用户名: 密码: 验证码:
复杂空间信号多维参数估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电波传播过程中会出现反射和散射等现象,使得空间信号环境变得更为复杂,传统的点源模型无法很好地描述这种信道模型,需要用分布源来描述。根据反射和散射面的粗糙等情况,分布源可分为相干分布源和非相干分布源。迄今为止,已提出了多种空间分布源模型和相应的波达方向估计方法,但其中多数方法需要多维搜索,算法复杂度高。此外,尚未见考虑多种分布形式并存时的信号模型及相应的参数估计方法。本论文对两种分布源进行了深入研究,提出了相应的参数估计方法。在此基础上,研究了多种形式信号源并存时的信号模型及相应的参数估计方法。主要研究成果如下:
     1、研究了相干分布源的高斯近似模型。根据相干分布源的近似模型可知,在小角度扩展情况下,角度扩展主要影响广义方向向量各元素的幅度。可以从广义方向向量中提取出相干分布源的相位信息以估计波达方向,从广义方向向量的幅度信息中估计角度扩展。据此分别提出了基于高阶累积量、矩阵束和二次虚拟内插的相干分布源二维波达方向估计方法。根据高阶累积量可扩展阵元的特性,利用较少阵元即可实现多个信号的参数估计。基于矩阵束的方法则利用其可提取出广义方向向量的相位信息的原理,可有效的估计相干分布源的波达方向。基于二次虚拟内插的方法可有效提高内插精度,提高相干分布源的参数估计精度。
     2、研究了非相干分布源的空间频率近似模型,根据非相干分布源的近似模型可知,在小角度扩展情况下,角度扩展主要影响阵列协方差矩阵各元素的幅度。可以从非相干分布源的协方差矩阵各元素的相位信息中估计波达方向,从协方差各元素的幅度信息中估计角度扩展。据此提出了基于协方差矩阵重构的非相干分布源波达方向和角度扩展估计方法。该方法可有效地实现非相干分布源波达方向和角度扩展的分离估计。在估计波达方向时,分别提出了利用最小均方拟合方法和MUSIC类方法两种算法。通过空间三维阵列结构设计,将MUSIC类方法成功推广到非相干分布源的二维波达方向估计中。
     3、研究了点源、相干分布源和非相干分布源共存的复合源信号模型,根据角度扩展对相干分布源广义方向向量以及非相干分布源协方差矩阵元素的影响,提出了基于SOBI的复合源信号类型盲辨识及相应的波达方向估计方法。该方法可有效地对信号源进行辨识并实施分离,在此基础上,通过利用MUSIC类方法和匹配跟踪方法,可实现各信号源的波达方向有效估计。
     4、研究了存在散射情况下的信号多维参数估计问题。根据分布源信号模型,提出了基于PRO-ESPRIT算法的多普勒频率、方位角和俯仰角的多维参数估计方法。该方法通过对阵列信号的延时,将信号的多普勒频率信息提取出来,这样可从广义方向向量的相位信息中获得相干分布源的方位角和俯仰角估计。
Wave propagation may cause reflection and scattering phenomenon, makes thespacial signal environment become complicated, the channel model can't be describedappropriately using the traditional point source model, whereas distributed source modelis needed. According to the roughness of the reflection or scattering surface, distributedsource can be classified into coherently distributed (CD) source and incoherentlydistributed (ICD) source. Up till now, numerous spatial distributed source models andcorresponding direction of arrival (DOA) estimation algorithms were proposed.However, most of the existing algorithms need multiple dimensional searches, thecomputation burden is heavy. What's more, a model which describes the coexistence ofmultiple types of sources and corresponding parameter estimation algorithm is not seenyet. This dissertation studied the two types of distributed source deeply, thecorresponding parameter estimation algorithm is proposed. Based on this, the signalmodel which describes the coexistence of multiple types of sources and correspondingparameter estimation algorithm is proposed. The main contributions of this dissertationare as follow.
