用户名: 密码: 验证码:
水田高茬秸秆旋耕埋覆机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国人口在增长,人民生活水平在提高,粮食总量刚性需求越来越大,与粮食总量相对应的农作物秸秆总量也在同步增加。秸秆还田是农业可持续发展的有效途径,既能解决焚烧难题,又能改善土质、提高地力、降低化肥施用量。我国南方地区土地复种指数高,秸秆量大,农时紧迫,雨水多,秸秆当前处理方式以埋覆还田为主。埋覆前先要粉碎,以避免埋覆过程中秸秆缠绕农机具。秸秆粉碎延误农时、增加作业成本,是农民焚烧秸秆的主要原因。为了能够省去秸秆粉碎环节直接埋覆还田,本课题组于2007年开发了1GMC-70型船式旋耕埋草机产品,该产品有一定的市场占有量。本课题主要研究1GMC-70型船式旋耕埋草机刀辊的秸秆埋覆机理,并在此基础上进行结构优化,进一步提高其作业效率和耕作效果。
     本文首先对该机核心耕作部件即螺旋横刀建立了数学模型,分析了各结构参数对作业性能的影响。研究发现,螺旋横刀刃口的动态滑切角为25.2°±0.1。,近似为常数,耕作过程中刀辊受力平稳,振动小。螺旋横刀的动态滑切角接近秸秆-旋耕刀之间的摩擦角(26°450)下限,它对秸秆既有砍压作用,又有滑切作用,滑切作用可以让横刀本身保持自洁、不缠草,降低其切土阻力;砍压作用可以将秸秆直接压覆入泥。刀辊埋覆秸秆的方式不是将秸秆切碎并与耕层土壤混合,而是由螺旋横刀将秸秆直接压覆入泥。刀辊在作业过程中切断了易碎秸秆,但柔韧性较大的秸秆仍然保持整株状态。刀辊对秸秆的埋覆效果与切碎程度之间没有相关性。
     刀辊中立刀有34把-36把,数量最多,尺寸最小,焊接难度及焊接工作量等都比较大。立刀辅助螺旋横刀完成作业功能,这种辅助作用对刀辊整体耕作性能至关重要。但是本文通过理论分析发现,立刀没有实现其预期的设计功能,并通过田间对比试验验证了这一观点。立刀对后续螺旋横刀有破茬效应,但破茬量不超过后续螺旋横刀切土节距的32.4%,破茬能力不足;立刀对后续横刀切下的土壤垡条有预先切断效应,但只切割了垡条横截面积的40%左右,没有切断垡条。立刀没有发挥作用,整机作业功能基本上都由螺旋横刀实现,功能过于集中,这是造成1GMC-70型船式旋耕埋草机作业效率偏低的主要原因。
     秸秆埋覆功能主要由螺旋横刀实现,本文详细分析了螺旋横刀的制造工艺过程。结果表明,现行工艺存在较大的制造误差,该误差对刀辊作业性能有一定影响。螺旋横刀动态滑切角的理论值为25.2。±0.1°,但由于制造工艺误差量较大,耕作过程中螺旋横刀沿刀轴方向按照先后入土顺序,其刃口对地表秸秆的动态滑切角从32.4°逐渐降低至14.70,切削方式由滑切过渡为砍切。砍切方式使螺旋横刀后入土一端丧失了自洁性和不缠草性,这从理论上解释了田间作业过程中螺旋横刀后入土一端经常出现缠草现象的原因。
     为发挥立刀对后续螺旋横刀的破茬效应,减轻螺旋横刀切土阻力,本文重新设计了立刀:用国家标准旋耕刀IIT245替代立刀。为了最大限度地发挥旋耕刀IIT245对后续螺旋横刀的破茬效应,本文对旋耕刀IIT245的排布方式进行了理论研究,给出了较优的排布方案。在该排布方案中,旋耕刀IIT245对后续螺旋横刀切土节距的增加量(即破茬量)占切土节距的118.0%-122.7%,起到了完全破茬效果,对后续螺旋横刀切下的垡条也起到了预先完全切断作用。旋耕刀IIT245还存在一定的破茬宽度,总的破茬宽度约占整机耕幅的1/3。用标准旋耕刀IIT245替代立刀,有效减轻了后续螺旋横刀的切土阻力。田间试验表明,新刀辊作业效率提高了5-6倍,原刀辊需要两遍作业才能满足农艺要求,新刀辊耕作一遍即可满足农艺要求,耕深及耕深稳定性、秸秆埋覆率、碎土率、耕后地表平整度等各项作业指标都有明显提高。
     本文研究结果为提高旋耕埋草机三化水平(标准化、系列化和通用化)提供了理论参考依据。
With the increasing population and desires for higher living standard in China, more and more grain is needed rigidly. Correspondingly, the total amount of crop straw is increasing too. The arable land yields more grain year after year. How to deal with the crop straw? Straw returning is an effective approach to sustainable agricultural development. It can not only solve the problem of straw burning, but also improve the soil fertility, and reduce the amount of chemical fertilizer usage. In south China, the land cropping index is high. The amount of crop straw is large. The time for tillage is short. The rainfall is high. The straw is buried in field currently. But the straw should be cut to pieces firstly to avoid winding the burying tillage machine. It spends some time and tillage cost to cut straw. So the farmers are inclined to burn straw after harvest. In order to directly bury straw to paddy field without cutting, The Boat tractor rotary tiller named after1GMC-70is developed in2007.This machine is now widely used in south China. It can bury crop stubbles of height under600mm in paddy field. The main objective of this study is to answer the following two questions. What is the straw burying mechanism of1GMC-70? How to optimize the structure of this machine so as to improve tillage performance?
