用户名: 密码: 验证码:
雷达成像的电磁场仿真与超分辨成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达成像技术是一种在军事和国防现代化建设中极为重要并且得到广泛应用的高尖端技术。长期以来对雷达成像技术的研究注重于如何获得更高的分辨率,而基于对雷达成像物理本质的认识进而对目标进行识别的研究开展得还相对较少。在雷达成像中,直接在雷达天线近场对目标进行成像和在雷达天线远场获取雷达回波信号通过合成孔径技术得到的雷达图像(目标处于合成的等效大天线的近场)的效果是不相同的,两者在成像机理和成像本质上有很大的区别,但对于这一问题的研究目前还很少。
     本文首先建立基于时域有限差分方法(FDTD)的雷达成像的全电磁场仿真模型,并基于模型的近场仿真数据,使用时域相关法(TDC)、后向投影法(BP)和相移偏移法(PSM)三种近场成像算法进行处理,发现虽然PSM成像算法在远场时可以等效为加权BP成像算法,但在近场成像中,两者差别很大,不存在这样的等效关系。论文从信号频谱与空间频谱之间的投影关系对此作出了解释,并且从空间谱的角度分析了PSM算法“添零”操作的物理意义。
     为研究直接近场成像与在远场合成孔径处理后得到“等效近场成像”之间的区别问题,论文通过建立电偶极子的辐射模型,从电磁场的角度对雷达近场成像和雷达远场成像进行了分析和比较,从辐射波形和雷达散射回波源自物体表面感应电流(由一系列电耦极子组成)、磁流(由一系列磁耦极子组成)二次辐射的角度出发,分析了雷达回波的幅度、相位、频率等在近场成像和远场成像中的差别,基于物理机理的认识总结了雷达近场和远场
     成像的特点。超分辨成像是一种在不提高雷达信号带宽前提下,在较小的观测角度范围内实现通常要靠大的信号带宽和大的观测角度才能获得高分辨率雷达图像的成像技术。本文研究了MUSIC和ESPRIT超分辨成像算法,对两种算法的性能进行了统计分析,并证明了采用“空间平滑技术”的二维MUSIC成像算法和一维MUSIC算法的等价性。论文从统计学的角度,利用自相关矩阵的理论特征值和特征向量,从理论上推导了二维MUSIC成像算法的性能估计公式;利用空间倒谱的统计特性,推导了二维MUSIC算法的唯一性条件,分析了在特定情况下导致二维MUSIC失效的原因以及影响二维MUSIC算法性能的各个参数。论文还对一维ESPRIT算法应用于ISAR方位向时的性能及影响因素进行了分析,并采用RD算法、二维MUSIC算法和二维ESPRIT算法对FDTD成像模型的远场仿真数据进行成像处理,分别对RD成像结果、二维MUSIC的成像结果和二维ESPRIT的成像结果进行了分析,并从分辨率、计算量以及算法稳定性等角度对三种成像算法进行了比较。
Radar imaging is one of extremely important and widely used technologies in military and national defense modernization. For a long time, much more attentions have been focused on how to obtain higher resolution, but fewer researches have been done on physical understanding the nature of radar imaging. In fact this understanding could help us identify target better. In radar imaging, they are obvious difference between radar images generated by processing radar echoes directly collected in the near-field of the radar antenna and radar images generated by synethetically processing the collected radar echoes in far-field of antenna, although the imaged targets are indeed in the near-field of the equivalent synthesized large antenna. However fewer studies have been conducted on investigating the similarities and dissimilarities from the point of view of imaging mechanism.
     In this dissertation, we firstly developed a full-wave electromagnetic field radar imaging simulator based on FDTD (Finite Difference Time Domain) method, and by using the model, we simulated near-field radar echoes, and then performed imaging processing on the echo data by using TDC (Time Domain Correlation), BP (Back Projection) and PSM (Phase Shift Migration) imaging algorithms. Through simulation we found that although the PSM algorithm is equivalent to the weighted BP algorithm in the far-field case, but they are not equivalent in the near-field case. We explained the difference based on the relation between the signal spectrum and the projected spatial spectrum, and we further explained the physical meaning of“Zero-padding”operation in the PSM algorithm from the perspective of spatial spectrum projection.
     For investigating the difference between direct near-field imaging and the“equivalent near-field imaging”obtained by synthesizing the far-field data in azimuthal direction, by establishing the radiation model of electric dipole, we compared the radar imaging in these two cases from electromagnetic point of view through analyzing radar waveform, the induced electric currents and magnetic currents and the re-radiation of the induced currents focusing on the amplitude, phase and frequency aspects. Based on physical mechanism understanding we summarized the characteristics of near-field imaging and equivalent near-field imaging.
