用户名: 密码: 验证码:
促肾上腺皮质激素对高脂血症兔模型血脂及肾功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察促肾上腺皮质激素(ACTH1-24和ACTH4-10)对高脂血症模型新西兰白兔血脂、肾功能及肾上腺的影响,以期能够探讨ACTH1-24的降脂机制,了解ACTH1-24能否改善肾功能,并了解ACTH4-10是否具有类似的降脂效应及ACTH4-10是否能引起肾上腺增生。
     方法:健康雄性新西兰兔45只,饲以高脂饲料(配方为95.5%普通饲料、2.5%猪油、1.25%胆固醇、0.75%蛋黄粉)8周,待高脂血症模型建立后将其随机分为3组,即ACTH1-24组(n=15)、ACTH4-10组(n=15)和对照组(n=15)。ACTH1-24组予以ACTH1-24皮下注射一周(100μg/kg/d,溶解于1ml生理盐水中),ACTH4-10组予以ACTH4-10皮下注射一周(300ug/kg/d,约是ACTH1-24组药物的5倍摩尔浓度,溶解于1ml生理盐水中),对照组每天予等量生理盐水皮下注射。分别在实验前、实验第3天及第7天抽血检测并比较注射ACTH前后兔血脂及肾功能的变化,实验第7天抽血后在麻醉下统一取左侧肾上腺称重并测体积,比较各组肾上腺质量与体积的变化,同时取右侧肾上腺置于10%福尔马林溶液中固定,常规石蜡包埋后取纵轴面切片作HE染色。
     结果:ACTH1-24组:与用药前相比,用药7天后,血清TC、HDL及LDL水平下降,分别降低约9.0%、43.7%及6.3%,而血清TG水平则上升约7.6倍,其中HDL和TG有统计学意义(P值分别小于0.01和0.001);血肌酐显著下降约16.6%(P<0.01),而血尿素氮则升高约13.5%,但无统计学差异;肾上腺质量和体积显著增加。ACTH4-10组:用药7天后,兔血脂及肾功能变化无统计学差异,肾上腺质量和体积亦未见有明显变化。
     结论:ACTH1-24具有一定的降脂效应,能够改善高脂血症引起的肾功能损害;ACTH4-10未见有明显降脂及改善肾功能效应;ACTH1-24能引起肾上腺明显增生,而ACTH4-10无类似作用。
Objectives: To investigate the effects of synthetic adrenocorticotropic hormone (ACTH1-24 and ACTH4-10) on serum lipid levels, renal function and the adrenal gland in hyperlipidemic rabbit model, in order to discuss the lipid-lowering mechanism and effect of renal function of ACTH1-24. And to investigate whether ACTH4-10 has the same effect on lipid levels and adrenal.
     Methods: 45 healthy male NZW rabbits were fed with a high-fat diet (containing 95.5% ordinary feeder, 2.5% lard, 1.25% cholesterol and 0.75% yolk powder) for 8 weeks, and were divided into 3 groups randomly, i.e. ACTH1-24 group (n=15), ACTH4-10 group (n=15) and control group (n=15). ACTH1-24 group received a subcutaneous injection of ACTHl-24 at a dose of 100μg/(kg·d) (dissolved in 1ml saline solution) for one week. ACTH4-10 group received a subcutaneous injection of ACTH4-10 at a dose of 300μg/(kg·d) (about 5 times molar concentration compared with ACTH1-24 group, dissolved in 1ml saline solution) for one week. Control group received the same volume of saline solution daily for one week. Then we drew blood to detect and compare the change of rabbits’serum lipid levels and renal function at pre-experiment, the third day and the seventh day of the experiment, respectively. The left adrenal gland was resected for measurement of weight, volume and the right adrenal gland was resected for pathology at the seventh day after hemospasia.
     Results: ACTH1-24 group: compared with pre-experiment, one week after ACTH1-24 injection, serum TC, HDL and LDL levels were reduced about 9.0%, 43.7% and 6.3% respectively, while TG level increased about 7.6 times and the differences of HDL and TG are significant (P<0.01 and P<0.001, respectively). Serum Cr level decreased 16.6% ( P<0.01). Blood urea nitrogen level increase about 13.5%, but no significant difference was found. The weight and volume of adrenal gland increased significantly. ACTH4-10 group: a week after ACTH4-10 injection, there were no difference about serum lipid and renal function in hyperlipidemic rabbits, as well as the weight and volume of adrenal gland.