     Firstly, the spiral blade of this rotary tiller is researched. Through mathematical model and analysis, equations are deduced for edges of spiral blade. Curves of dynamic sliding cutting angle, dynamic cutting angle and dynamic clearance angle versus position angle of rotary tiller are plotted. Parameters of the spiral blade and the traditional rotary blade are compared. The dynamic sliding cutting angle of the spiral blade is approximately constant, which is25.2°0.1°. So the rotary tiller has no vibration theoretically during tillage. The value of25.2°0.1°is close to the lower limit of interval [26°,45°], which is the friction angle range of straw versus rotary blade. So the spiral blade has both sliding cutting effect and chopping effect on crop straw during tillage. The former effect may keep the spiral blade free from being winded by straw, while the latter effect may press the straw into soil directly. The spiral blade buries straw not by the way of cutting straw into pieces, then mixing them with soil, but by the way of pressing straw into soil directly. It is believed that the major function of spiral blade is not soil cutting, but straw burying.
     Secondly, the design purposes, the functions, and the structure parameters of vertical blade in this machine are analyzed. Mathematic equation of leading edge was built for vertical blade kinematic analysis. Results show that the structure parameters of vertical blade do not match well with their design intents. Vertical blade effective cutting length is less than one-third bite length of helical blade. So its own cutting straw capability and capability of helping helical blade to process straw underground are all weak. The vertical blade can break untilled soil in advance. But the depth of cutting untilled soil is about one-third thickness of soil slice cut by spiral blade. So the untilled soil breaking effect of vertical blade is weak. The vertical blade can break tilled soil behind rotor. But this soil breaking effect is negligible. The vertical blade cuts soil slice cross sectional area about40%. So its soil slice breaking effect is small. The vertical blade arrangement does not increase its own tillage opportunities. Field experiments show that the existence of vertical blade has little impact on paddy field tillage quality. The tillage functions of this machine are realized mainly by spiral blade. Tillage functions are too concentrated, this is the main cause for the low efficiency of the machine.
     Thirdly, being the core tillage part of this machine, the manufacturing process errors of the spiral blade and their influences were analyzed in detail. Results show that the spiral blade manufacturing process is defective. If the spiral blade had no manufacturing process errors, the two axis of spiral blade and rototiller would coincide. Because of manufacturing process errors, the two axis form spacial straight lines in different planes, whose distance is204.2mm, and space angle28.7°. If the spiral blade had no manufacturing process errors, the parameters of spiral blade leading edge, such as rotary radius, static sliding cutting angle and static cutting angle, would be all constant, which were200.0mm,25.3°and71.7°in sequence. But to the spiral blade made by present manufacturing technology, those parameters are no longer constant. The rotary radii of points on spiral blade leading edge are ranging from189.0mm to200.0mm. The static sliding cutting angle of spiral blade changes from14.7°to32.4°. The static cutting angle of spiral blade varies from70.3°to73.7°. At the end of the spiral blade, the smallest static sliding cutting angle is only14.7°, which belongs to chopping mode. This results in stubble winding. In the last tillage end of spiral blade, the rotary radius and static cutting angle are all largest, which are200.0mm and73.7°in sequence. Those factors may reduce the tillage depth at one time.