     Super-resolution imaging is a kind of technique used in radar for obtaining much higher resolution even with a small range of observation angle and small signal bandwidth, but usually it is achieved with large observation angle range and large bandwidth. In this dissertation we studied two super-resolution algorithms, i.e. MUSIC (Multiple Slgnal Classification) and ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithms and statistically analyzed their performance. In MUSIC study, we show that two-dimensional MUSIC (2D-MUSIC) algorithm by using spatial smoothing technique is equivalent to one-dimensional algorithm. Based on statistical viewing point and applying eigenvalues and eigenvectors of the auto-correlation matrix, we derived theoretically the equation for describing the performance estimation of 2D-MUSIC algorithm. By using the statistic characteristics of spatial spectrum, we derived the uniqueness conditions for 2D-MUSIC algorithm, and analyzed the reasons resulting in malfunction and the different parameters influencing the performance of 2D-MUSIC. We analyzed the performance of 1D-ESPRIT applied in azimuthal direction for ISAR and some parameters affecting it. At the same time, we applied RD, 2D-MUSIC, and 2D-ESPRIT algorithms to processing the simulated electromagnetic far-field signals generated by FDTD simulator, and compared these three algorithms from aspects of resolution, calculation burden, and algorithm stability, explained why 2D-ESPRIT can get higher resolution than 2D-MUSIC does.
引文
[1] Mahafza B R, Elsherbeni A Z. Matlab Simulations for Radar Systems Design[M]. CHAPMAN & HALL/CRC, 2004.
    [2] Ricnards M A著,邢孟道等译.雷达信号处理基础[M].北京:电子工业出版社, 2008.
    [3] Sullivan R J著,微波成像技术国家重点实验室译.成像与先进雷达技术基础[M].北京:电子工业出版社, 2009.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [5]黄世奇,王善成.微波遥感SAR军事探测技术研究[J].飞航导弹, 2005, (04): 13~16.
    [6]姜景山.微波遥感信息科技发展若干问题的讨论[J].遥感技术与应用, 2005, (01): 1~5.
    [7]姜景山,吴一戎,刘和光等.中国微波遥感发展的新阶段新任务[J].中国工程科学, 2008, (06): 10~15.
    [8]蒋庆全.新体制雷达发展初探[J].中国雷达, 2003, (04): 1~8.
    [9]王晓海,杨斌利.国外星载微波散射计应用现状及未来发展趋势[J].中国航天, 2006, (07): 26~29.
    [10]吴顺君.雷达信号处理和数据处理技术[M].北京:电子工业出版社, 2008.
    [11]袁孝康.合成孔径雷达的发展现状与未来[J].上海航天, 2002, (05): 42~47.
    [12]袁孝康.空间微波成像雷达的发展现状与未来[J].空间电子技术, 2004, (01): 1~14.
    [13]张永生.高分辨率遥感卫星应用:成像模型、处理算法及应用技术[M].北京:科学出版社, 2004.
    [14]张直中.发展中的三维成像合成孔径雷达[J].现代雷达, 1999, (05): 6~13.
    [15]张直中.合成孔径雷达遥感技术及其应用[J].火控雷达技术, 2000, (01): 1~7.
    [16]张直中.机载SAR对动目标三维成像方案的分析[J].现代雷达, 2009, (01): 1~3.
    [17]张志刚.卫星遥感在海战场环境建设中的应用[J].舰船电子工程, 2006, (04): 22~25.
    [18]周学松.地下目标无损探测技术[M].北京:国防工业出版社, 2005.
    [19]曾昭发,刘四新,王者江等.探地雷达方法原理及应用[M].北京:科学出版社, 2006.
    [20] Ho K C, Carin L, Gader P D, et al. An Investigation of Using the Spectral Characteristics From Ground Penetrating Radar for Landmine/Clutter Discrimination[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2008, 46(4): 1177~1191.
    [21] Park Y, Kim K, Cho S, et al. Buried small objects detected by UWB GPR[J]. Aerospace and Electronic Systems Magazine, IEEE, 2004, 19(10): 3~6.
    [22] Oden C P, Powers M H, Wright D L, et al. Improving GPR Image Resolution in Lossy Ground Using Dispersive Migration[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2007, 45(8): 2492~2500.
    [23] Grasmueck M, Viggiano D A. Integration of Ground-Penetrating Radar and Laser Position Sensors for Real-Time 3-D Data Fusion[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2007, 45(1): 130~137.
    [24] Kao C, Li J, Wang Y, et al. Measurement of Layer Thickness and Permittivity Using a New Multilayer Model From GPR Data[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2007, 45(8): 2463~2470.
    [25]李述为,高梅国,傅雄军.步进频穿墙雷达成像算法[J].现代雷达, 2007, (12): 8~11.
    [26]崔国龙,孔令讲,杨建宇.步进变频穿墙成像雷达中反投影算法研究[J].电子科技大学学报, 2008, (06): 864~867.
    [27] Wang Y, Sujeet K C, Safieddin S. An FDTD/ray-tracing analysis method for wave penetration through inhomogeneous walls[J]. Antennas and Propagation, IEEE Transactions on, 2002, 50(11): 1598~1604.