     Conclusions: ACTH1-24 has the effect of lipid-lowering and improving renal function in hyperlipemia model, while ACTH4-10 has no same effect; Adrenal hyperplasia was seen in ACTH1-24 group but missed in ACTH4-10 group.
引文
1. Abrass CK: Lipid metabolism and renal disease. Contrib Nephrol 2006, 151:106-121.
    2. Keane WF, Mulcahy WS, Kasiske BL, Kim Y, O'Donnell MP: Hyperlipidemia and progressive renal disease. Kidney Int Suppl 1991, 31:S41-48.
    3. Vaziri ND, Sato T, Liang K: Molecular mechanisms of altered cholesterol metabolism in rats with spontaneous focal glomerulosclerosis. Kidney Int 2003, 63(5):1756-1763.
    4. Prichard SS: Impact of dyslipidemia in end-stage renal disease. J Am Soc Nephrol 2003, 14(9 Suppl 4):S315-320.
    5. Kobashigawa JA, Kasiske BL: Hyperlipidemia in solid organ transplantation. Transplantation 1997, 63(3):331-338.
    6. Barbagallo CM, Cefalu AB, Gallo S, Rizzo M, Noto D, Cavera G, Rao Camemi A, Marino G, Caldarella R, Notarbartolo A et al: Effects of Mediterranean diet on lipid levels and cardiovascular risk in renal transplant recipients. Nephron 1999, 82(3):199-204.
    7. Arnadottir M, Dallongeville J, Nilsson-Ehle P, Berg AL: Effects of short-term treatment with corticotropin on the serum apolipoprotein pattern. Scand J Clin Lab Invest 2001, 61(4):301-306.
    8. Berg AL, Arnadottir M: ACTH revisited--potential implications for patients with renal disease. Nephrol Dial Transplant 2000, 15(7):940-942.
    9. Hardarson A, Sigurdsson G, Olafsdottir E, Dallongeville J, Berg AL, Arnadottir M: Adrenocorticotrophic hormone exerts marked lipid-lowering effects in simvastatin-treated patients. J Intern Med 2001, 250(6):530-534.
    10. Xu N, Ekstrom U, Nilsson-Ehle P: ACTH decreases the expression and secretion of apolipoprotein B in HepG2 cell cultures. J Biol Chem 2001, 276 (42) :38680-38684.
    11. Berg AL, Nilsson-Ehle P: ACTH lowers serum lipids in steroid-treated hyperlipemic patients with kidney disease. Kidney Int 1996, 50(2):538-542.
    12. Berg AL, Nilsson-Ehle P: Direct effects of corticotropin on plasma lipoprotein metabolism in man--studies in vivo and in vitro. Metabolism 1994, 43(1):90-97.
    13. Arnadottir M, Berg AL, Dallongeville J, Fruchart JC, Nilsson-Ehle P: Adrenocorticotrophic hormone lowers serum Lp(a) and LDL cholesterol concentrations in hemodialysis patients. Kidney Int 1997, 52(6):1651-1655.
    14. Skoog M, Xu N, Berggren-Soderlund M, Lovegrove JA, Nilsson-Ehle P: ACTH reduces the rise in ApoB-48 levels after fat intake. Atherosclerosis 2007, 191(2):433-439.
    15. Gatti S, Colombo G, Turcatti F, Lonati C, Sordi A, Bonino F, Lipton JM, Catania A: Reduced expression of the melanocortin-1 receptor in human liver during brain death. Neuroimmunomodulation 2006, 13(1):51-55.
    16. Nimura M, Udagawa J, Hatta T, Hashimoto R, Otani H: Spatial and temporal patterns of expression of melanocortin type 2 and 5 receptors in the fetal mouse tissues and organs. Anat Embryol (Berl) 2006, 211(2):109-117.
    17. Parke L, Forsyth IA: Assay of lactogenic hormones using receptors isolated from rabbit liver. Endocr Res Commun 1975, 2(2):137-149.
    18. Mahley RW, Weisgraber KH, Hussain MM, Greenman B, Fisher M, Vogel T, Gorecki M: Intravenous infusion of apolipoprotein E accelerates clearance of plasma lipoproteins in rabbits. J Clin Invest 1989, 83(6):2125-2130.
    19. Bartens W, Kramer-Guth A, Wanner C: Corticotropin increases the receptor-specific uptake of native low-density lipoprotein (LDL)--but not of oxidized LDL and native or oxidized lipoprotein(a) [Lp(a)]--in HEPG2 cells: no evidence for Lp(a) catabolism via the LDL-receptor. Metabolism 1997, 46(7):726-729.