     Fourthly, based on our previous research achievements, a new straw burying rotary tiller is designed. In the new machine the standard rotary tiller blades namely Ⅱ T245are widely used instead of vertical blades. So there are mainly three kinds of cultivating blades in the new machine. They are, respectively, rotary blades IIT245, bent blades and spiral blades. The former two types of blade are used to cut soil, while the latter one to bury straw. The tillage width is2000mm. The rotor speed is still335rev/min. The range of forward speed is0.7m/s-l.lm/s. The tractor power is62.5kw-73.5kw. The three kinds of tillage blades cooperate with each other during tillage. Their interrelationships and interactions were analyzed in detail. An advisable arrangement of rotary blades IIT245fixed on the rotor is provided. Experiments of crop straw burying rotary tillage were conducted repeatedly not only in wet land but also in dry land. The tillage results show that this machine possesses not only the advantages of traditional rotary tiller's soil tillage, but also the straw burying advantages of1GMC-70. After one time tillage in fields of cone index value under1260kpa for about150mm depth, the tillage qualities could meet the agro-technical requirements in terms of tillage depth, stability of tillage depth, field surface roughness, vegetation coverage rate and soil breakage rate. The values are, respectively,151.2mm-214.5mm,91.6%-94.8%,9.7mm-17.0mm,91.4%-97.0%and64.5%-90.2%.
     Results of this research provide some useful theoretical references to reduce the energy requirement of straw burying rotary tiller. They are also useful to mass-produce the straw burying rotary tiller.
引文
1. 白小琳,张海林,陈阜,等.耕作措施对双季稻田CH4与N20排放的影响[J].农业工程学报,2010,26(1):282-289.
    2.北京农业工程大学.农业机械学(上册)[M]咽.北京:中国农业出版社,2001,166-178.
    3.陈东林.多熟复种稻田土壤耕作和秸秆还田的效应研究[D],长沙:湖南农业大学博士学位论文,2009
    4.陈黎卿,王莉,张家启,等.适用于全喂入联合收割机的1GHSX-34型秸秆粉碎机设计[J].农业工程学报,2011,27(9):28-32.
    5.陈英旭,李文红,施积炎,等.农业环境保护[M],北京:化学工业出版社,2007
    6.陈玉仑,丁为民,汪小旵,等.稻麦联合收获开沟埋草多功能一体机设计[J].农业机械学报,2009,40(8):62-66.
    7.陈钧,近江谷和彦.旋耕刀曲面典型形状的研究[J].农业机械学报,1995,26(4):50-55.
    8. 陈钧,潘采庚,高良润.下切式节能旋耕刀刃口线设计研究[J].江苏工学院学报,1992,13(4):20-25.
    9.池营营,中国长江、黄河流域灌溉用水效率研究[D].西安:陕西师范大学硕士学位论文,2012.
    10.丁为民,彭嵩植.旋耕刀滑切角及滑切角方程的研究[J].农业工程学报,1995,11(4):67-72.
    11.丁为民,王耀华,彭嵩植.反转旋耕刀正切面分析及参数选择[J].农业机械学报,2004,35(4):40-43.
    12.段聪.中国淡水渔业对世界贡献巨大[N],中国渔业报,2008-06-30(001)
    13.冯红燕.农户耕地抛荒的驱动因素研究——基于农户调查的计量分析[D],杭州:浙江大学硕士学位论文,2011
    14.冯佐龙.4QZ-12型青饲料收获机关键部件的研究[D].保定:河北农业大学硕士学位论文,2008.
    15.高焕文,何明,尚书旗.保护性耕作高产高效体系[J].农业机械学报,2013,44(6):35-38.
    16.高建民,周鹏,张兵,等.基于光滑粒子流体动力学的土壤高速切削仿真系统开发及试验[J].农业工程学报,2007,23(8):20-26.
    17.高旺盛.论保护性耕作技术的基本原理与发展趋势[J].中国农业科学,2007,40(12):2702-2708.