     1. The Gaussian approximation model for coherently distributed source is studied.According to the approximation model for CD source, we know that, in thecircumstance of small angular spread, the angular spread mainly affects theamplitude of the general steering vector (GSV). We can extract the phaseinformation of the GSV to estimate the DOA of CD source, and estimate the angularspread of CD source from the amplitude information of the GSV. The correspondingalgorithms which based on cumulants, matrix pencil and twice virtual interpolationsmethod were proposed. According to the character of the cumulants that the arraysensors can be spread, we can realize the parameter estimation of multiple signalswith quite little sensors. The method based on matrix pencil used the character thatthe phase information of the GSV can be extracted from the received data, thusDOA for CD source can be estimated effectively. The method based on twice virtualinterpolations can improve the precision of the interpolation, thus improve the estimation precision of the parameters of CD sources.
     2. The spatial frequency model for incoherently distributed source is studied.According to the model, when the angular spread is small, the angular spread mainlyaffects the amplitude of the elements of the covariance matrix. We can estimate theDOA of incoherently distributed source from the phase of the elements of thecovariance matrix, and estimate the angular spread from the amplitude of theelements of the covariance matrix. Thus the DOA and angular spread estimationmethod for incoherently distributed source is proposed based on the reconstruct ofthe covariance matrix. This method can realize the separable estimation of DOA andangular spread for incoherently distributed source. When estimating the DOA, thealgorithms were proposed based on least square fitting and MUSIC-like algorithm,respectively. By designation of the spatial 3D array structure, the MUSIC-likealgorithm is extended to the 2D-DOA for incoherently distributed source.
     3. The composite signal model which describes the coexistence of point source,coherently distributed source and incoherently distributed source is proposed.According to the affection of the angular spread to the coherently distributed sourceand incoherently distributed source, the blind identification and DOA estimationmethod for composite source is proposed. The method can identify the sources andseparate each source effectively, based on this, by using MUSIC-like method ormatching pursuit method, the corresponding DOA for each source can be estimatedeffectively.
     4. The estimation of multiple dimensional parameters for signal sources in presence ofscattering is studied. According to the distributed source signal model, the multipledimensional parameters estimation method for the estimation of Doppler frequency,azimuth and elevation is proposed based on PRO-ESPRIT. This method can extractthe Doppler frequency information from the signal by using time delay of the arraysignal, thus we can estimate the azimuth and elevation of coherently distributedsource from the phase information of the GSV.
引文
[1]R.O.Schmit. Multiple emitter location and signal parameter estimation. IEEE Trans. Antenna Propagation. 1986,34(3):276-280.
    [2]R.Roy, T.Kailath. ESPRIT-Estimation of signal parameters via rotational invariance techniques.IEEE Trans. ASSP.1989, 37(6):984-995.
    [3]M.Viberg, B.Ottersten. Sensor array processing based on subspace fitting. IEEE Trans. Signal Processing, 1991,39(5):1110-1121.
    [4]P.Stoica, K.C.Sharman. Maximum likelihood methods for direction of arrival estimation. IEEE Trans. ASSP, 1990,38(7):l132-1143.
    [5]P.Stoica, K.C.Sharman. Novel eigenanalysis method for direction estimation. IEEE-Proceedings 1990, 137(l):19-26.
    [6]P.Stoica, T.Soderstrom. On reparametrization of loss functions used in estimation and the invariance principle. Signal Processing. 1989, 17:383-387.
    [7]S.Valaee, B.Champagne, P.Kabal. Parametric localization of distributed sources. IEEE Trans.Signal Processing. September 1995, 43(9): 2144-2153.
    [8]S.Shahbazpanahi, S.Valaee, M.H.Bastani. Distributed source localization using ESPRIT algorithm. IEEE Trans. Signal Processing. 2001, 49(10):2169-2178.
    [9]S.Shahbazpanahi, S.Valaee, A.B.Gershman. A covariance fitting approach to parametric localization of multiple incoherently distributed sources. IEEE Trans. Signal Processing. 2004,52(3):592-600.
    [10]Q.Wu, K.M.Wong, Y.Meng, et.al. DOA estimation of point and scattered sources-Vec-MUSIC.in 7~(th) SP Workshop Statistical Signal Array Processing, Quebec City, Canada, 1994:365-368.
    [11]Y.Meng, P.Stoica, K.M.Wong. Estimation of the directions of arrival of spatially dispersed signals in array processing. IEE Proc. Radar, Sonar, Navig.1996, 143(1):1-9.
