用户名: 密码: 验证码:
语义加工中因果关系及其不对称性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
语义记忆是我们对世界知识的长时表征,对于个体的学习和生活具有重要意义。如果没有对世界知识的长时表征,我们就无法正确理解世界,也不能利用这些知识实现我们的想法和目标。语义记忆不仅包括用于表征世界的类别和特征的知识,还包括这些类别和特征之间复杂的语义关系,例如因果关系、使用关系、工作关系、居住关系、生产关系、位置关系和层级关系等。基于这些复杂的语义关系,在日常生活中,人们不断地对事物进行着学习和记忆、分类和推理、问题解决和决策等高级认知活动。因此,弄清不同语义关系的加工机制,对于进一步探究各种高级认知活动的加工机制具有十分重要的意义。
     语义记忆中多重语义关系的存在,提出一个以往研究可能有所忽视的问题:假定不同类型的语义关系均与不同的背景相关,那么,某种特定的关系在包含多重关系的语义网络中是如何表征和获得的?例如,主题关系往往基于物体间的互补关系,而分类关系主要基于成员之间共享的属性和组成成分,而其他一些概念(如因果关系、层级关系和单向连接关系)则可能基于概念间的预测功能。由此可见,探讨这些不同的关系在复杂语义网络中的表征和提取具有重要意义。此外,以往对语义关系的研究主要集中在分类关系和主题关系方面,对其他关系探讨较少。因果关系的知识在计划、行为、推理和问题解决过程中都具有十分重要的作用。实际上,对因果关系的正确理解是是个体生存的基本能力。早在亚里士多德以前,哲学家和科学家就已经试图探讨我们是如何确定一个事件导致另一个事件的。然而,很少有研究直接探讨语义记忆中因果关系是如何存储和表征的?本研究主要探讨语义记忆中因果关系的加工是涉及不同的认知和神经基础,还是与其他具有预测功能的概念关系的认知神经机制相同?为此,本研究利用传统的行为研究与时间分辨率很高的事件相关电位(ERP)技术手段,对因果关系、非因果相关关系、层级关系和单向连接关系进行比较,试图探讨不同语义关系加工及其不对称表征的认知与神经机制。本研究具体分为四个部分共计7个实验。
     第一部分包括实验1和实验2,通过两个ERP实验来探讨因果关系加工的特征及其时间进程,并与非因果相关关系和层级关系进行比较。实验1采用线索提示任务,首先给被试呈现一个任务线索(因果或相关),要求被试判断随后相继呈现的词对刺激(因果词对、非因果相关词对或无关词对)是否与最初的任务线索-致?实验2则不采用线索提示,要求被试判断相继呈现的词对刺激(因果词对、非因果相关词对、层级相关词对或无关词对)是否存在任意形式的相关?实验1的结果:(1)行为结果表明,与因果相关和非因果相关词对相比,无关词对的反应时更短,正确率更高:与相关线索相比,因果线索下被试的反应时更短,正确率更高。此外,线索类型和关系类型交互作用显著:与相关线索相比,因果线索下的因果词对加工反应时更短,正确率更高;而不同线索下相关词对的加工没有显著差异。(2)ERP结果表明,无关词对诱发的N400波形显著大于因果条件和相关条件。此外,在因果线索下,非因果相关词对诱发的N400波幅显著大于因果词对条件:而在相关线索条件下,这种差异不显著。再者,因果线索条件诱发的P600波幅显著大于相关线索条件;且因果线索-因果词对条件诱发的P600波幅显著大于相关线索-相关条件诱发的波形。实验2的结果:(1)层级相关和无关词对条件的正确率显著高于因果相关和非因果相关词对条件,但是反应时差异不显著。(2)ERP结果表明,无关条件诱发的N400波形显著大于因果相关、非因果相关和层级相关条件;此外,与非因果相关和层级相关条件相比,因果条件诱发更小N400成分和更大的P600成分。
     第二部分包括实验3和实验4,通过两个ERP实验和两个行为实验来探讨因果不对称的认知和神经机制,并将因果不对称与具有预测功能的层级不对称进行比较。实验3采用不同的呈现顺序对因果关系和层级关系进行了探讨,要求被试判断相继呈现的词对是否具有某种特定关系(层级或因果,实验3a)或笼统的相关关系(任何方式,实验3b)。实验3a结果发现,当要求被试判断相继呈现的词对是否具有因果关系时,与结果-原因呈现顺序相比,原因-结果呈现顺序的反应时更短,且诱发更大的P600波形;当要求被试进行层级相关判断时,不同呈现顺序下的层级关系加工没有表现出反应时优势,但上位-下位呈现顺序诱发的P2成分更大。实验3b结果发现,当要求被试判断这些词对是否具有任意形式的相关时,上述反应时优势和ERP效应消失。实验4进一步操纵刺激呈现的空间位置对因果不对称和层级不对称进行了比较。结果发现,当上下同时呈现词对刺激时(实验4a),因果关系的表征和层级关系的表征均表现出明显的反应时优势,即代表上位或原因的词在上时被试的反应时显著短于代表下位或结果的词在上时的反应时。然而,当水平同时呈现词对刺激时(实验4b),只有因果关系的表征表现出明显的反应时优势,层级不对称效应消失,即代表原因的词在左时被试的反应时显著短于代表原因的词在右时的反应时。
     第三部分包括实验5和实验6,结合行为和ERP研究进一步比较了因果关系和单向连接关系的不对称表征。实验5采用ERP技术对因果关系和单向连接关系进行了比较,要求被试判断相继呈现的词对是否具有某种特定关系(因果或相关)。结果发现,当要求被试判断相继呈现的词对是否具有因果关系时,与实验3a类似,不同呈现顺序下的因果关系加工表现出明显的反应时优势,且诱发的P600波形也存在显著差异;当要求被试进行相关判断时,不同呈现顺序的单向连接关系加工也表现出反应时优势,且诱发的N400成分存在显著差异。实验6同时对第一个词和第二个词呈现的时间(150ms,1000ms)进行操纵,探讨了时间压力对因果关系、层级关系和单向连接关系判断及其不对称性的影响。结果发现,在150ms-150ms呈现方式下,因果词对、层级词对和单向连接词对均没有表现出不对称性;在150ms-1000ms和1000ms-150ms两种呈现方式下,只有因果词对的加工表现出不对称性,层级关系和单向关系没有表现出不对称性;在1000ms-1000ms呈现方式下,因果关系和单向连接关系表征表现出不对称性,但层级关系表征仍然没有表现出不对称性。
     第四部分包括实验7,采用图片材料进一步比较了因果判断和相关判断任务下因果关系加工的表征及其不对称性。在因果判断任务中,与结果-原因呈现顺序相比,原因-结果呈现顺序下的反应时更短,诱发的P600波幅更大。此外,刺激呈现顺序和时间距离的交互作用显著:当时间距离较大时,不同呈现顺序下的反应时差异显著;而当时间距离较小时,不同呈现顺序下的反应时差异不显著。同时,时间距离较大条件诱发的P600波幅显著小于时间距离较小的条件。然而,在相关判断任务中,不同呈现顺序下的反应时优势和P600效应均消失。此外,不同时间接近性的图片刺激诱发的ERP效应主要体现在350ms-500ms内的波幅差异上,而非P600成分。
     总体而言,因果关系的加工与其他对称关系(非因果相关关系)和具有预测功能的不对称关系(层级关系和单向连接关系)的加工具有不同的认知和神经机制。研究结果发现,因果关系的加工可能卷入了更多的注意资源和执行过程。综合起来看,本研究可以得出以下结论:
     (1)语义记忆中因果关系的加工与非因果相关关系的加工具有不同的认知和神经机制。具体而言,与非因果相关条件相比,因果条件诱发的N400波形更小,P600波形更大。此外,当刺激呈现顺序不同时,因果相关词对的加工表现出不对称性,而非因果相关词对的加工没有这种不对称效应。这些结果表明,不论是否要求被试进行明确的因果判断,因果关系的加工可能都卷入了更多预期和执行控制过程,如对原因和结果的地位进行区分。
     (2)因果关系的不对称表征与具有预测功能的层级关系和单向连接关系的不对称表征不同。行为结果表明,因果关系的不对称表征主要受时间顺序和时间接近性影响,层级关系的不对称表征主要受空间位置的心理表征影响,单向连接关系的不对称表征则是由于不同呈现顺序下的关联强度不同导致的。ERP结果表明,层级关系的不对称表征主要表现在P2波幅差异上,单向连接关系的不对称表征主要反映在N400波幅上,因果关系的不对称表征主要表现在P600波幅上。
     (3)因果关系的不对称表征不仅存在于词汇材料的加工过程中,在图片材料的因果判断中也有类似发现。这些结果表明,因果关系的不对称性是存在于人类认知活动中的加工偏好之一。
     (4)因果关系的不对称表征支持因果模型的解释,联想模型在解释这种效应时存在较大不足。在此基础上,我们从因果预测、结果推导、由果溯因、预期归纳和因果归因对心理健康的影响等四个方面提出因果学习的一般框架和核心模型,以便更准确地引导因果学习和推理的相关研究。
