the Royal Society of London Series B:Biological Sci,1993,342:381-402
    135.Sivasupramaniam S, Head GP, English L, et al. A global approach to resistance monitoring. J Invertebr Pathol 2007,95:224-226
    136.Srinivasan A, Giri AP, Gupta VS. Structural and functional diversities in lepidopteran serine proteases. Cell Mol Biol Lett,2006,11:132-154
    137.Storer NP, Babcock JM, Schlenz M, et al. Discovery and characterization of field resistance to Bt maize:Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. JEcon Entomol,2010,103:1031-1038
    138.Storer NP, Babcock JM, Schlenz M, et al. Discovery and characterization of field resistance to Bt maize:Spodoptera frugiperdarda (Lepidoptera:Noctuidae) in Puerto Rico. JEcon Entomol,2010,103:1031-1038
    139.Storer NP, Kubiszak ME, King JE, et al. Status of resistance to Bt maize in Spodoptera frugiperdarda:lessons from Puerto Rico. J Invertebr Pathol,2012, 110:294-300
    140.Tabashnik BE, Gassmann AJ, Crowder DW, et al. Field-evolved insect resistance to transgenic Bt crop. ISB News Report,2008a
    141.Tabashnik BE, Huang F, Ghimire MN, et al. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nature Biotechnol,2011,29:1128-1131
    142.Tabashnik BE. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol,1994,39:47-79
    143.Tabashnik BE, Fabrick JA, Henderson S, et al. DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure. JEcon Entomol,2006,99:1525-1530
    144.Tabashnik BE, Finson N, Groeters FR, et al. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci USA,1990,91:4120-4124
    145.Tabashnik BE, Gassmann AJ, Crowder DW et al. Insect resistance to Bt crops: evidence versus theory. Nature Biotechnol,2008b,26:199-202
    146.Tabashnik BE, Mota-Sanchez D, Whalon ME, et al. Defining Terms for Proactive Management of Resistance to Bt Crops and Pesticides. J Econ Entomol,2014, 107:496-507
    147.Tabashnik BE, Van R JBJ, Carriere Y. Field-evolved insect resistance to Bt crops: definition, theory, and data. JEcon Entomol,2009,102:2011-2025
    148.Tabashnik BE and Gould F. Delaying corn rootworm resistance to Bt corn. J Econ Entomol,2012,105:767-776
    149.Tabashnik BE, Brevault T, CarriereY. Insect resistance to Bt crops:lessons from the first billion acres. Nature Biotechnol,2013,31:510-521
    150.Tabashnik BE, Dennehy TJ, Sims MA, et al. Control of resistant pink bollworm by transgenic cotton with Bacillus thuringiensis toxin Cry2Ab. Appl. Environ. Microbiol,2002,68:3790-3794
    151.Terra WR, Cristofoletti PT. Midgut proteinases in three divergent species of Coleoptera. Comparative Biochemistry and Physiology Part B:Biochem Mol Biol, 1996,113:725-730
    152.Terra WR, Ferreira C. Insect digestive enzymes:properties, compartmentalization and function. Compar Biochem Physiol,1994,109B:1-62
    153.Tiewsiri K, Wang P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry 1 Ac in cabbage looper. Proc Natl Acad Sci USA,2011,108:14037-14042.
    154.Vaeck M, Botterman J, Reynaerts A, et al. Engineering improved crops for agriculture:Protection from insects and resistance to herbicides. Plant Gene Systems and Their Biology, Key, JL, et al.,(eds.), Alan R. Liss, Inc., New York, 1987,171-181.
    155.Van den Berg J, Hilbeck A, Bohn T. Pest resistance to CrylAb Bt maize:field resistance, contributing factors and lessons from South Africa. Crop Prot, 2013, 54:154-160.
    156.Van Rensburg J. First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil,2007,24:147-151.