    18.广东省农业机械推广站,博罗县农业机械管理局.DB44/T 367—2006南方双季稻地区水田机械耕整作业技术规程[S].
    19.郭鸿鹏,朱静雅,杨印生,等.农业非点源污染防治技术的研究现状及进展[J].农业工程学报,2008,24(4):290-295.
    20.郭艳.盘刀式切碎器刀刃曲线对切割能耗的影响[J].吉林农业大学学报,2003,25(1):107-110.
    21.华中农业大学,湖北省农业机械化技术推广总站.DB/T 2006船式旋耕埋草机技术条件[S].
    22.黄世文.水稻主要病虫害防控关键技术解析[M],北京:金盾出版社,2010.
    23.黄先才,周子杨,孟玲,等,稻鸭共作有机稻田蜘蛛多样性与飞虱数量的季节动态[J],生态学杂志,2011,30(7):1342-1346
    24.汲文峰,黄海东,黄小毛.保护性耕作技术在华南两熟区的应用与发展路径[J].华中农业大学学报,2013,32(5):134-140.
    25.姜洁,陈宏,赵秀兰.农作物秸秆改良土壤的方式与应用现状[J].中国农学通报,2008,24(8):420-423.
    26.姜卫华.二化螟的抗药性及综合防治研究[D].南京:南京农业大学博士学位论文,2011.
    27.李友军,付国占,张灿军,等,保护性耕作理论与技术[M],北京:中国农业出版社,2008
    28.李永磊,宋建农,康小军.双辊秸秆还田旋耕机试验[J].农业机械学报,2013,44(6):45-49.
    29.辽宁省农业机械鉴定站,DB21/T 1672—2008水田旋耕作业技术规范[S].
    30.林炜,韩永强,刘玉娣,等,二化螟越冬生物学研究进展[J].湖南农业科学,2008,(3):116-118.
    31.刘功朋,张玉烛,朱国奇,等.“蜂-蛙灯”绿色生产技术对水稻害虫天敌及产量的影响[J].湖南农业科学,2013,(7):89-92.
    32.刘佳嘉.河北省农业节水对策研究[D],北京:中国科学院研究生院硕士学位论文,2010.
    33.刘顺飞.中国水稻布局变化研究[D].南京:南京农业大学博士学位论文,2007.
    34.刘洋.玉米青贮机滚筒式切碎装置的设计与有限元分析[D].杨凌:西北农林科技大学硕士学位论文,2008
    35.马淑英,卢彦群.农业机械技术[M].北京:中国农业出版社,2001,201-209.
    36.孟海波.秸秆切割破碎与揉切机刀片耐用性试验研究[D].北京:中国农业大学博士学位论文,2005.
    37.孟祥海.稻田氮素利用与损失及其对环境影响研究[D],哈尔滨:东北农业大学硕士学位论文,2012
    38.聂佳燕.湖南稻田生态系统多功能性价值研究[J].长沙:湖南农业大学硕士学位论文,2011.
    39.农业部农业机械试验鉴定总站,黑龙江省农业机械试验鉴定站.GB/T 5626-2008农业机械试验条件、测定方法的一般规定[s].北京:中国标准出版社,2008.
    40.农业部南京农业机械化研究所,西安市旋播机厂,南昌旋耕机厂有限责任公司,等.GB/T 5668-2008旋耕机[S].北京:中国标准出版社,2008.
    41.欧阳臻.两型社会背景下湖南双季稻区划研究[D].长沙:湖南农业大学硕士学位论文,2010.
    42.彭嵩植,吴德光.旋耕机工作部件设计方法的研究(一)[J].镇江农业机械学院学报,1982(3):5-26.
    43.盛承发,宣维健,焦晓国,等.我国稻螟暴发成灾的原因、趋势及对策[J],自然灾害学报,2002(11)3:103-108.
    44.盛锦山.美国的水稻生产和研究[J].世界农业,1997,218(6):23-24.
    45.苏继峰.秸秆焚烧对南京及周边地区空气质量的影响[D],南京:南京信息工程大学硕士学位论文,2011.
    46.孙忻.我国2012年稻米市场分析及2013年走势展望[J].粮食与油脂,2013,26(4):44-47.