Semantic memory is described as our long-term repertoire of world knowledge (Tulving,1972), which is very important for our learning and everyday thinking activities. Without this knowledge, we would be unable to understand the world around us and hence incapable of communicating or acting in the service of goals (Hodges&Patterson,1997). Semantic memory contains not only knowledge about categories and features that we use to represent the world, but also knowledge about relations between categories and features, including information about categories and features, as well as the complex semantic relations between them, such as "is used to,""works in,""lives in,""is made of,""is kept in,""is the outside of," and hierarchical relations (Murphy&Medin,1985; Spellman, Holyoak,&Morrison,2001). Based on this division of semantic relationships, people are constantly engaged in everyday learning and memory, classification and reasoning, problem solving, decision-making and other higher cognitive activities. Therefore, it is very important to explore how individuals process different types of semantic relationships in order to further understand the neural basis and cognitive mechanisms of a variety of higher cognitive activities
     The existence of multiple relations within semantic memory raises a particularly interesting question that might be neglected by theories of semantic knowledge: Assuming that different types of semantic relations are relevant in different contexts, how are specific relations accessed within a network that contains various types of semantic relations? Furthermore, although previous studies have explored the knowledge about relations in semantic memory, most of them focused on taxonomic (e.g., bee and butterfly, both of them are insect) and thematic relations (e.g., bee and honey, bee produce honey). Yet although causal relation is initial regarded as examples of thematic relations (Lin&Murphy,2001), there are three features of causal relations that set it apart from other forms of semantic relations:proximity, exclusivity, and priority (Hume,1739/1978). That is, the cause and effect occur at proximal moments in time (i.e., proximity), cause-effect order has an exclusive association (i.e., exclusivity), and causes precede the effects (i.e., priority), but the effects do not typically precede causes (Fenker, Waldmann,&Holyoak,2005; Denkinger&Koutstaal,2013). The main goal of this study was to assess whether the neural basis and cognitive mechanism of causal relations was specific to the asymmetrical representations of causal relations or more generally to all asymmetric relations (e.g. unidirectional associative strength, hierarchical relation). Therefore, in order to explore the cognitive and neural mechanisms of different types of semantic relations, this study compared the asymmetrical representations of causal relations with other symmetrical and asymmetrical relations, such as noncausal associative relation, hierarchical relation, and unidirectional associative strength, by using the traditional behavior method and event-related potential (ERP) techniques with high time resolution.
     The whole studies are divided into four parts in details. The first part consists of Experiment1and2using ERP technique, aiming to examine the time course of how stored causal relations are represented and accessed in semantic memory via ERPs. In experiment1, participants were required to remember a task cue (causal or associative) presented at the beginning of each trial, and assess whether the relationship between subsequently presented words matched the initial task cue. We found two main differences related to the processing of causal and associative relations. The first difference was a N400effect that was more negative for unrelated words than for causal and associative related words. The second difference was a frontal-central distributed P600that was larger for causal related words than for both unrelated and associative related words. The P600effect was also elicited by the causal task cue than by the associative task cue.