    20. Seeley RJ, Woods SC: Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci 2003, 4(11):901-909.
    21. Flier JS: Obesity wars: molecular progress confronts an expanding epidemic. Cell2004, 116(2):337-350.
    22. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ: Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001, 411(6836):480-484.
    23. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U: Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 1999, 5(9):1066-1070.
    24. Krude H, Biebermann H, Schnabel D, Tansek MZ, Theunissen P, Mullis PE, Gruters A: Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab 2003, 88(10):4633-4640.
    25. Fehm HL, Smolnik R, Kern W, McGregor GP, Bickel U, Born J: The melanocortin melanocyte-stimulating hormone/adrenocorticotropin(4-10) decreases body fat in humans. J Clin Endocrinol Metab 2001, 86(3):1144-1148.
    26. Hallschmid M, Smolnik R, McGregor G, Born J, Fehm HL: Overweight humans are resistant to the weight-reducing effects of melanocortin4-10. J Clin Endocrinol Metab 2006, 91(2):522-525.
    27. Berg AL, Hansson P, Nilsson-Ehle P: ACTH 1-24 decreases hepatic lipase activities and low density lipoprotein concentrations in healthy men. J Intern Med 1991, 229(2):201-203.
    28. Arnadottir M, Berg AL, Kronenberg F, Lingenhel A, Hugosson T, Hegbrant J, Nilsson-Ehle P: Corticotropin-induced reduction of plasma lipoprotein(a) concentrations in healthy individuals and hemodialysis patients: relation to apolipoprotein(a) size polymorphism. Metabolism 1999, 48(3):342-346.
    29. He X, Xue P, Xu X, Luo G, Zhou G, Nilsson-Ehle P, Xu N: Short-term administration of ACTH improves plasma lipid profile and renal function in kidney transplant patients. Transplant Proc 2006, 38(5):1371-1374.
    30. Rafnsson AT, Johannsson M, Olafsson I, Dallongeville J, Erfurth EM, Berg AL, Arnadottir M: Effects of different doses of adrenocorticotrophic hormone on theserum lipoprotein profile in healthy subjects. Basic Clin Pharmacol Toxicol 2005, 97(2):86-90.
    31. Berg AL, Rafnsson AT, Johannsson M, Hultberg B, Arnadottir M: The effects of adrenocorticotrophic hormone and cortisol on homocysteine and vitamin B concentrations. Clin Chem Lab Med 2006, 44(5):628-631.
    32. Galman C, Angelin B, Rudling M: Prolonged stimulation of the adrenals by corticotropin suppresses hepatic low-density lipoprotein and high-density lipoprotein receptors and increases plasma cholesterol. Endocrinology 2002, 143(5):1809-1816.
    33. Xu N, Hurtig M, Ekstrom U, Nilsson-Ehle P: Adrenocorticotrophic hormone retarded metabolism of low-density lipoprotein in rats. Scand J Clin Lab Invest 2004, 64(3):217-222.
    34. Ramirez-Tortosa MC, Ramirez-Tortosa CL, Mesa MD, Granados S, Gil A, Quiles JL: Curcumin ameliorates rabbits's steatohepatitis via respiratory chain, oxidative stress, and TNF-alpha. Free Radic Biol Med 2009, 47(7):924-931.
    35. Rauen T, Michaelis A, Floege J, Mertens PR: Case series of idiopathic membranous nephropathy with long-term beneficial effects of ACTH peptide 1-24. Clin Nephrol 2009, 71(6):637-642.
    36. Berg AL, Arnadottir M: ACTH-induced improvement in the nephrotic syndrome in patients with a variety of diagnoses. Nephrol Dial Transplant 2004, 19(5):1305-1307.
    37. Thomas ME, Harris KP, Ramaswamy C, Hattersley JM, Wheeler DC, Varghese Z, Williams JD, Walls J, Moorhead JF: Simvastatin therapy for hypercholesterolemic patients with nephrotic syndrome or significant proteinuria. Kidney Int 1993, 44(5):1124-1129.
    1. Bilandzic N, Simic B, Zuric M, Lojkic M: Effect of ACTH administration on biochemical and immune measures in boars. J Vet Med A Physiol Pathol Clin Med 2005, 52(9):440-446.