    [28] Mirko S, Edward J R, Christopher M C. Time-domain imaging of objects within enclosures[J]. Antennas and Propagation, IEEE Transactions on, 2002, 50(6): 895~898.
    [29] Wang G, Amin M G. Imaging Through Unknown Walls Using Different Standoff Distances[J]. Signal Processing, IEEE Transactions on, 2006, 54(10): 4015~4025.
    [30] Mojtaba D, Kamal S. Refocusing Through Building Walls Using Synthetic Aperture Radar[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2008, 46(6): 1589~1599.
    [31]覃建波,邓世坤,李沫.探地雷达在隧道和涵洞工程检测中的应用研究[J].煤田地质与勘探, 2004, (05): 55~58.
    [32]叶家玮,吴鹏,郑国梁.基于路面雷达的路面结构缺陷检测方法[J].华南理工大学学报(自然科学版), 2004, (09): 82~85.
    [33]郭秀军,韩宇,孟庆生等.铁路路基病害无损检测车载探地雷达系统研制及应用[J].中国铁道科学, 2006, (05): 139~144.
    [34]赵永辉,谢雄耀,王承.地下管线雷达探测图像处理及解释系统[J].同济大学学报(自然科学版), 2005, (09): 1254~1258.
    [35]战玉宝,张利民,尤春安.探地雷达探测地下管线的研究[J].岩土力学, 2004, (S1): 133~136.
    [36]韦宏鹄,杨顺安,刘昌辉.探地雷达在岩土工程应用中的进展[J].地质科技情报, 2005, (S1): 133~136.
    [37]王国群,何开胜.堤防动物洞穴的探地雷达探测研究[J].岩土力学, 2006, (05): 838~841.
    [38]陈星彤,高荣久,王宇亮等.复垦土壤盐分污染的微波无损探测及定量分析[J].辽宁工程技术大学学报(自然科学版), 2008, (02): 309~311.
    [39]方广有,佐藤源之.频率步进探地雷达及其在地雷探测中的应用[J].电子学报, 2005, (03): 436~439.
    [40]李述为,高梅国,傅雄军等.雷达穿墙检测呼吸和心跳的信号分析[J].仪器仪表学报, 2006, (S2): 1633~1634.
    [41]王治国,费元春,李熹.穿墙雷达中的动目标定位新方法[J].电子技术应用, 2006, (06): 9~10.
    [42]宋华,李禹.超宽带穿墙探测雷达的运动目标检测技术[J].电讯技术, 2004, (06): 133~137.
    [43]郭华东.汶川地震灾害遥感图集[M].北京:科学出版社, 2008.
    [44] Demarest K, Plumb R, Zhubo H. FDTD modeling of scatterers in stratified media[J]. Antennas and Propagation, IEEE Transactions on, 1995, 43(10): 1164~1168.
    [45]方广有,张忠治,汪文秉.地下三维目标电磁散射特性研究[J].微波学报, 1997, (01): 8~14.
    [46] Sullivan A, Damarla R, Geng N, et al. Ultrawide-band synthetic aperture radar for detection of unexploded ordnance: modeling and measurements[J]. Antennas and Propagation, IEEE Transactions on, 2000, 48(9): 1306~1315.
    [47] Bo Y, Rappaport C. Response of realistic soil for GPR applications with 2-D FDTD[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2001, 39(6): 1198~1205.
    [48] Uduwawala D, Gunawardena A. A Fully Three-Dimensional Simulation of a Ground-Penetrating Radar over Lossy and Dispersive Grounds[C]. Industrial and Information Systems, First International Conference on. 2006. 143~146.
    [49]朱亚平,沈庭芝,王卫江等.穿墙雷达系统中信号检测的新算法[J].北京理工大学学报, 2005,(08): 734~738.
    [50]杨虎,姜永金,毛钧杰.平坦/粗糙地表下目标散射特性的MPSTD算法分析[J].微波学报, 2007, (06): 1~6.
    [51]王卓,曾昭发,张代国等.基于解析方法计算频散层状介质的探地雷达响应[J].吉林大学学报(地球科学版), 2007, (S1): 168~170.
    [52]李述为,高梅国,傅雄军.生命探测雷达回波信号处理与仿真[J].兵工学报, 2008, (06): 756~758.
    [53] Chamma W A. FDTD Modelling of a Realistic Room for Through-the-Wall Radar Applications[C]. Computational Electromagnetics in Time-Domain, 2007. CEM-TD 2007. Workshop on. 2007. 1~4.
    [54]刘培国,刘继斌,李高升等.混沌信号在超宽带穿墙成像雷达中的应用[J].国防科技大学学报, 2007, (03): 85~88.
    [55] Maaref N, Millot P, Ferrieres X, et al. Experimental through-the-wall detection in cluttered environment using time reversal processing[C]. Antennas and Propagation Society International Symposium, 2008. AP-S 2008. IEEE. 2008. 1~4.