     In experiment2, we further examined whether these differences were specific to causal relations or more generally to other asymmetric relations (e.g., hierarchical relations), and explored how stored causal relations are represented and accessed in semantic memory via ERPs. Participants were required to evaluate whether pairs of words were related in any way. The N400effect elicited by unrelated word pairs was larger than causal related word pairs, which indicated that causal relations may attract more attention resources. The P600elicited by causally related pairs was larger than noncausally associated pairs and hierarchically related pairs known to be asymmetric. These results suggested the causal and associative relations engaged distinct neural processes, and provided evidence that the processing of causal relation involved more attention resources and recruited additional higher-order executive resources.
     The second part consists of Experiment3and Experiment4, aiming to examine whether these differences are specific to causal relation or more generally to hierarchical relation. In experiment3, we explored the nature of causal asymmetry by manipulating the order of word presentation and type of asymmetrical relationship. In experimental3a, the participants were required to decide whether the presented word pairs were causal related or hierarchical related. The behavior results revealed that the asymmetry was found for causal related words, but not for hierarchical related words. However, the amplitude of P2elicited by superordinate-subordinate order was larger than reverse order, which might reflect the detection of the order of the stimuli. Similar P2effect was found for causal related words, and the P600effect elicited by cause-effect order was larger than vice versa, which suggested that participants appear to distinguish the specific roles of cause and effect. Thus, although participants have noticed the orders of hierarchical related words, they did not distinguish the specific roles of each word, which was different from the representation of causal asymmetry. When participants were required to evaluate whether pairs of words were related in any way in experimental3b, however, no significant different P2and P600were found between two orders of word presentation in both types of asymmetrical relationship. These results were consistent with previous studies (e.g., Fenker et al.,2005), which suggested the causal-model view seemed to be more suitable to the asymmetry representation of causal relation.
     In experiment4, we manipulated the spatial arrangement of word presentation and the types of asymmetrical relationship. In two experiments, the participants were required to decide whether members of a simultaneously presented word pair were causal related or hierarchical related. In experiment4a, the words were presented one above the other. The results revealed that verifying the existence of a causal or hierarchical relation is faster when the words representing cause or superordinate level are presented in the top rather than in the reverse order. However, experiment4b showed that only causal asymmetry occurred when the words were presented horizontally. People appear to represent the causal asymmetry based on temporal order when queried about a causal relation, whereas the representation of hierarchical asymmetry is based on spatial arrangement when queried about a hierarchical relation.
     The third part consists of Experiment5and Experiment6, aiming to examine whether the asymmetrical representations of causal relations are specific to causal relations or more generally to unidirectional associative strength. In experimental5, the participants were required to decide whether the presented word pairs were causal related or associative related. The behavior results revealed that the asymmetry was found both for causal related words and unidirectional associative related words. However, the P600effect elicited by cause-effect order was larger than vice versa, whereas the amplitude of N400elicited by S1-S2order was larger than reverse order, which might reflect the asymmetrical representations of causal relation was different from unidirectional associative strength.
     In experiment6, we further compared the causal relation with hierarchical relation and unidirectional associative strength by manipulating the SOA (150ms vs.1000ms) and the presentation time of S2(150ms vs.1000ms). Participants were required to decide whether the presented word pairs were causal related, hierarchical related, or associative related in separate blocks. Results were as follows:(1) No significant asymmetrical representations were found for causal relation, hierarchical relation and unidirectional associative strength in150-150ms presentation condition.(2) The asymmetrical representation was only found for causal relation in150ms-1000ms and1000-150ms presentation conditions, but not for other two conditions.(3) This asymmetrical representations were found both for causal relation and unidirectional associative strength in1000ms-1000mspresentation condition, but not for hierarchical relation.
     The forth part consists of Experiment7, aiming to investigate the processing of temporal and causal order information by using black-and-white line drawings depicted a diverse array of recognizable events. Participants were required to evaluate whether pairs of line drawings were causal related (Task1) or associated related (Task2). Both the behavior and ERP data have revealed a pattern consistent with that observed with the experiments with our above studies. In the causal judgment task, the RTs for cause-effect order were shorter than that for effect-cause order, and larger positive component between500ms and700ms were found for cause-effect order than effect-cause order. Furthermore, the late positivity elicited by drawing pair with small time distance was lager than drawings with large time distance. What is more, the interaction between presentation order and time proximity was significant. Specifically, the RT advantages for cause-effect order were found when the time distance is large, whereas no such RT advantages were found when the time distance is small. However, no such RT advantages and larger late positivity were found for cause-effect order in the associative related judgment task. Furthermore, the ERP data showed that difference between drawing pairs with different time distances was found between300-500ms, rather than500-700ms like causal judgment.
     In summary, our data yielded new insights into asymmetrical representations of causal relations. These results suggested that the processing of causal relations stored in semantic memory might recruit additional higher-order executive resources above and beyond those afforded by other asymmetric relations. Taken together, the following conclusions could be drawn in this research:
     (1) The processing of causal relations was different from associative relations, which elicited smaller N400effect and larger P600effect. These studies indicated the processing of causal relations recruit additional processes, such as prediction and executive resources.
     (2) The asymmetrical representations of causal relations are different from other asymmetric relations. The causal asymmetry was mainly affected by time order and time proximity (P600), and hierarchical asymmetry was impacted by the mental representation of spatial location (P2), whereas the unidirectional associative asymmetry was caused by the different associative strengths of two directions (N400).
     (3) The asymmetrical representations of causal relations exist not only in word processing, but also in the processing of picture stimuli. These results suggest that the causal asymmetry is a cognitive bias which widely exists in human cognitive activity.
     (4) Our results suggested that participants have noticed and distinguished the specific roles of causes and effects, which was more suitable to the causal-model view, rather than associative view. Based on previous studies, we proposed a general architecture of causal learning and reasoning, in an attempt to more accurately predict and guide our related research in the future. In the framework, the causal learning was divided into four processes:causal prediction, causal induction, abductive reasoning and the effect of causal induction and causal attribution on mental health.
引文
崔亚飞,李红,李富洪.(2010).归纳推理属性效应中背景关系提取原则的探究.心理学报,42,1148-1155.