    47.陶建平.长江中游平原农业洪涝灾害风险管理研究[D],武汉:华中农业大学博士学位论文,2003.
    48.王福杰.IGLF-1.8型秸秆翻青机设计与研制[D].武汉:华中农业大学硕士学位论文,2011.
    49.王金武,尹大庆,韩永俊,等.水稻秸秆整株还田机的设计与试验[J].农业机械学报,2007,38(10):54-56
    50.王利敏.基本农田保护的农户经济补偿研究[D],南京:南京农业大学博士学位论文,2011
    51.王致能,刘功朋,张玉烛,等.水稻主要害虫生态防控技术应用现状与发展前景[J],湖南农业科学,2012,(01):92-95.
    52.王志山,夏俊芳,许绮川,等.船式旋耕埋草机螺旋刀辊作业功耗试验[J].农业机械学报,2010,41(12):44-47.
    53.王志山,夏俊芳,许绮川,等.水田高茬秸秆旋耕埋覆装置功耗测试方法[J].农业工程学报,2011,27(2):119-123.
    54.王紫露.中国水稻产业布局变迁的经济和生态分析[D].杭州:浙江大学硕士学位论文,2011.
    55.吴文革,张健美,张四海,等,保护性耕作和稻田免耕栽培技术现状与发展趋势[J],中国农业科技导报,2008,10(1):43-51
    56.夏俊芳,贺小伟,余水生,等.基于ANSYS/LS-DYNA的螺旋刀辊土壤切削有限元模拟[J].农业工程学报,2013,29(10):34-41.
    57.夏俊芳,张国忠,许绮川,等.多熟制稻作区水田旋耕埋草机的结构与性能[J].华中农业大学学报,2008(2):331-334.
    58.夏俊芳,周勇,许绮川,等.高茬水田双轴旋耕埋草整地机[P].中国专利:202135463U.0,2012-02-08.
    59.向玉勇,张帆,夏必文,等,我国水稻螟虫的发生现状及防治对策[J],中国植保导刊,2011,31(11):20-23
    60.徐丽娜,李昌春,胡本进,等,安徽省大螟发生特点及影响因素分析,中国植保导刊[J],2012,32(7):46-48
    61.熊元芳.水田埋草旋耕机的试验研究[J],农业机械学报,2003,34(5):177-178.
    62.寻怀义.滑切理论探讨[J].农业机械学报,1979,10(4):107-111.
    63.许绮川,夏俊芳,张国忠,等.船式旋耕埋草机[P].中国专利:2896816.0,2007-05-09.
    64.杨宏图.稻麦收割开沟埋草一体机的改进设计与试验[D].南京:南京农业大学硕士学位论文,2010.
    65.余水生.水田高茬秸秆还田耕整机的研制[D].武汉,华中农业大学硕士学位论文,2012.
    66.展进涛.中国水稻生产增长与政府管理研究[D],南京:南京农业大学博士学位论文,2009
    67.张锋,中国化肥投入的面源污染问题研究—基于农户施用行为的视角[D],南京:南京农业大学博士学位论文,2011
    68.张国忠,许绮川,夏俊芳,黄海东,周勇.1GMC270型船式旋耕埋草机的设计[J].农业机械学报,2008,39(10):214-218.
    69.张居敏,夏俊芳,周勇,等.旋耕埋草机螺旋横刀的数学建模与参数分析[J].农业工程学报,2013,29(1):18-25.
    70.张明秋.水稻整株秸秆还田机参数优化设计与试验研究[D].哈尔滨:东北农业大学硕士学位论文,2008.
    71.张在平.旋耕埋草技术研究与试验[D].武汉:华中农业大学硕士学位论文,2005
    72.赵铁军.水稻整株秸秆还田机工作参数优化设计研究[D].哈尔滨:东北农业大学硕士学位论文,2007.
    73.赵铁军,王金武.水稻秸秆整株还田埋草弯刀滑切角与安装角分析[J].农机化研究,2007,(11):58-63.
    74.赵永来,麻硕士,陈智,等.保护性耕作农田对近地表风速阻挡效果分析[J].农业工程学报,2011,27(10):33-38.
    75.中国农业机械科学研究院.农业机械设计手册(上册)[M].北京:中国农业科学技术出版社,2007:237-243.
    76.中国农业机械学会基础技术专业委员会编,当代农机实用新技术[M],北京:农业出版社,1987,767-768.