    [56] Geophysical Survey Systems I, http://www.geophysical.com/products.htm. 2009.
    [57] Sensors & Software I, http://www.sensoft.ca/. 2009.
    [58]中国电子科技集团第二十二研究所, http://www.chinagpr.com/cn/index.asp. 2009.
    [59]周蔚红.时域天线在无载波脉冲探地雷达中的理论及应用研究[D].2006.
    [60]雷文太.脉冲GPR高分辨成像算法研究[D].2006.
    [61]陈洁.超宽带雷达信号处理及成像方法研究[D].2007.
    [62]李成方.探地雷达信息处理算法与信息管理系统研究[D].2006.
    [63]胡平.探地雷达数值模拟技术的应用研究[D].2005.
    [64]张春城.浅地层探地雷达中的信号处理技术研究[D].2005.
    [65]胡进峰.合成孔径探地雷达探测浅埋小目标的信号处理算法研究[D].2005.
    [66]詹毅.复杂有耗色散地层中的FDTD方法以及在冲击探地雷达中的应用[D].2000.
    [67]苏茂鑫.减少吸收衰减影响的高分辨率探地雷达技术研究[D].2007.
    [68]张菁.探地雷达地雷图像处理与目标识别方法[D].2005.
    [69]贾华强.探地雷达方法在铁路隧道衬砌质量检测中的应用[D].2002.
    [70] Curlander J C, McDonough R N著,韩传钊等译.合成孔径雷达:系统与信号处理[M].北京:电子工业出版社, 2006.
    [71] Cumming L G, Wong F H著,洪文等译.合成孔径雷达成像:算法与实现[M].北京:电子工业出版社, 2007.
    [72]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社, 2004.
    [73]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社, 2003.
    [74]张直中.逆合成孔径雷达(ISAR)成像[J].中国电子科学研究院学报, 2006, (05): 301~404.
    [75] Son J S, Thomas G, Flores B C. Range-Doppler Radar Imaging and Motion Compensation[M]. Artech House Publishers, 2001.
    [76]张澄波.综合孔径雷达:原理、系统分析与应用[M].北京:科学出版社, 1989.
    [77] Jr McCandles S W. The origin, evolution and legacy of SEASAT[C]. Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International. 2003. 32~34.
    [78] Cimino J, Elachi C, Settle M. SIR-B-The Second Shuttle Imaging Radar Experiment[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1986, GE-24(4): 445~452.
    [79] Plant W J, Hasselmann S, Bruning C, et al. Comparison of ocean wave spectra from a non-linear SAR inversion scheme using ERS-1 and SIR-C/X-SAR data sets[C]. Geoscience and Remote SensingSymposium, 1995. IGARSS '95. 'Quantitative Remote Sensing for Science and Applications', International. 1995. 1311~1313.
    [80] Way J, Evans D, Elachi C. The SIR-C/X-SAR mission[C]. Geoscience and Remote Sensing Symposium, 1993. IGARSS '93. Better Understanding of Earth Environment., International. 1993. 592~593.
    [81]中国科学院电子学研究所, http://www.ie.ac.cn/. 2009.
    [82]赵迎辉.合成孔径雷达地面运动目标检测技术研究[D].2007.
    [83]王新民.合成孔径雷达原始回波模拟的研究[D].2007.
    [84]唐禹.高分辨率SAR成像算法及实时处理技术的研究[D].2006.
    [85]岳海霞.合成孔径雷达回波信号模拟研究[D].2005.
    [86]乔蓉蓉.星载合成孔径雷达多模式系统研究与信号处理[D].2000.
    [87]陆立明.星载合成孔径雷达目标检测技术研究[D].2004.
    [88]张翠.高分辨率SAR图像自动目标识别方法研究[D].2003.
    [89]郭微光.机载超宽带合成孔径雷达运动补偿技术研究[D].2003.
    [90]李军侠. SAR图像噪声抑制和局部特征提取[D].2008.
    [91]程玉平. SAR成像中几个问题的研究[D].2000.
    [92] Delisle G Y, Haiqing W. Moving target imaging and trajectory computation using ISAR[J]. Aerospace and Electronic Systems, IEEE Transactions on, 1994, 30(3): 887~899.
    [93] Lazarov A D, Minchev C N. ISAR image reconstruction technique with stepped frequency modulation and multiple receivers[C]. Digital Avionics Systems Conference, 2005. DASC 2005. The 24th. 2005. 11~12.
    [94] Lazarov A, Minchev C. Spectral 2-D image reconstruction in ISAR with linear frequency modulated signals[C]. Digital Avionics Systems, 2001. DASC. The 20th Conference. 2001. 2E~4E.
    [95] Seybold J S, Bishop S J. Three-dimensional ISAR imaging using a conventional high-range resolution radar[C]. Radar Conference, 1996., Proceedings of the 1996 IEEE National. 1996. 309~314.