    陈庆飞.(2011).相似性判断和差异性判断的不对称性——来自ERP的证据.西南大学硕士论文.
    陈庆飞,雷怡,席乐,李红.(2013).相似性判断和差异性判断不对称性的机制探索.心理科学,36,1128-1132.
    杜卫,闫春平,孙晓敏.(2009).社会认知中归纳推论-演绎推论的不对称性现象.心理科学进展,17,1075-1080.
    樊艾梅,李文馥.(1995).3-6岁儿童层级类概念发展的实验研究.心理学报,27,28-36.
    胡清芬,陈英,林崇德.(2005).因果判断中经验与共变信息的结合及各自作用.心理学报,37,189-198.
    李森森,龙长权,陈庆飞,&李红.(2010).群际接触理论——一种改善群际关系的理论.心理科学进展,18,831-839.
    雷怡.(2010).类概念层级关系的认知与神经机制研究.西南大学博士学位论文.
    马晓清,冯延勇,李红,龙长权.(2009).主题关系在4~5岁儿童不同属性归纳推理发展中的作用.心理学报,41,249-258.
    肖凤,李红,龙长权,陈庆飞,王荣燕,李富洪.(2012).归纳推理的认知神经机制.心理群学进展,20,1268-1276.
    Anderson, J. E.,& Holcomb, P. J. (1995). Auditory and visual semantic priming using different stimulus onset asynchronies:An event-related potential study. Psychophysiology,32,177-190.
    Ahn, W. K.,& Kalish, C. W. (2000). The role of mechanism beliefs in causal reasoning. Explanation and cognition,199-225.
    Badler, J., Lefevre, P.,& Missal, M. (2010). Causality attribution biases oculomotor responses. The Journal of Neuroscience,30(31),10517-10525.
    Barsalou, L.W. (1999). Perceptual symbol systems. Behavioral & Brain Sciences,22, 577-660.
    Barr, N. (2010). Exploring the asymmetrical representation of causal relations in semantic memory. A master thesis presented to the University of Waterloo.
    Blaisdell, A. P., Sawa, K, Leising, K. J., Waldmann, M. R. (2006). Causal reasoning in rats. Science,311,1020-22
    Blakemore, S., Fonlupt, P., Pachot-Clouard, M., Darmon, C., Boyer, P., Meltzoff, A., Segebarth, C.,& Decety, J. (2001). How the brain perceives causality:an event-related fMRI study. Neuroreport,12,3741-3746.
    Booth, S. L.,& Buehner, M. J. (2007). Asymmetries in cue competition in forward and backward blocking designs:Further evidence for causal model theory. The Quarterly Journal of Experimental Psychology,60(3),387-399.
    Bornkessel-Schlesewsky, I.,& Schlesewsky, M. (2009). The Role of Prominence Information in the Real-Time Comprehension of Transitive Constructions:A Cross-Linguistic Approach. Language and Linguistics Compass,3(1),19-58.
    Briner, S. W., Virtue, S.,& Kurby, C. A. (2012). Processing causality in narrative events: temporal order matters. Discourse Processes,49(1),61-77.
    Buehner, M. J.,& Humphreys, G. R. (2009). Causal binding of actions to their effects. Psychological Science,20(10),1221-1228.
    Buehner, M.J.& Cheng, P.W. (2005). Causal learning. In Holyoak, K.J.& Morrison, R.G. (Eds), Cambridge Handbook of Thinking and Reasoning. Cambridge University Press, Cambridge, pp.143-168.
    Bigman, Z.,& Pratt, H. (2004). Time course and nature of stimulus evaluation in category induction as revealed by visual event related potentials. Biological Psychology,66,99-127.
    Cain, K., Oakhill, J. V.,& Elbro, C. (2003). The ability to learn new word meanings from context by school-age children with and without language comprehension difficulties. Journal of Child Language,30,681-694.
    Call, J. (2004). Inferences about the location of food in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus). Journal of Comparative Psychology,118(2),232-241.
    Chen, A., Xu, P., Wang, Q., Luo, Y., Yuan, J., Yao, D.,& Li, H. (2008). The timing of cognitive control in partially incongruent categorization. Human Brain Mapping, 29,1028-1039.
    Chen, Q., Lei, Y., Li, P., Xi, L., Li, F.,& Li, H. (2013). How Do Taxonomic versus Thematic Relations Impact Similarity and Difference Judgments? An ERP Study. International Journal of Psychophysiology,90,135-142.
    Cheng, P. W.,& Novick, L. R. (1990). A probabilistic contrast model of causal induction. Journal of personality and social psychology,58(4),545.
    Cheng, P. W.,& Novick, L. R. (1992). Covariation in natural causal induction. Psychological Review,99(2),365.
    Cheng, P. W. (1997). From covariation to causation:A causal power theory. Psychological review,104(2),367-405.
    Chaffin, R. (1992). The concept of semantic relation. In A. Lehrer & E. Kittay (Eds.), Frames, fields, and contrasts:New essays in semantic and lexical organization (pp. 253-288). Hillsdale, NJ:Erlbaum.
    Collins, A. M.,& Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior,8,240-247.
    Corlett, P. R., Aitken, M. R., Dickinson, A., Shanks, D. R., Honey, G. D., Honey, R. A.,...& Fletcher, P. C. (2004). Prediction error during retrospective revaluation of causal associations in humans:fMRI evidence in favor of an associative model of learning. Neuron,44(5),877-888.
    Corlett, P. R., Murray, G. K., Honey, G. D., Aitken, M. R. F., Shanks, D. R., Robbins, T. W.,...& Fletcher, P. C. (2007). Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain,130(9),2387-2400.
    Curtis, C. E.,& D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in cognitive sciences,7(9),415-423.
    Dennis, M. J.,& Ahn, W.-K. (2001). Primacy in causal strength judgments:The effect of initial evidence for generative versus inhibitory relationships. Memory & Cognition,29,152-164.
    Denkinger, B.,& Koutstaal, W. (2013). A set of 265 pictures standardized for studies of the cognitive processing of temporal and causal order information. Behavior Research Methods, DOI 10.3758/s13428-013-0338-x.
    diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10,105-225.