    157.Wan P, Huang YX, Wu HH, et al. Increased frequency of pink bollworm resistance to Bt toxin Cryl Ac in China. PLoS ONE,2012,7:29975
    158.Wang GR, Liang GM, Wu KM, et al. Gene cloning and sequencing of aminopeptidase N3, a putative receptor for Bacillus thuringiensis insecticidal Cryl Ac toxin in Helicoverpa armigera (Lepidoptera:Noctuidae). Eur J Entomol, 2005,102:13-19
    159.Wang P, Zhao JZ, Rodrigo-Simon A, et al. Mechanism of resistance to Bacillus thuringiensis toxin Cryl Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Appl Environ Microbiol,2007,73:1199-1207
    16O.Weintraub H, Tietz A. Triglyceride digestion and absorption in the locust, locust a migratoria. Biochimica et Biophysica Acta (BBA):Lipids and Lipid Metabolism, 1973,306:31-41
    161.Wu KM, Lu YH, Feng HQ, et al. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science,2008,321: 1676-1678
    162.Wu KM, Guo YY and Lv N.Geographic variation in susceptibility of Helicoverpa armigera (Lepidoptera:Noctuidae) to Bacillus thuringiensis insecticidal protein in China. JEcon Entomol,1999,92:273-278
    163.Wu KM, Guo YY, Lv N, et al. Resistance monitoring of Helicoverpa armigera (Lepidoptera:Noctuidae) to Bacillus thuringiensis insecticidal protein in China. J Econ Entomol,2002,95:826-831
    164.Wu KM and Guo YY, The evolution of cotton pest management practices in China. Annu Rev Entomol,2005,50:31-52
    165.Wu KM, Guo YY and Head G. Resistance monitoring of Helicoverpa armigera (Lepidoptera:Noctuidae) to Bt insecticidal protein during 2001-2004 in China. J Econ Entomol,2006,99:893-896
    166.Wu KM, Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. JInvertebr Pathol,2007,95:220-223
    167.Wu KM, No refuge for insect pests. Nat Biotechnol,2010,28:1273-1275
    168.Wu KM and Guo YY. Changes in susceptibility to conventional insecticides of a Cry 1 Ac-selected population of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Pest Manage Sci,2004,60:680-684
    169.Wu Y, Llewellyn D, Mathews A, et al. Adap-tation of Helicoverpa armigera (Lepidoptera:Noctuidae) to aproteinase inhibitor expressed in transgenic tobacco. MolBreed,1997,3:371-380
    170.Xu XJ, Yu LY and Wu YD. Disruption of a cadherin gene associated with resistance to CrylAc 5-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol,2005,71.948-954
    171. Yang Y, Chen H, Wu Y, et al. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin CrylAc. Appl Environ Microbiol,2007,73:6939-6944
    172.Yang Y, Chen H,Wu S, et al. Identification and molecular detection of a deletion mutation responsible for a truncated cadherin of Helicoverpa armigera. Insect Biochem Mol Biol,2006,36735-740.
    173.Zhang H, Wu S, Yang Y, et al. Non-Recessive Bt Toxin Resistance Conferred by an Intracellular Cadherin Mutation in Field-Selected Populations of Cotton Bollworm. PLoS ONE,2012,7:e53418.
    174.Zhang HN, Tang MY, Yang F, et al. DNA-based screening for an intracellular cadherin mutation conferring non-recessive Cry 1 Ac resistance in field populations of Helicoverpa armigera. Pesti Biochem Physiol,2013,107:148-152
    175.Zhang HN, Tian W, Zhao J, et al. Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proc Natl Acad Sci USA, 2012a,109:10275-10280.
    176.Zhang HN, Yin W, Zhao J, Jin L, Yang YH, Wu SW, et al, Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS ONE,2011,6:22874
    177.Zhang SP, Cheng HM, Gao YL, et al. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cryl Ac toxin, Insect Biochem Mol Biol,2009,39:421-429
    178.Zhao J, Jin L, Yang YH, et al. Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cryl Ac in Helicoverpa armigera. Insect Biochem Mol Biol,2010,40:113-118
    179.Zhou L, Fang Y, Yang J. Investigation on artificial diet in Heliothis armigera. Acta Entomol Sin,1981,24:108-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700