    [96]国家高技术信息获取与处理技术主题,逆合成孔径雷达文集一. 1989.
    [97]国家高技术信息获取与处理技术主题,逆合成孔径雷达文集二. 1990.
    [98]国家高技术信息获取与处理技术主题,逆合成孔径雷达文集三. 1996.
    [99]汪玲.逆合成孔径雷达成像关键技术研究[D].2006.
    [100]郭春生. InSAR成像算法研究[D].2002.
    [101]张兴敢.逆合成孔径雷达成像及目标识别[D].2002.
    [102]张焕颖.高速运动目标ISAR成像方法研究[D].2007.
    [103]姜正林.低分辨ISAR成像及干涉技术应用研究[D].2001.
    [104]卢光跃.逆合成孔径雷达(ISAR)成像技术的改进[D].1999.
    [105]翟文帅.传播路径对VHF SAR成像的影响研究[D].2007.
    [106]张祥坤.高分辨率圆迹合成孔径雷达成像机理及方法研究[D].2007.
    [107]伍捷.时频方法在高分辨率ISAR运动补偿和成像中的应用[D].2006.
    [108]李海滨.调频步进信号及逆合成孔径雷达成像方法研究[D].2005.
    [109]张祥坤.成象雷达高度计的成象模拟与试验数据处理研究[D].2002.
    [110] He Q, Zhang Y H, Shi X J. Fast Electromagnetic Modeling and Imaging Simulation of Spacecraft by Ground Based ISAR[C]. Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on. 2006. 1~4.
    [111] Zhai W S, Zhang Y H. Apply Spatially Variant Apodization to SAR/INSAR Image Processing[C]. Synthetic Aperture Radar, 2007. APSAR 2007. 1st Asian and Pacific Conference on. 2007. 54~57.
    [112] Zhai W S, Zhang Y H, Zhang X K. SAR Imaging Simulation for Subsurface Target Detection[C]. Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on. 2006. 1~5.
    [113] Gu X, Zhang Y H, Zhang X K. Electromagnetic simulation of ISAR imaging with supper-resolution[C]. Synthetic Aperture Radar, 2007. APSAR 2007. 1st Asian and Pacific Conference on. 2007. 595~598.
    [114] Zhang X K, Zhang Y H, Jiang J S. Circular SAR Imaging Approximated by Spotlight Processing[C]. Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on. 2006. 1~4.
    [115] Shi X J, Zhang Y H, Jiang J S. InSAR Image Registration Using Modified Correlation Coefficient Algorithm[C]. Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on. 2006. 1~4.
    [116] Shi X J, Zhang Y H, Zhai W S. Effective velocity estimation for space-borne SAR based on chirp scaling algorithm[C]. Synthetic Aperture Radar, 2007. APSAR 2007. 1st Asian and Pacific Conference on. 2007. 427~430.
    [117] Zhang Y, Zhang Y H, Zhang X K. An airborne GMTI radar simulator based on space-time adaptive processing[C]. Synthetic Aperture Radar, 2007. APSAR 2007. 1st Asian and Pacific Conference on. 2007. 314~317.
    [118] Zhang Y H, Jiang B T, Zhang X K, et al. Imaging Simulation of Spacecraft by Ground Based High-Resolution ISAR[C]. Radar Conference, 2006. EuRAD 2006. 3rd European. 2006. 229~232.
    [119] Zhang Y H, Wu J. ISAR imaging with stepped-frequency chirp signal by de-chirping processing[C]. Synthetic Aperture Radar, 2007. APSAR 2007. 1st Asian and Pacific Conference on. 2007. 687~690.
    [120] Zhang Y H, Zhai W S. A new method for Doppler centroid estimation for spaceborne SAR based on chirp scaling algorithm[C]. Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International. 2007. 543~546.
    [121] KONG J A著,吴季等译.电磁波理论[M].北京:电子工业出版社, 2003.
    [122]傅君眉,冯恩信.高等电磁理论[M].西安:西安交通大学出版社, 2005.
    [123]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社, 2006.
    [124]王长清.现代计算电磁学基础[M].北京:北京大学出版社, 2005.
    [125]庄钊文,袁乃昌,莫锦军等.军用目标雷达散射截面预估与测量[M].北京:科学出版社, 2007.
    [126] Dolph C, Soon C. On the relationship between the singularity expansion method and the mathematical theory of scattering[J]. Antennas and Propagation, IEEE Transactions on, 1980, 28(6): 888~897.
    [127] Taflove A, Hagness S C. Computational Electrodynamics: The Finite Difference Time Domain Method[M]. Artech House, Boston London, 2000.
    [128] Taflove A. Advances in Computational Electrodynamics (The Finite Difference Time Domain Method) [M]. Artech House, Boston London, 1998.
    [129]高本庆.时域有限差分法[M].北京:国防工业出版社, 1995.
    [130]张云华.电磁辐射与散射问题的传输线矩阵(TLM)方法数值模拟研究[D].1995.