    Dickinson, A., Shanks, D.,& Evenden, J. (1984). Judgement of act-outcome contingency:The role of selective attribution. The Quarterly Journal of Experimental Psychology,36(1),29-50.
    Doughty, O. J., Lawrence, V. A., Al-Mousawi, A., Ashaye, K.,& Done, D. J. (2009). Overinclusive thought and loosening of associations are not unique to schizophrenia and are produced in Alzheimer's dementia. Cognitive Neuropsychiatry,14,149-164.
    Evans, J. (2003). In two minds:dual-process accounts of reasoning. Trends in Cognitive Sciences,7(10):454-459.
    Estes, Z., Golonka, S.,& Jones, L. L. (2011). Thematic thinking:The apprehension and consequences of thematic relations. In B. Ross (Ed.), The Psychology of Learning & Motivation, Vol.54 (pp.249-278). Burlington:Academic Press.
    Friedman, D. (1990). ERPs during continuous recognition memory for words. Biological Psychology,30,61-87.
    Fenker, D. B., Waldmann, M. R.,& Holyoak, K. J. (2005). Accessing causal relations in semantic memory. Memory & Cognition,33,1036-1046.
    Fenker, D. B., Schoenfeld, M. A., Waldmann, M. R., Schuetze, H., Heinze, H-J.,& Duezel, E. (2010). "Virus and epidemic":causal knowledge activates prediction error circuitry. Journal of Cognitive Neuroscience,22,2151-2163.
    Fletcher, P. C., Anderson, J. M., Shanks, D. R., Honey, R., Carpenter, T. A., Donovan, T.,...& Bullmore, E. T. (2001). Responses of human frontal cortex to surprising events are predicted by formal associative learning theory. Nature neuroscience, 4(10),1043-1048.
    Fockert, J. W., Rees, G., Frith, C. D.,& Lavie, N. (2004). Neural correlates of attentional capture in visual search. Journal of Cognitive Neuroscience,16, 751-759.
    Fonlupt, P. (2003). Perception and judgement of physical causality involve different brain structures. Cognitive Brain Research,17(2),248-254.
    Friedman, D. (1990). ERPs during continuous recognition memory for words. Biological Psychology,30,61-87.
    Fugelsang, J.,& Dunbar, K. (2005). Brain-based mechanisms underlying complex causal thinking. Neuropsychologia,43,1204-1213.
    Fugelsang, J., Roser, M., Corballis, P., Gazzaniga, M.,& Dunbar, K. (2005). Brain mechanisms underlying perceptual causality. Cognitive Brain Research,24, 41-47.
    Fugelsang, J. A.,& Dunbar, K. N. (2009). "Brain-based mechanisms underlying causal reasoning" In E. Kraft, B. Gulyas,& E. Poppel (Eds.) Neural Correlates of Thinking (pp.269-279). Germany:Springer Berlin Heidelberg.
    Gallistel, C.R. (1990). The Organization of Learning. Cambridge, MA:MIT Press.
    Gentner, D.& Brem, S. K. (1999). Is snow really similar to a shovel? Distinguishing similarity from thematic relatedness. Proceedings of the 21st Annual Conference of the Cognitive Science Society. (pp.179-184). Hillsdale, NJ:Lawrence Earlbaum Associates.
    Gluck, M. A.,& Bower, G. H. (1988). Evaluating an adaptive network model of human learning. Journal of Memory and Language,27(2),166-195.
    Gotlib, I. H.,& Joormann, J. (2010). Cognition and depression:current status and future directions. Annual review of clinical psychology,6,285-294.
    Golonka, S.,& Estes, Z. (2009). Thematic relations affect similarity via commonalities. Journal of Experimental Psychology:Learning, Memory, and Cognition,35(6), 1454.
    Grabowski, T. J., Damasio, H.,& Damasio, A. R. (1998). Premotor and prefrontal correlates of category-related lexical retrieval. Neuroimage,7(3),232-243.
    Griffiths, T. L.,& Tenenbaum, J. B. (2005). Structure and strength in causal induction. Cognitive psychology,51(4),334-384.
    Griffiths, T. L.,& Tenenbaum, J. B. (2009). Theory-based causal induction. Psychological review,116(4),661-716.
    Grossman, M., Smith, E. E., Koenig, P., Glosser, G., DeVita, C., Moore, P.,& McMillan, C. (2002). The neural basis for categorization in semantic memory. Neuroimage, 17(3),1549-1561.
    Grossman, M., Koenig, P., DeVita, C., Glosser, G, Alsop, D., Detre, J.,& Gee, J. (2002). The neural basis for category-specific knowledge:an fMRI study. Neuroimage, 15(4),936-948.
    Hadjichristidis, C., Sloman, S., Stevenson, R.,& Over, D. (2004). Feature centrality and property induction. Cognitive Science,28(1),45-74.
    Hagoort, P., Brown, C. M.,& Swaab, T. Y. (1996). Lexical-semantic event-related potential effects in patients with left hemisphere lesions and aphasia, and patients with right hemisphere lesions without aphasia. Brain,119(2),627-649.
    Hagmayer, Y., Sloman, S. A., Lagnado, D. A., Waldmann, M. R. (2007). Causal reasoning through intervention. In Causal Learning:Psychology, Philosophy, and Computation, ed. A Gopnik, L Schulz, pp.86-100. London:Oxford Univ. Press
    Hald, L. A., Bastiaanesen, M. C. M.,& Hagoort, P. (2006). EEG theta and gamma responses to semantic violations in online sentence processing. Brain and Language,96,90-105.
    Haggard, P., Clark, S.,& Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience,5,382-385.
    Herrmann, D. J.,& Chaffin, R. (1986). Comprehension of semantic relations as a function of the definition of relations. In F. Klix & H. Hagendorf (Eds.), Human memory and cognitive capabilities:Mechanisms and performance (pp.311-319). Amsterdam:Elsevier, North-Holland.
    Herbert, C., Junghofer, M.,& Kissler, J. (2008). Event related potentials to emotional adjectives during reading. Psychophysiology,45(3),487-498.