    77.周明.基于有限元法的螺旋型旋耕刀辊横刀工作机理研究[D],武汉:华中农业大学硕士学位论文,2009.
    78.周勇,许绮川,夏俊芳,等.船式旋耕埋草机技术的示范推广及前景预测[J].湖北农业科学,2011a(14):2966-2969.
    79.周勇,许绮川,夏俊芳,等.南方多熟制稻区水田耕作新技术新装备研究[J].安徽农业科学,2011b,39(19):11922一11923,11927.
    80.周勇,余水生,夏俊芳.水田高茬秸秆还田耕整机设计与试验[J].农业机械学报,2012,43(8):46-49,77.
    81.佐佐木,泰弘,河野,等.日本水稻机械化的现状及展望[J].北方水稻,2012,42(6):1-6.
    82. Abbas Hemmat, Iraj Eskandari. Dryland winter wheat response to conservation tillage in a continuous cropping system in northwestern Iran[J], Soil and Tillage Research, 2006,86(1):99-109
    83. Alex Keen, Nigel Hall, Peeyush Soni, et al. A review of the tractive performance of wheeled tractors and soil management in lowland intensive rice production[J]. Terramechanics,2013,50:45-62.
    84. AMIR KASSAM, HUGH BRAMMERT. Commentary Combining sustainable agricultural production with economic and environmental benefits[J]. The Geographical Journal,2013,179(1):11-18.
    85. Arthur L. Fajardo, Delfin C. Suministrado, Engelbert K. Peralta, et al. Force and puddling characteristics of the tilling wheel of float-assisted tillers at different lug angle and shaft speed[J]. Soil & Tillage Research,2014,140:118-125.
    86. Atul Kumar Shrivastava, R.K.Datta. Effect of different size and orientation of rectangular rotary blades on quality of puddling[J]. Journal of Terramechanics,2006, 43:191-203.
    87. Beeny, J.M., Khoo, D.C.P. Preliminary investigation into the performance of different shaped blades for the rotary tillage of wet rice soil[J]. Agricultural Engineering Research,1970,15:27-33.
    88. B.S.Chauhan, J.Opena. Effect of tillage systems and herbicides on weed emergence, weed growth, and grain yield in dry-seeded rice systems[J]. Field Crops Research,2012, 137:56-69.
    89. C. Johansen, M.E. Haque, R.W. Bell, et al. Conservation agriculture for small holder rainfed farming: Opportunities and constraints of new mechanized seeding systems[J]. Field Crops Research,2012,132:18-32.
    90. Damora D, Pandey K P. Evaluation of performance of furrow openers of combined seed and fertilizer drills[J]. Soil and Tillage Research,1995,34(1):127-139.
    91. Davut Akbolat, Kamil Ekinci. Rotary tiller velocity effects on the distribution of wheat (Triticum aestivum) residue in the soil profile[J]. Crop and Horticultural Science,2008, 36:247-252.
    92. D.C. Baruaha, P.K. Dutta. An investigation into the energy use in relation to yield of rice (Oryza sativa) in Assam, India[J]. Agriculture, Ecosystems and Environment,2007, 120:185-191.
    93. Gotoh, T.Horio, M.Ichikawa, T.Kobayashi, T.Nio, Y.Sudoh, T. Development of high-speed rotary tiller (Part 1)-Fundamental studies for the shape and the arrangement of blades[J]. Journal of the Japanese Society of Agricultural Machinery.2004,66(3): 111-120
    94. Gotoh, T.Horio, M.Ichikawa, T.Kobayashi, T.Nio, Y.Sudoh, T. Development of high-speed rotary tiller (Part 2)-Fundamental studies for the shape and the arrangement of blades[J]. Journal of the Japanese Society of Agricultural Machinery.2004,66(4): 102-110
    95. He Jin, Li Hongwen, Rabi G. Rasaily, et al. Soil properties and crop yields after 11 years of no tillage farming in wheat-maize cropping system in North China Plain[J]. Soil & Tillage Research,2011,113:48-54.
    96. Jafar Habibi Asl, Surendra Singh. Optimization and evaluation of rotary tiller blades: Computer solution of mathematical relations[J]. Soil&Tillage Research,2009,106:1-7.