    [131] Harrington R F著,王尔杰译.计算电磁场的矩量法[M].北京:国防工业出版社, 1981.
    [132] Nakata T, Takahashi N. Direct finite element analysis of flux and current distributions under specified conditions[J]. Magnetics, IEEE Transactions on, 1982, 18(2): 325~330.
    [133] Tsuboi H, Tanaka M. External conditions for the vector potential in the boundary element method[J]. Magnetics, IEEE Transactions on, 1989, 25(5): 4138~4140.
    [134]阮颖铮等.雷达截面与隐身技术[M].北京:国防工业出版社, 2001.
    [135] Engheta N, Murphy W D, Rokhlin V, et al. The fast multipole method (FMM) for electromagnetic scattering problems[J]. Antennas and Propagation, IEEE Transactions on, 1992, 40(6): 634~641.
    [136] Song J M, Chew W C. Fast multipole method solution of three dimensional integral equation[C]. Antennas and Propagation Society International Symposium, 1995. AP-S. Digest. 1995. 1528~1531.
    [137] Tjuatja S, Fung A K, Bredow J W. Radar imaging of buried objects[C]. Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98. 1998 IEEE International. 1998. 524~526.
    [138]刘培国,刘克成,尹家贤等.地表目标的复合散射法及其SAR成像分析[J].电子学报, 2003, (06): 921~923.
    [139]郑宏兴,葛德彪,魏兵.用FDTD方法计算二维各向异性涂层目标的RCS[J].系统工程与电子技术, 2003, (01): 4~6.
    [140]郑奎松,葛德彪,魏兵.导弹目标的FDTD建模与RCS计算[J].系统工程与电子技术, 2004, (07): 896~899.
    [141] Ulander L M H, Martin T. Bistatic ultra-wideband SAR for imaging of ground targets under foliage[C]. Radar Conference, 2005 IEEE International. 2005. 419~423.
    [142]郭琨毅,唐波,盛新庆.复杂目标F-117A电磁散射特性及一维距离像的仿真[J].红外与激光工程, 2007, (S2): 407~410.
    [143]张晓燕,盛新庆.地下目标散射的并行FDTD计算[J].电波科学学报, 2007, (06): 952~957.
    [144] Delliere J, Maitre H, Maruani A. SAR measurement simulation on urban structures using a FDTD technique[C]. Urban Remote Sensing Joint Event, 2007. 2007. 1~8.
    [145]郭建明,刘波,李蔚清.隐身飞行目标低频段RCS计算[J].微波学报, 2007, (S1): 185~188.
    [146] Sakai F, Suzuki H, Sato H, et al. High resolution millimeter-wave imaging radar using inline Tx/Rx antennas[C]. Radar Conference, 2008. EuRAD 2008. European. 2008. 156~159.
    [147] Sato R, Yamaguchi Y, Yamada H. Polarimetric Scattering Analysis for Simplified Man-Made Structure Model on Rough and/or Inclined Ground Plane[C]. Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International. 2008. 483~486.
    [148] Andersh D, Moore J, Kosanovich S, et al. Xpatch 4: the next generation in high frequency electromagnetic modeling and simulation software[C]. Radar Conference, 2000. The Record of the IEEE 2000 International. 2000. 844~849.
    [149] Roedder J M. CADDSCAT version 2.3: a high-frequency physical optics code modified for trimmed IGES B-spline surfaces[J]. Antennas and Propagation Magazine, IEEE, 1999, 41(3): 69~80.
    [150] Yang Z, Jin L, Li W. Accelerated GRECO based on GPU[C]. Radar, 2006. CIE '06. International Conference on. 2006. 1~4.
    [151] Sonnet Software I, http://www.sonnetsoftware.com/. 2009.
    [152] Zeland Software I, http://www.zeland.com/. 2009.
    [153] CST, http://www.cst.com/. 2009.
    [154] GmbH I, http://www.empire.de/. 2009.
    [155] Ansoft L, http://www.ansoft.com/products/hf/hfss/. 2009.
    [156] EM Software & Systems I, http://www.feko.info/. 2009.
    [157]北京理工大学电磁仿真中心, http://www.cems.bj.cn/. 2009.
    [158]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社, 2004.
    [159]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社, 2002.
    [160] STOICA P, MOSES R L著,吴仁彪等译.现代信号谱分析[M].北京:电子工业出版社, 2007.
    [161] Larsson E G, Li J, Stoica P, High-resolution nonparametric spectral analysis: theory and applications. In High-Resolution Signal Processing, ; New York, NY: Marcel-Dekker: 2003;
    [162] Pisarenko V F. The retrieval of harmonics by linear prediction[J]. Geophys. J. Roy. Astron. Soc., 1973, 33: 347~366.
    [163] Schmidt R. Multiple Emitter Location and Signal Parameter Estimati[C]. in Proc. RADC Spectrum Estimation Workshop. Rome, NY, : 1979. 243~258.