    2. Lin P, Fischer T, Lavoie C, Huang H, Farquhar MG: Calnuc plays a role in dynamic distribution of Galphai but not Gbeta subunits and modulates ACTH secretion in AtT-20 neuroendocrine secretory cells. Mol Neurodegener 2009, 4:15.
    3. Takahashi A, Amano M, Amiya N, Yamanome T, Yamamori K, Kawauchi H: Expression of three proopiomelanocortin subtype genes and mass spectrometric identification of POMC-derived peptides in pars distalis and pars intermedia of barfin flounder pituitary. Gen Comp Endocrinol 2006, 145(3):280-286.
    4. Honda J, Manabe Y, Matsumura R, Takeuchi S, Takahashi S: IGF-I regulates pro-opiomelanocortin and GH gene expression in the mouse pituitary gland. J Endocrinol 2003, 178(1):71-82.
    5. Jorgensen H, Knigge U, Kjaer A, Moller M, Warberg J: Serotonergic stimulation of corticotropin-releasing hormone and pro-opiomelanocortin gene expression. J Neuroendocrinol 2002, 14(10):788-795.
    6. Tanaka S: Comparative aspects of intracellular proteolytic processing of peptide hormone precursors: studies of proopiomelanocortin processing. Zoolog Sci 2003, 20(10):1183-1198.
    7. Bando M, Matsuoka A, Tsuji A, Matsuda Y: The proprotein convertase PACE4 is upregulated by PDGF-BB in megakaryocytes: gene expression of PACE4 and furin is regulated differently in Dami cells. J Biochem 2002, 132(1):127-134.
    8. Sayah M, Fortenberry Y, Cameron A, Lindberg I: Tissue distribution andprocessing of proSAAS by proprotein convertases. J Neurochem 2001, 76(6):1833-1841.
    9. Hassan A, Mason D: Mechanisms of desensitization of the adrenocorticotropin response to arginine vasopressin in ovine anterior pituitary cells. J Endocrinol 2005, 184(1):29-40.
    10. Ganong WF: Blood, pituitary, and brain renin-angiotensin systems and regulation of secretion of anterior pituitary gland. Front Neuroendocrinol 1993, 14(3):233-249.
    11. Samson WK, Keown C, Samson CK, Samson HW, Lane B, Baker JR, Taylor MM: Prolactin-releasing peptide and its homolog RFRP-1 act in hypothalamus but not in anterior pituitary gland to stimulate stress hormone secretion. Endocrine 2003, 20(1-2):59-66.
    12. Fink G, Dow RC, Casley D, Johnston CI, Lim AT, Copolov DL, Bennie J, Carroll S, Dick H: Atrial natriuretic peptide is a physiological inhibitor of ACTH release: evidence from immunoneutralization in vivo. J Endocrinol 1991, 131(3):R9-12.
    13. al-Damluji S, Francis D: Activation of central alpha 1-adrenoceptors in humans stimulates secretion of prolactin and TSH, as well as ACTH. Am J Physiol 1993, 264(2 Pt 1):E208-214.
    14. Horiba N, Nicholson WE, Ch'ng JL, Orth DN: Chromogranin A does not mediate glucocorticoid inhibition of adrenocorticotropin secretion. Endocrinology 1993, 132(4):1585-1592.
    15. Braas KM, Brandenburg CA, May V: Pituitary adenylate cyclase-activating polypeptide regulation of AtT-20/D16v corticotrope cell proopiomelanocortin expression and secretion. Endocrinology 1994, 134(1):186-195.
    16. Xiao D, Chu MM, Lee EK, Lin HR, Wong AO: Regulation of growth hormone release in common carp pituitary cells by pituitary adenylate cyclase-activating polypeptide: signal transduction involves cAMP- and calcium-dependent mechanisms. Neuroendocrinology 2002, 76(5):325-338.
    17. Vlotides G, Zitzmann K, Hengge S, Engelhardt D, Stalla GK, Auernhammer CJ:Expression of novel neurotrophin-1/B-cell stimulating factor-3 (NNT-1/BSF-3) in murine pituitary folliculostellate TtT/GF cells: pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide-induced stimulation of NNT-1/BSF-3 is mediated by protein kinase A, protein kinase C, and extracellular-signal-regulated kinase1/2 pathways. Endocrinology 2004, 145(2):716-727.
    18. Tierney T, Christian HC, Morris JF, Solito E, Buckingham JC: Evidence from studies on co-cultures of TtT/GF and AtT20 cells that Annexin 1 acts as a paracrine or juxtacrine mediator of the early inhibitory effects of glucocorticoids on ACTH release. J Neuroendocrinol 2003, 15(12):1134-1143.