    Heit, E.,& Rotello, C. M. (2010). Relations between inductive reasoning and deductive reasoning. Journal of Experimental Psychology:Learning, Memory, and Cognition, 36(3),805-812.
    Holyoak, K. J., Lee, H. S.,& Lu, H. (2010). Analogical and category-based inference: A theoretical integration with Bayesian causal models. Journal of Experimental Psychology:General,139(4),702-713.
    Holyoak, K. J.,& Cheng, P. W. (2011). Causal learning and inference as a rational process:the new synthesis. Annual Review of Psychology,62,135-163.
    Holt, D. J., et al., (2006). The misattribution of salience in delusional patients with schizophrenia. Schizophrenia Research,83,247-256.
    Hodges, J. R.,& Patterson, K. E. (1997). Semantic memory disorders.Trends in Cognitive Sciences,1,67-72.
    Holcomb, P. J.,& Grainger, J. (2009). ERP effects of short interval masked associative and repetition priming. Journal of Neurolinguistics,22,301-312.
    Hume, D. (1739/1987). A Treatise of Human Nature. Oxford, UK:Clarendon.2nd ed.
    Hume, D. (1978). A treatise of human nature. Oxford:Oxford University Press, Clarendon Press. (Original work published 1739).
    Hummel, J. E.,& Holyoak, K. J. (2003). A symbolic-connectionist theory of relational inference and generalization. Psychological Review,110,220-264.
    Hummel, J. E.,& Holyoak, K. J. (1997). Distributed representations of structure:A theory of analogical access and mapping. Psychological Review,104, 427-466.
    Johnson-Laird, P. N. (1983). Mental Models:Toward a Cognitive Science of Language, Inference and Consciousness. Cambridge (Mass.):Harvard University Press. Kutas, M.,& Hillyard, S. A. (1980). Reading senseless sentences:Brain potentials reflect semantic incongruity. Science,207,203-205.
    Jorm, A. F. (2000). Mental health literacy Public knowledge and beliefs about mental disorders. The British Journal of Psychiatry,177(5),396-401.
    Kant, I. (1781/1965). Critique of Pure Reason. London:Macmillan
    Kahan, T., Neely, J.,& Forsythe, W. (1999). Dissociated backward priming effects in lexical decision and pronunciation tasks. Psychonomic Bulletin & Review,6, 105-110.
    Kemp, C.,& Tenenbaum, J. B. (2009). Structured statistical models of inductive reasoning. Psychological review,116(1),20-58.
    Khateb, A., Michel, C. M., Pegna, A. J., O'Dochartaigh, S. D., Landis, T.,& Annoni, J. M. (2003). Processing of semantic categorical and associative relations:an ERP mapping study. International journal ofpsychophysiology,49(1),41-55.
    Kowler, E.,& Steinman, R. M. (1979). The effect of expectations on slow oculomotor control-Ⅰ. Periodic target steps. Vision research,19(6),619-632.
    Kutas, M.,& Federmeier, K. D. (2011). Thirty years and counting:Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology,62,621-647.
    Kuperberg, G. R., Lakshmanan, B. M., Caplan, D. N.,& Holcomb, P. J. (2006). Making sense of discourse:An fMRI study of causal inferencing across sentences. Neuroimage,33(1),343-361.
    Kuperberg, G. R., Paczynski, M.,& Ditman, T. (2011). Establishing causal coherence across sentences:An ERP study. Journal of Cognitive Neuroscience,23(5), 1230-1246.
    Kuperberg, G. R., Sitnikova, T., Caplan, D., Holcomb, P. J. (2003). Electrophysiological distinctions in processing conceptual relationships within simple sentences. Cognitive Brain Research,17,117-129.
    Lagnado, D. A.,& Sloman, S. (2004). The advantage of timely intervention. Journal of Experimental Psychology:Learning, Memory, and Cognition,30(4),856-876.
    Lagnado, D. A.,& Sloman, S. A. (2006). Time as a guide to cause. Journal of Experimental Psychology:Learning, Memory, and Cognition,32(3),451-460.
    Lee, H. S.,& Holyoak, K. J. (2008). The role of causal models in analogical inference. Journal of Experimental Psychology:Learning, Memory, and Cognition,34(5), 1111-1122.
    Lieberman, M. D., Gaunt, R., Gilbert, D. T.,& Trope, Y. (2002). Reflection and reflexion:A social cognitive neuroscience approach to attributional inference. Advances in experimental social psychology,34,199-249.
    Lin, E. L.,& Murphy, G. L. (2001). Thematic relations in adults'concepts. Journal of experimental psychology:General,130,3-28.
    Long, C. Q., Lu, X. Y., Zhang, L,. Li, H.& Deak, G.(2012).Category label effects on Chinese children's inductive inferences:Modulation by perceptual detail and category specificity. Journal of Experimental Child Psychology,111(2),230-245.
    Lopez, F. J., Cobos, P. L.,& Cano, A. (2005). Associative and causal reasoning accounts of causal induction:Symmetries and asymmetries in predictive and diagnostic inferences. Memory & Cognition,33(8),1388-1398.
    Lombrozo, T. (2007). Simplicity and probability in causal explanation. Cognitive psychology,55(3),232-257.
    Luck, S. J.,& Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology,31,291-308.
    Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA:MIT Press; 2005.
    Lu, H., Yuille, A. L., Liljeholm, M., Cheng, P. W.,& Holyoak, K. J. (2008). Bayesian generic priors for causal learning. Psychological review,115(4),955-982.
    Marsh, J. K.,& Ahn, W. K. (2009). Spontaneous assimilation of continuous values and temporal information in causal induction. Journal of Experimental Psychology: Learning, Memory, and Cognition,35(2),334-352.
    Mayrhofer, R., Hagmayer, Y.,& Waldmann, M. R. (2010). Agents and causes:A Bayesian error attribution model of causal reasoning. In Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp.925-930).
    Mason, R. A.,& Just, M. A. (2004). How the brain processes causal inferences in text. Psychology Science,15,1-7.
    Maass, A., Colombo, A., Colombo, A.,& Sherman, S. J. (2001). Inferring traits from behaviors versus behaviors from traits:The induction-deduction asymmetry. Journal of personality and social psychology,81(3),391.