    [164] Schmidt R O. Multiple emitter location and signal parameter estimation[J]. Antennas and Propagation, IEEE Transactions on, 1986, 34(3): 276~280.
    [165] Barabell A. Improving the resolution performance of eigenstructure-based direction-finding algorithms[C]. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '83. 1983. 336~339.
    [166] Roy R, Paulraj A, Kailath T. ESPRIT--A subspace rotation approach to estimation of parameters of cisoids in noise[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1986, 34(5): 1340~1342.
    [167] Porat B, Friedlander B. Analysis of the asymptotic relative efficiency of the MUSIC algorithm[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1988, 36(4): 532~544.
    [168] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1989, 37(7): 984~995.
    [169] Ottersten B, Viberg M, Kailath T. Performance analysis of the total least squares ESPRIT algorithm [J]. Signal Processing, IEEE Transactions on, 1991, 39(5): 1122~1135.
    [170] Swindlehurst A L, Kailath T. A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm[J]. Signal Processing, IEEE Transactions on, 1992, 40(7): 1758~1774.
    [171] Odendaal J W, Barnard E, Pistorius C W I. Two-dimensional superresolution radar imaging using the MUSIC algorithm[J]. Antennas and Propagation, IEEE Transactions on, 1994, 42(10): 1386~1391.
    [172] Haardt M, Nossek J A. Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden[J]. Signal Processing, IEEE Transactions on, 1995, 43(5): 1232~1242.
    [173] Li J, Stoica P. An adaptive filtering approach to spectral estimation and SAR imaging[J]. Signal Processing, IEEE Transactions on, 1996, 44(6): 1469~1484.
    [174] Kim K T, Kim S W, Kim H T. Two-dimensional ISAR imaging using full polarisation and super-resolution processing techniques[J]. Radar, Sonar and Navigation, IEE Proceedings -, 1998, 145(4): 240~246.
    [175] Palsetia M R, Li J. Using APES for interferometric SAR imaging[J]. Image Processing, IEEE Transactions on, 1998, 7(9): 1340~1353.
    [176] Stoica P, Hongbin L, Jian L. A new derivation of the APES filter[J]. Signal Processing Letters, IEEE, 1999, 6(8): 205~206.
    [177]吴强,王国林,许荣庆. ESPRIT超分辨ISAR成像[J].系统工程与电子技术, 1999, (07): 33~36.
    [178]苏卫民,顾红,倪晋麟等.多通道幅相误差对空域谱及分辨性能影响的分析[J].自然科学进展, 2001, (05): 557~560.
    [179]苏卫民,顾红,倪晋麟等.通道幅相误差条件下MUSIC空域谱的统计性能[J].电子学报, 2000, (06): 105~107.
    [180] Larsson E G, Stoica P. Fast implementation of two-dimensional APES and CAPON spectral estimators[C]. Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on. 2001. 3069~3072.
    [181] Rouquette S, Najim M. Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods[J]. Signal Processing, IEEE Transactions on, 2001, 49(1): 237~245.
    [182] Larsson E G, Guoqing L, Stoica P, et al. High-resolution SAR imaging with angular diversity[J]. Aerospace and Electronic Systems, IEEE Transactions on, 2001, 37(4): 1359~1372.
    [183]邵兆宇,杨绍全. ISAR雷达ESPRIT成像算法的改进[J].雷达科学与技术, 2004, (01): 25~28.
    [184] Tayem N, Kwon H M. Conjugate ESPRIT (C-SPRIT)[J]. Antennas and Propagation, IEEE Transactions on, 2004, 52(10): 2618~2624.
    [185] Quinquis A, Radoi E, Totir F C. Some radar imagery results using superresolution techniques[J]. Antennas and Propagation, IEEE Transactions on, 2004, 52(5): 1230~1244.
    [186] Burrows M L. Two-dimensional ESPRIT with tracking for radar imaging and feature extraction[J]. Antennas and Propagation, IEEE Transactions on, 2004, 52(2): 524~532.
    [187]冯德军,王雪松,陈志杰等.酉ESPRIT超分辨ISAR成像方法[J].电子学报, 2005, (12): 2097~2100.
    [188]刘东红,张永顺,陈志杰等.基于ESPRIT矩阵束法的UWB雷达目标特征提取[J].系统工程与电子技术, 2006, (11): 1655~1658.
    [189] Chevalier P, Ferreol A, Albera L. High-Resolution Direction Finding From Higher Order Statistics: The 2q-MUSIC Algorithm[J]. Signal Processing, IEEE Transactions on, 2006, 54(8): 2986~2997.
    [190]郭跃,王宏远,周陬.阵元间距对MUSIC算法的影响[J].电子学报, 2007, (09): 1675~1679.
    [191] Yoon Y, Amin M G. High-Resolution Through-the-Wall Radar Imaging Using Beamspace MUSIC[J]. Antennas and Propagation, IEEE Transactions on, 2008, 56(6): 1763~1774.