    97. Jay Maclean, Bill Hardy, Gene Hettel, Rice Almanac(4th Edition)[M], Metro Manila(Philippines):International Rice Research Institute,2013,21-23.
    98. Jia Honglei,Ma Chenglin, Tong Jin. Study on universal blade rotor for rototilling and stubble-breaking machine[J]. Soil & Tillage Research,2007,94:201-208.
    99. Jia Honglei, Wang Lichun, Li Chunsheng, et al. Combined stalk-stubble breaking and mulching machine[J]. Soil & Tillage Research,2010,107:42-48.
    100.J.M. Holland. The environmental consequences of adopting conservation tillage in Europe:reviewing the evidence[J]. Agriculture, Ecosystems and Environment,2004, 103:1-25.
    101.Ju, JS. Trajectory angles and cultivating performance of tiller blades[J]. Journal of the Chinese society OF mechanical engineers,2007,28 (4):443-451.
    102.Ligang Wang, Jianjun Qiu, Huajun Tang, Hu Li, et al. Modelling soil organic carbon dynamics in the major agricultural regions of China[J]. Geoderma,2008, (147):47-55.
    103.M. Farooq, Kadambot H.M. Siddique, H. Rehman, et al. Rice direct seeding: Experiences, challenges and opportunities[J]. Soil & Tillage Research,2011,111: 87-98.
    104.N.L. Morris, P.C.H. Miller, J.H.Orson, et al. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment-A review[J]. Soil & Tillage Research,2010,108:1-15
    105.N. Yoshikawa, N. Nagao, S. Misawa. Evaluation of the flood mitigation effect of a Paddy Field Dam project[J]. Agricultural Water Management,2010,97:259-270.
    106.Pan Genxing, Zhou Ping, Li Zhipeng, et al. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China[J]. Agriculture, Ecosystems and Environment,2009,131:274-280.
    107.Rice and Duck Capital of the World, www.stuttgartarkansas.org
    108.Richard Fowler, Johan Rockstrom, Conservation tillage for sustainable agriculture: An agrarian revolution gathers momentum in Africa[J]. Soil and Tillage Research,2001, 61(1):93-108
    109.R.N. Yong, A.W. Hanna. Finite element analysis of plane soil cutting[J]. Journal of Terramechanics,1977,14(3):103-125
    110.Sakai, J. Some design know-how of edge-curve angles of rotary blades for paddy rice cultivation[J]. Agric. Mech. Asia,1977,8 (2):49-57.
    111.Steve Frolking, Jagadeesh Babu Yeluripati, Ellen Douglas. New district-level maps of rice cropping in India:A foundation for scientific input into policy assessment [J]. Field Crops Research,2006,98:164-177
    112.Tomasz Glab, Bogdan Kulig. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum)[J]. Soil & Tillage Research,2008,99:169-178.
    113.V.S.Saimbhi, D.S.Wadhwa, P.S.Grewal. Development of a Rotary Tiller Blade using Three-dimensional Computer Graphics[J]. Biosystems Engineering,2004,89(1):47-58.
    114. W.M.W. Weerakoon, M.M.P. Mutunayake, C. Bandara, et al. Direct-seeded rice culture in Sri Lanka:Lessons from farmers[J]. Field Crops Research,2011,121:53-63.
    115. World Rice Statistics, www.irri.org
    116.Xiao Yu, AN Kai, XIE Gaodi, et al. Evaluation of Ecosystem Services Provided by 10 Typical Rice Paddies in China[J]. Journal of Resources and Ecology,2011,2(4): 328-337.
    117.Yi Wang, Yong Li, Feng Liu, et al. Linking rice agriculture to nutrient chemical composition,concentration and mass flux in catchment streams in subtropical central China[J]. Agriculture, Ecosystems and Environment,2014,184:9-20.
    118. Yong You, Decheng Wang, Jude Liu. A device for mechanical remediation of degraded grasslands[J]. Soil and Tillage Research,2012,118(1):1-10.
    119.Yosihiro Natuhara. Ecosystem services by paddy fields as substitutes of natural wetlands in Japan[J]. Ecological Engineering,2013,56:97-106.
    120.Zeliha Bereket Barut, Can Ertekin, Hasan Ali Karaagac. Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey[J]. Energy,2011,36:5466-5475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700