    Maguire, M. J., Brier, M. R.,& Ferree, T. C. (2010). EEG theta and alpha responses reveal qualitative differences in processing taxonomic versus thematic semantic relationships. Brain and language,114(1),16-25.
    Medin, D. L., Coley, J. D., Storms, G.,& Hayes, B. L. (2003). A relevance theory of induction. Psychonomic Bulletin & Review,10(3),517-532.
    McClelland, J. L.,& Thompson, R. M. (2007). Using domain-general principles to explain children's causal reasoning abilities. Developmental Science,10(3), 333-356.
    Meder, B., Gerstenberg, T., Hagmayer, Y.,& Waldmann, M. R. (2010). Observing and intervening:Rational and heuristic models of causal decision making. The Open Psychology Journal,3,119-135.
    Michotte, A. (1946/English transl.1963). The Perception of Causality, Basic Books.
    Morris, S. J. (2007), "Attributional biases in subclinical depression:A schema-Based account. Clinical Psychology & Psychotherapy,14,32-47.
    Murphy, G. L.,& Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review,92,289-316.
    Nelson, D. L., McEvoy, C. L.,& Schreiber, T. A. (1998). The University of South Florida word association, rhyme, and word fragment norms. Retrieved from http://w3.usf.edu/FreeAssociation/.
    Neely, J. H. (1991). Semantic priming effects in visual word recognition:a selective review of current findings and theories. In:Besner, D., Humphreys, G.W. (Eds.), Basic Processes in Reading:Visual Word Recognition. Hillsdale (NJ, US), Lawrence Erlbaum, pp.264-336.
    Novick, L. R.,& Cheng, P. W. (2004). Assessing interactive causal influence. Psychological Review,111(2),455-485.
    Paczynski, M.,& Kuperberg, G. R. (2012). Multiple influences of semantic memory on sentence processing:distinct effects of semantic relatedness on violations of real-world event/state knowledge and animacy selection restrictions. Journal of Memory and Language,67(4),426-448.
    Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference. San Mateo, CA:Morgan Kaufmann
    Pearl, J. (2000). Causality. London:Cambridge Univ. Press
    Pearl, J. (2000). Causality:Models, reasoning, and inference. Cambridge:Cambridge University Press.
    Pearce, J. M.,& Hall, G. (1980). A model for Pavlovian learning:variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological review,87(6),532.
    Perner, J. (2001). Episodic memory:Essential distinctions and developmental implications. In C.Moore & K. Lemmon (Eds.), The self in time:Developmental perspectives (pp.181-202). Mahwah, NJ:Lawrence Erlbaum Associates, Inc.
    Perani, D., Schnur, T., Tettamanti, M., Cappa, S. F.,& Fazio, F. (1999). Word and picture matching:a PET study of semantic category effects. Neuropsychologia, 37(3),293-306.
    Perales, J.,& Catena, A. (2006). Human causal induction:A glimpse at the whole picture. European Journal of Cognitive Psychology,18(2),277-320.
    Penn, D. C., Povinelli, D. J. (2007). Causal cognition in human and nonhuman animals: a comparative, critical review. Annual Review of Psychology,58,97-118.
    Rehder, B. (2010). Causal-based categorization:A review. Psychology of Learning and Motivation,52,39-116.
    Rehder, B.,& Burnett, R. C. (2005). Feature inference and the causal structure of categories. Cognitive Psychology,50(3),264-314.
    Rehder, B. (2009). Causal-Based Property Generalization. Cognitive science,33(3), 301-344.
    Rehder, B.,& Kim, S. (2006). How causal knowledge affects classification:A generative theory of categorization. Journal of Experimental Psychology:Learning, Memory, and Cognition,32(4),659-683.
    Rescorla, R.A, Wagner, A.R. (1972). A theory of Pavlovian conditioning:variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning Ⅱ:Current Theory and Research, ed. AH Black, WF Prokasy, pp. 64-99. New York:Appleton-Century-Crofts
    Rips, L. J. (2001). Two kinds of reasoning. Psychological Science,12(2),129-134
    Roser, M. E., Fugelsang, J. A., Dunbar, K. N., Corballis, P. M.,& Gazzaniga, M. S. (2005). Dissociating processes supporting causal perception and causal inference in the brain. Neuropsychology,19(5),591-602.
    Roser, M., Fugelsang, J., Handy, T., Dunbar, K.,& Gazzaniga, M. (2009). Representation of physical plausibility revealed by event-related potentials. Neuroreport,20,1081-1086.
    Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M.,& Boyes-Bream, P. (1976). Basic objects in natural categories. Cognitive Psychology,8,382-439.
    Rossell, S. L., Bullmore, E. T., Williams, S. C.,& David, A. S. (2001). Brain activation during automatic and controlled processing of semantic relations:a priming experiment using lexical-decision. Neuropsychologia,39(11),1167-1176.
    Rossell, S. L., Price, C. J., Nobre, A. C. (2003). The anatomy and time course of semantic priming investigated by fMRI and ERPs. Neuropsychologia,41, 550-564.
    Rotello, C. M.,& Heit, E. (2009). Modeling the effects of argument length and validity on inductive and deductive reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition,35(5),1317.
    Rugg, M. D. (1995). Memory and consciousness:a selective review of issues and data. Neuropsychologia,33(9),1131-1141.
    Rumelhart, D. E., McClelland, J.L., PDP Res. Group. (1986). Parallel Distributed Processing:Explorations in the Microstructures of Cognition. Vol.1:Foundations. Cambridge, MA:MIT Press
    Sachs, O., Weis, S., Krings, T., Huber, W.,& Kircher, T. (2008a). Categorical and thematic knowledge representation in the brain:Neural correlates of taxonomic and thematic conceptual relations. Neuropsychologia,46,409-418.
    Sachs, O., Weis, S., Zellagui, N., Huber, W., Zvyagintsev, M., Mathiak, K.,& Kircher, T. (2008b). Automatic processing of semantic relations in fMRI:Neural activation during semantic priming of taxonomic and thematic categories. Brain Research, 1218,194-205.