    [192]柳祥乐,宋岳鹏,杨汝良.采用酉ESPRIT算法处理多基线InSAR层叠效应[J].电子与信息学报, 2008, (07): 1731~1735.
    [193]陈重,崔正勤.电磁场理论基础[M].北京:北京理工大学出版社, 2003.
    [194]陈抗生.电磁场与电磁波(第2版)[M].北京:高等教育出版社, 2007.
    [195]粟毅,黄春琳,雷文太.探地雷达理论与应用[M].北京:科学出版社, 2006.
    [196]周蔚红,何建国,周东明.地下目标的瞬态电磁散射特性分析及成像[J].微波学报, 2004, (12): 49~53.
    [197] Gazdag J. Wave equation migration with the phase shift method[J]. Geophysics, 1978, 43: 1342~1351.
    [198] Lee S, Mcmechan G A, Aiken C L V. Phase shift imaging: The electromagnetic equivalent of seismic migration[J]. Geophysics, 1987, 52: 678~693.
    [199] Soumekh M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithm[M]. John Wiley&Sons,Inc., 1999.
    [200] Yee K S. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media[J]. Antennas and Propagation, IEEE Transactions on, 1966, 14(3): 302~307.
    [201] Taflove A, Brodwin M E. Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations[J]. Microwave Theory and Techniques, IEEE Transactions on, 1975, 23(8): 623~630.
    [202] Mur G. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations[J]. Electromagnetic Compatibility, IEEE Transactions on, 1981, EMC-23(4): 377~382.
    [203] Mei K K, Cangellaris A C, Angelakos D J. Conformal Time Domain Finite Difference Method[J]. Radio Science, 1984, 19(5): 1145~1147.
    [204] Kasher J C, Yee K S. A numerical example of a two dimensional scattering problem using a subgrid[J]. Applied Computational Electromagnetic Society Journal and Newsletter, 1987, 2(2): 75~102.
    [205] Luebbers R, Hunsberger F P, Kunz K S, et al. A frequency-dependent finite-difference time-domain formulation for dispersive materials[J]. Electromagnetic Compatibility, IEEE Transactions on, 1990, 32(3): 222~227.
    [206] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114: 185~200.
    [207] Berenger J P. Perfectly matched layer for the FDTD solution of wave-structure interaction problems[J]. Antennas and Propagation, IEEE Transactions on, 1996, 44(1): 110~117.
    [208] Chen Y H, Chew W C, Oristaglio M L. Application of perfectly matched layers to the transient modeling of subsurface EM problems[J]. Geophysics, 1997, 162: 1730~1736.
    [209] Gedney S D. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[J]. Antennas and Propagation, IEEE Transactions on, 1996, 44(12): 1630~1639.
    [210] Zheng F, Chen Z. Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method[J]. Microwave Theory and Techniques, IEEE Transactions on, 2001, 49(5): 1006~1009.
    [211] Cao Q, Chen Y. Scaling-function based multiresolution time domain analysis for planar printed millimetre-wave integrated circuits[J]. Microwaves, Antennas and Propagation, IEE Proceedings -, 2001, 148(3): 179~187.
    [212] Liu Q H, Li Y L, Liao J C. The PSTD algorithm: a fast and accurate time-domain method for electronic package characterization[C]. Electrical Performance of Electronic Packaging, 1997., IEEE 6th Topical Meeting on. 1997. 149~152.
    [213]余文华,苏涛等.并行时域有限差分[M].北京:中国传媒大学出版社, 2005.
    [214]张玉.电磁场并行计算[M].西安:西安电子科技大学出版社, 2006.
    [215] EMCOM I, http://www.remcom.com/. 2009.
    [216]葛德彪,闫玉波.电磁场时域有限差分方法[M].西安:西安电子科技大学出版社, 2002.
    [217] Gu X, Zhang Y H, Zhang X K. Near-Field Radar Imaging Simulation using FDTD Method[C]. Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on. 2006. 1~4.
    [218] Gu K, Wang G, Li J. Migration based SAR imaging for ground penetrating radar systems[J]. Radar, Sonar and Navigation, IEE Proceedings -, 2004, 151(5): 317~325.
    [219] Chen V C著,种劲松,余颖译.雷达成像与信号分析时频变换[M].北京:海洋出版社, 2008.
    [220] Shan T, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1985, 33(4): 806~811.
    [221] Williams R T, Prasad S, Mahalanabis A K, et al. An improved spatial smoothing technique for bearing estimation in a multipath environment[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1988, 36(4): 425~432.
    [222] Wu H, Yang J, Chen F. Source number estimators using transformed Gerschgorin radii[J]. Signal Processing, IEEE Transactions on, 1995, 43(6): 1325~1333.
    [223] Kaveh M, Barabell A. The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1986, 34(2): 331~341.
    [224] Wilkinson J H. The Algebraic Eigenvalue Problem[M]. New York, USA : Oxford University Press, Inc. , 1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700