    [12]T.Trump, B.Ottersten. Estimation of nominal direction of arrival and angular spread using an array of sensors. Signal Processing. 1996, 50:57-69.
    [13]O.Besson, P.Stoica. Decoupled estimation of DOA and angular spread for a spatially distributed source. IEEE Trans. Signal Processing. 2000, 48(7): 1872-1882.
    [14]A.Zoubir, Y.D.Wang, P.Charge. A modified COMET-EXIP method for estimating a scattered source. Signal Processing. 2005, 86:733-743.
    [15]M.Bengtsson, B.Ottersten. Low-complexity estimators for distributed sources. IEEE Trans.Signal Processing. 2000, 48(8): 2185-2194.
    [16]M.Bengtsson. Antenna array processing for high rank data models. Ph.D.dissertation, Sweden,Stockholm:Royal Inst. Technol., 1999.
    [17]B.Ottersten, P.Stoica, R.Roy. Covariance matching estimation techniques for array signal processing applications. Digital Signal Processing, Rev.J. 1998,8(3): 185-210.
    [18]M.Ghogho, O.Besson, A.Swami. Estimation of directions of arrival of multiple scattered sources. IEEE Trans. Signal Processing. 2001, 49(11):2467-2480.
    [19]Y.U.Lee, J.Choi, I.Song, et.al. Distributed source modeling and direction-of-arrival estimation techniques. IEEE Trans. Signal Processing. 1997, 45(4):960-969.
    [20]R.Raich, J.Goldberg, H.Messer. Bearing estimation for a distributed source: modeling, inherent accuracy limitations and algorithms. IEEE Trans. Signal Processing. 2000, 48(2):429-441.
    [21]J.Friedmann, R.Raich, J.Goldberg, etal. Bearing estimation for a distributed source of nonconstant Modulus-Bounds and analysis. IEEE Trans. Signal Processing. 2003,51(12):3027-3035.
    [22]T.P.Jantti. The influence of the extended sources on the theoretical performance of MUSIC and ESPRIT method: Narrow-band sources, ICASSP'92, San Francisco, USA, 1992,3:429-432.
    [23]A.Hassanien, S.Shahbazpanahi, A.B.Gershman. A Generalized Capon Estimator for Localization of Multiple Spread Sources. IEEE Transaction on Signal Processing. 2004,52(1):280-283.
    [24]M.Souden, SAffes, et.al. A two-stage approach to estimate the angles of arrival and the angular spreads of locally scattered sources. IEEE Trans. Signal Processing. 2008, 56(5):1968-1983.
    [25]A.Zoubir, Y.D.Wang. Efficient subspace-based estimator for localization of multiple incoherently distributed sources. IEEE Trans. Signal Processing. 2008. Vol.56(2): 532-542.
    [26]A.Zoubir, Y.D.Wang. Efficient DSPE algorithm for estimating the angular parameters of coherently distributed sources. Signal Processing. 2008. 88(4):1071-1078.
    [27]A.Zoubir, Y.D.Wang. Robust generalised Capon algorithm for estimating the angular parameters of multiple incoherently distributed sources. IET Signal Processing. 2008,2(2):163-168.
    [28]A.Zoubir, Y.D.Wang, P.Charge. On the ambiguity of COMET-EXIP algorithm for estimating a scattered source. ICASSP'05, Philadelphia, USA, 2005: 941-944.
    [29]E.H.Bae, J.S.Kim, et.al. Decoupled parameter estimation of multiple distributed sources for uniform linear array with low complexity. Electronic Letters. 2008. 44(10):649-650.
    [30]J.Lee, J.Joung, J.D.Kim. A method for the direction-of-arrival estimation of incoherently distributed sources. IEEE Trans. Vehicular Technology. 2008. 57(5):2885-2893.
    [31]J.Lee, I. Song, H.Kwon. Performance Analysis of Estimation Methods For Incoherently Distributed Source Number. MILCOM'01, Washington.D.C, USA, October, 2001:1434-1438.
    [32]A.Monakov, O.Besson. Direction finding for an extended target with possibly non-symmetric spatial spectrum. 2004, 52(1):283-287.