    19. Glavas MM, Ellis L, Yu WK, Weinberg J: Effects of prenatal ethanol exposure on basal limbic-hypothalamic-pituitary-adrenal regulation: role of corticosterone. Alcohol Clin Exp Res 2007, 31(9):1598-1610.
    20. Chan LF, Webb TR, Chung TT, Meimaridou E, Cooray SN, Guasti L, Chapple JP, Egertova M, Elphick MR, Cheetham ME et al: MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proc Natl Acad Sci U S A 2009, 106(15):6146-6151.
    21. Miccadei S, Pascucci B, Picardo M, Natali PG, Civitareale D: Identification of the minimal melanocyte-specific promoter in the melanocortin receptor 1 gene. J Exp Clin Cancer Res 2008, 27:71.
    22. Lee YS, Park JJ, Chung KY: Change of melanocortin receptor expression in rat kidney ischemia-reperfusion injury. Transplant Proc 2008, 40(7):2142-2144.
    23. Mountjoy KG, Robbins LS, Mortrud MT, Cone RD: The cloning of a family of genes that encode the melanocortin receptors. Science 1992, 257 (5074): 1248-1251.
    24. Konda Y, Gantz I, DelValle J, Shimoto Y, Miwa H, Yamada T: Interaction of dual intracellular signaling pathways activated by the melanocortin-3 receptor. J Biol Chem 1994, 269(18):13162-13166.
    25. Chhajlani V, Wikberg JE: Molecular cloning and expression of the humanmelanocyte stimulating hormone receptor cDNA. FEBS Lett 1992, 309(3): 417-420.
    26. Chhajlani V: Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem Mol Biol Int 1996, 38(1):73-80.
    27. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD: Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 1994, 8(10):1298-1308.
    28. Labbe O, Desarnaud F, Eggerickx D, Vassart G, Parmentier M: Molecular cloning of a mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry 1994, 33(15):4543-4549.
    29. Ottaviani E, Franchini A, Hanukoglu I: In situ localization of ACTH receptor-like mRNA in molluscan and human immunocytes. Cell Mol Life Sci 1998, 54(2):139-142.
    30. Versteeg DH, Van Bergen P, Adan RA, De Wildt DJ: Melanocortins and cardiovascular regulation. Eur J Pharmacol 1998, 360(1):1-14.
    31. Duvaux-Miret O, Stefano GB, Smith EM, Dissous C, Capron A: Immunosuppression in the definitive and intermediate hosts of the human parasite Schistosoma mansoni by release of immunoactive neuropeptides. Proc Natl Acad Sci U S A 1992, 89(2):778-781.
    32. Ottaviani E, Franchini A, Cossarizza A, Frenceschi C: ACTH-like molecules in lymphocytes. A study in different vertebrate classes. Neuropeptides 1992, 23(4):215-219.
    33. Ottaviani E, Trevisan P, Pederzoli A: Immunocytochemical evidence for ACTH- and beta-endorphin-like molecules in phagocytic blood cells of urodelan amphibians. Peptides 1992, 13(2):227-231.
    34. Franchini A, Ottaviani E, Franceschi C: Presence of immunoreactive pro-opiomelanocortin-derived peptides and cytokines in the thymus of an anuran amphibian (Rana esculenta). Tissue Cell 1995, 27(3):263-267.
    35. Ottaviani E, Franchini A, Franceschi C: Evidence for the presence ofimmunoreactive POMC-derived peptides and cytokines in the thymus of the goldfish (Carassius c. auratus). Histochem J 1995, 27(8):597-601.
    36. Ottaviani E, Franchini A, Franceschi C: Evolution of neuroendocrine thymus: studies on POMC-derived peptides, cytokines and apoptosis in lower and higher vertebrates. J Neuroimmunol 1997, 72(1):67-74.
    37. Ottaviani E, Capriglione T, Franceschi C: Invertebrate and vertebrate immune cells express pro-opiomelanocortin (POMC) mRNA. Brain Behav Immun 1995, 9(1):1-8.
    38. Franchini A, Miyan JA, Ottaviani E: Induction of ACTH- and TNF-alpha-like molecules in the hemocytes of Calliphora vomitoria (Insecta, Diptera). Tissue Cell 1996, 28(5):587-592.