    Sachs, O., Weis, S., Zellagui, N., Sass, K., Huber, W., Zvyagintsev, M.,...& Kircher, T. (2011). How different types of conceptual relations modulate brain activation during semantic priming. Journal of cognitive neuroscience,23(5),1263-1273.
    Salmon, W. C. (1984). Scientific Explanation and the Causal Structure of the World. Princeton, NJ:Princeton Univ. Press
    Satpute, A. B., Fenker, D. B., Waldmann, M. R., Tabibnia, G., Holyoak, K. J.,& Lieberman, M. D. (2005). An fMRI study of causal judgments. European Journal of Neuroscience,22,1233-1238.
    Scholl, B. J.,& Tremoulet, P. D. (2000). Perceptual causality and animacy. Trends in Cognitive Sciences,4,299-309.
    Shanks, D. R, Dickinson A. (1987). Associative accounts of causality judgment. In The Psychology of Learning and Motivation, ed. GH Bower, Vol.21, pp.229-61. San Diego, CA:Academic
    Shanks, D. R. (1991). Categorization by a connectionist network. Journal of Experimental Psychology:Learning, Memory, and Cognition,17(3),433-443.
    Shanks, D. R. (2010). Learning:From association to cognition. Annual review of psychology,61,273-301.
    Shafto, P.,& Coley, J. D. (2003). Development of categorization and reasoning in the natural world:Novices to experts, naive similarity to ecological knowledge. Journal of Experimental Psychology:Learning, Memory, and Cognition,29(4), 641-649.
    Simmons, S.,& Estes, Z. (2008). Individual differences in the perception of similarity and difference. Cognition,108(3),781-795.
    Sloman, S. A., Lagnado, D. A. (2005). Do we "do"? Cognitive Science,29,5-39
    Smiley, S. S.,& Brown, A. L. (1979). Conceptual preference for thematic or taxonomic relations:A nonmonotonic age trend from preschool to old age. Journal of Experimental Child Psychology,28(2),249-257.
    Smith, E. E., Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science,283,1657-1661.
    Snowden, J. S., Goulding, P. J.,& Neary, D. (1989). Semantic dementia:a form of circumscribed temporal atrophy. Behavioural Neurology,2,167-182.
    Spellman, B. A. (1997). Crediting causality. Journal of Experimental Psychology: General,126(4),323-348.
    Spellman, B. A., Holyoak, K. J.& Morrison, R. G. (2001). Analogical priming via semantic relations. Memory & Cognition,29,383-393.
    Spirtes, P., Glymour, C., Scheines, R. (1993/2000). Causation, Prediction, and Search (Springer Lecture Notes in Statistics). Cambridge, MA:MIT Press.2nd ed., rev.
    Steyvers, M., Tenenbaum, J. B., Wagenmakers, E. J.,& Blum, B. (2003). Inferring causal networks from observations and interventions. Cognitive Science,27, 453-489
    Stout, S. C.,& Miller, R. R. (2007). Sometimes-competing retrieval (SOCR):A formalization of the comparator hypothesis. Psychological Review,114(3), 759-783.
    Straube, B.,& Chatterjee. A. (2010). Space and time in perceptual causality. Frontiers in Human Neuroscience,4,28.
    Thompson-Schill, S. L., Kurtz, K. J.,& Gabrieli, J. D. (1998). Effects of semantic and associative relatedness on automatic priming. Journal of Memory and Language, 38(4),440-458.
    Thornhill, D. E.,& Van Petten, C. (2012). Lexical versus conceptual anticipation during sentence processing:frontal positivity and N400 ERP components. International Journal of Psychophysiology,83(3),382-392.
    Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization and memory (pp.381-403). New York:Academic Press.
    Turner, D. C., Aitken, M. R., Shanks, D. R., Sahakian, B. J., Robbins, T. W., Schwarzbauer, C.,& Fletcher, P. C. (2004). The role of the lateral frontal cortex in causal associative learning:exploring preventative and super-learning. Cereb Cortex,14,872-880.
    Turner, D. C., Aitken, M. R., Shanks, D. R., Sahakian, B. J., Robbins, T. W., Schwarzbauer, C.,& Fletcher, P. C. (2004). The role of the lateral frontal cortex in causal associative learning:exploring preventative and super-learning. Cerebral Cortex,14(8),872-880.
    Tversky A, Kahneman D. (1982). Causal schemata in judgements under uncertainty. In Judgment Under Uncertainty:Heuristics and Biases, ed. D Kahneman, P Slovic, A Tversky, pp.117-28. London:Cambridge Univ. Press
    van der Lubbe Rob, H. J., Scholvinck, M. L., Kenemans, J. L.,& Postma, A. (2006). Divergence of categorical and coordinate spatial processing assessed with ERPs. Neuropsychologia,44,1547-1559.
    Warrington, E. K. (1975). Selective impairment of semantic memory. Quarterly Journal of Experimental Psychology,27,635-657.
    Waldmann, M. R.,& Holy oak, K. J. (1992). Predictive and diagnostic learning within causal models:asymmetries in cue competition. Journal of Experimental Psychology:General,121(2),222-236.
    Waldmann, M. R., Cheng, P. W., Hagmayer, Y.,& Blaisdell, A. P. (2008). Causal learning in rats and humans:A minimal rational model. The probabilistic mind. Prospects for Bayesian cognitive science,453-484.
    Wagemans, J., Van Lier, R.,& Scholl, B. J. (2006). Introduction to Michotte's heritage in perception and cognition research. Acta Psychologica,123(1),1-19.
    White, P. A. (1995). Use of prior beliefs in. the assignment of causal roles:Causal powers versus regularity-based accounts. Memory and Cognition,23,243-254.
    White, P. A. (2006). The Causal Asymmetry. Psychological Review,113,132-147.
    Zwaan, R. A,& Yaxley, R. H. (2003). Spatial iconicity affects semantic relatedness judgments. Psychonomic Bulleti n& Review,10,954-958.
    Zwaan, R. A., Stanfield, R. A.,& Yaxley, R. H. (2002). Do language comprehenders routinely represent the shapes of objects? Psychological Science,13,168-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700