    [33]S.Kikuchi, H.Tsuji, A.Sano. Direction of arrival estimation for spatially non-symmetric distributed sources. IEEE Sensor Array and Multichannel Signal Processing Workshop.Darmstadt, Germany. 2004:589-593.
    [34]D.Asztely, B.Ottersten. The effect of local scattering on direction of arrival estimation with MUSIC. IEEE Trans. Signal Processing, 1999,47(12):3220-3234.
    [35]A.Ferreol, E.Boyer, X,Yin, et.al. A simple decoupled estimation of DOA and angular spread for single spatially distributed sources. EUSIPCO'06, Florance, Italy, 2006:1-5.
    [36]Y.D.Wang, A.Zoubir. Some New Techniques of Localization of Spatially Distributed Sources.ACSSC07. Monterey, California, USA, 2007: 1807-1811.
    [37]Y.W.Jin, B.Friedlander. Detection of distributed sources using sensor arrays. IEEE Trans.Signal Processing. 2004, 52(6):1537-1548.
    [38]Y.W.Jin, B.Friedlander. Reduce rank adaptive detection of distributed sources using subarrays.IEEE Trans. Signal Processing. 2005, 53(1):13-25.
    [39]S.R.Lee, I.Song, Y.U.Lee, etal. Estimation of distributed elevation and azimuth angles using linear arrays. MILCOM'96, Virginia, USA, 1996:868-872.
    [40] S.R.Lee, I.Song, Y.Lee, etal. Estimation of two dimensional DOA under a distributed model and some simulation results. IEICE Trans. Fundamentals. 1996, E79A(9):1475-1485.
    [41]J.Lee, I.Song, H.Kwon, S.R.Lee. Low-complexity estimation of 2D DOA for coherently distributed sources. Signal Processing. 2003, 83: 1789-1802.
    [42]H.Boujemaa. Extension of COMET algorithm to multiple diffuse source localization in azimuth and elevation. Euro. Trans. Telecomms. 2005.Vol(16): 557-566.
    [43]Q.Wan, Y.N.Peng. Low complexity estimator for four dimensional parameters under a reparameterized distributed source model. IEE Proc. Radar, Sonar, Navig. 2001,148(6):313-317.
    [44]Q.Wan, S.J.Liu, X.F.Ge. DOA estimation of distributed source based on Jacobi-Anger expansion. ICSP'02, Beijing China, 2002, 1:366-369.
    [45]Q.Wan, S.J.Liu, X.F.Ge, et.al. DOA estimator for multiple coherently distributed sources with symmetric angular distribution. IEEE Vehicular Technology Conference. Jeju Korea,2003:213-216.
    [46] S.J.Liu, Q.Wan, Y.N.Peng. Asymptotic performance analysis of bearing estimate for spatially distributed source with finite bandwidth. Electronic Letters. 2002, 38(24): 1600-1601.
    [47] S.J.Liu, Q.Wan, Y.N.Peng. Bearing estimation for spatially distributed sources using differential technique. IEICE Transactions on Communications. 2003. E86B(11): 3257-3265.
    [48] S.J.Liu, Q.Wan, Y.N.Peng. A low complexity robust bearing estimator using reparameterization and covariance match for the distributed source. IEEE Radio and Wireless Conference, Boston USA, 2002:51-54.
    [49] S.J.Liu, Q.Wan, Y.N.Peng. A low complexity robust bearing estimator using Toeplitz and quadric rotational invariance of covariance matrix for the distributed source. IEEE Technical conference on Computers, Communication, Control and Power Engineering, Beijing China,2002:1004-1007.
    [50] S.J.Liu, Q.Wan, Y.N.Peng. A robust bearing estimator based on Jacobi-Anger expansion for large angular spread source. IEEE Sensor Array and Multichannel Signal Processing Workshop,Washington DC USA, 2002:499-502.
    [51]X.S.Guo, Q.Wan, B.Wu, etal. Parameters localization of coherently distributed sources based on sparce signal representation. LET Radar Sonar Navig. 2007, 1(4):261-265.