    39. Starowicz K, Przewlocka B: The role of melanocortins and their receptors in inflammatory processes, nerve regeneration and nociception. Life Sci 2003, 73(7):823-847.
    40. Lu XY: Role of central melanocortin signaling in eating disorders. Psychopharmacol Bull 2001, 35(4):45-65.
    41. Metz JR, Peters JJ, Flik G: Molecular biology and physiology of the melanocortin system in fish: a review. Gen Comp Endocrinol 2006, 148(2):150-162.
    42. Wilson KR, Todorovic A, Proneth B, Haskell-Luevano C: Overview of endogenous and synthetic melanocortin peptides. Cell Mol Biol (Noisy-le-grand) 2006, 52(2):3-20.
    43. Mioni C, Giuliani D, Cainazzo MM, Leone S, Bazzani C, Grieco P, Novellino E, Tomasi A, Bertolini A, Guarini S: Further evidence that melanocortins prevent myocardial reperfusion injury by activating melanocortin MC3 receptors. Eur J Pharmacol 2003, 477(3):227-234.
    44. Schioth HB, Watanobe H: Melanocortins and reproduction. Brain Res Brain Res Rev 2002, 38(3):340-350.
    45. Bost KL, Clarke BL, Xu JC, Kiyono H, McGhee JR, Pascual D: Modulation ofIgM secretion and H chain mRNA expression in CH12.LX.C4.5F5 B cells by adrenocorticotropic hormone. J Immunol 1990, 145(12):4326-4331.
    46. Genedani S, Filaferro M, Carone C, Ostan R, Bucci L, Cevenini E, Franceschi C, Monti D: Influence of f-MLP, ACTH(1-24) and CRH on in vitro chemotaxis of monocytes from centenarians. Neuroimmunomodulation 2008, 15(4-6):285-289.
    47. Bayne CJ, Levy S: Modulation of the oxidative burst in trout myeloid cells by adrenocorticotropic hormone and catecholamines: mechanisms of action. J Leukoc Biol 1991, 50(6):554-560.
    48. Paltrinieri S, Panelli S, Comazzi S, Sartorelli P: Effect of 1-24ACTH administration on sheep blood granulocyte functions. Vet Res 2002, 33(1):71-82.
    49. Sassi D, Kletsas D, Ottaviani E: Interactions of signaling pathways in ACTH (1-24)-induced cell shape changes in invertebrate immunocytes. Peptides 1998, 19(6):1105-1110.
    50. Akmaev IG, Volkova OV, Grinevich VV, Resnenko AB: [Evolutionary aspects of a stress reaction]. Vestn Ross Akad Med Nauk 2002(6):25-27.
    51. Genedani S, Bernardi M, Ottaviani E, Franceschi C, Leung MK, Stefano GB: Differential modulation of invertebrate hemocyte motility by CRF, ACTH, and its fragments. Peptides 1994, 15(2):203-206.
    52. Ottaviani E, Franceschi C: The neuroimmunology of stress from invertebrates to man. Prog Neurobiol 1996, 48(4-5):421-440.
    53. Franchini A, Ottaviani E: Modification induced by ACTH in hemocyte cytoskeleton of the freshwater snail Viviparus ater (Gastropoda, Prosobranchia). Eur J Histochem 1994, 38(2):145-150.
    54. Ottaviani E, Cossarizza A, Ortolani C, Monti D, Franceschi C: ACTH-like molecules in gastropod molluscs: a possible role in ancestral immune response and stress. Proc Biol Sci 1991, 245(1314):215-218.
    55. Brzoska T, Luger TA, Maaser C, Abels C, Bohm M: Alpha -melanocyte -stimulating hormone and related tripeptides: biochemistry, antiinflammatoryand protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev 2008, 29(5):581-602.
    56. Pepels PP, Balm PH: Ontogeny of corticotropin-releasing factor and of hypothalamic-pituitary-interrenal axis responsiveness to stress in tilapia (Oreochromis mossambicus; Teleostei). Gen Comp Endocrinol 2004, 139(3):251-265.
    57. Dautzenberg FM, Py-Lang G, Higelin J, Fischer C, Wright MB, Huber G: Different binding modes of amphibian and human corticotropin-releasing factor type 1 and type 2 receptors: evidence for evolutionary differences. J Pharmacol Exp Ther 2001, 296(1):113-120.
    58. Sonetti D, Peruzzi E, Stefano GB: Endogenous morphine and ACTH association in neural tissues. Med Sci Monit 2005, 11(5):MS22-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700