    [52]X.S.Guo, Q.Wan, A.M.Huang, et.al. Fast DOA tracking of multiple scattering sources based on subspace updating. ICCCAS'07, Japan, 2007:713-717.
    [53]X. S. Guo, Q. Wan, W. L. Yang. Paramters estimation of coherently distributed sources in the presence of mutual coupling. ICSP'06, Guilin China, 2006: 16-20.
    [54]J. Tao, H. B. Xu, J. W. Tao. Closed-form direction finding for multiple scattered sources based on uniform circular arrays with trimmed vector sensor. WCICA'08, Chong Qing, China, 2008: 2392-2395.
    [55]Y. H. Han, J. K. Wang, X. Song. Decoupled estimation of the central DOA and angular spread for coherently distributed source. ICWMMN'2006, Hang Zhou, China, 2006: 1-4
    [56]Y. H. Han, J. K. Wang, X. Song, et. al. An ESPRIT-like algorithm for the central DOA estimation of distributed source. ICCT'06, Wuhan, China, 2006: 1-4
    [57]Y. H. Han, J. K. Wang, X. Song. A low complexity robust parameter estimator for distributed source. TENCON'06, Hongkong, China, 2006: 1-4
    [58]Y. H. Han, J. K. Wang, X. Song, et. al. Joint estimation of the central direction of arrival and angular spread for distributed source based on beamspace propagator. WCICA'06, Dalian, China, 2006: 1693-1696
    [59]Y. H. Han, J. K. Wang, X. Song, et. al. Direction of arrival estimation of coherently distributed sources based on unitary ESPRIT in MIMO channel models. ISCIT'05, Beijing, China, 2005: 370-373.
    [60]G. Y. Zhang, B. Tang. Decoupled estimation of 2D DOA for coherently distributed source using 3D matrix pencil method. EURASIP Journal on Advances in Signal Processing. 2008: 1-7.
    [61]G. Y. Zhang, B. Tang. Estimation of 2D-DOAs and angular spreads for coherently distributed source using cumulants. IEEE SPAWC'07, Helsinki, Finnand. 2007: 1-5.
    [62]万群.分布式目标波达方向估计方法研究.[博士学位论文].成都:电子科技大学.2000.
    [63]万群,杨万麟.一种分布式目标波达方向估计方法.通信学报.2001,22(2):65-70.
    [64]万群,杨万麟..一种相干信号源分布式目标波达方向估计方法.系统工程与电子技术.2001,23(3):.8-11.
    [65]万群,杨万麟.相干分布式目标一维波达方向估计方法.信号处理.2001,17(2):115-119.
    [66]万群,杨万麟.基于盲波束形成的分布式目标波达方向估计方法.电子学报.2000,28(12):90-93.
    [67]万群,杨万麟.相干分布式目标一维波达方向搜索迭代估计方法.电子科技大学学报.2000,29(6)583-586.
    [68]万群,杨万麟.基于盲信号分离的分布式目标DOA估计方法.电子科技大学学报.2000,29(5)457-460.
    [69]刘申健.空间分布源波达方向估计及其性能分析研究.[博士学位论文].北京:清华大学,2003.
    [70]熊维族,叶中付.一种快速的宽带分布源到达角估计算法.系统工程与电子技术.2004,26(5):665-667.
    [71]熊维族,叶中付.极化分布源模型及角度估计.数据采集与处理.2003,18(3):243-248.
    [72]熊维族,叶中付.角度分布对有效信号子空间的影响.电波科学学报.2004,19(1):7-12.
    [73]熊维族,叶中付.时间取样相关且源内角度相关的分布源模型.现代雷达.2004,26(3):21-24.
    [74]熊维族,叶中付.利用电磁矢量传感器估计分布源三维到达角.电路与系统学报.2004,9(4):36-41.
    [75]彭涛.天波超视距雷达信号参数估计方法研究.[硕士学位论文].成都:电子科技大学学报.2005.
    [76]陈洪光.稳健的阵列处理波达方向估计算法研究.[博士学位论文].长沙:国防科技大学.2005.
    [77]李强.分布源目标方位估计研究.[博士学位论文].西安:西北工业大学.2007.
    [78]李强,李志舜.一种新的非相干分布源模型及方位估计方法.声学技术.2007,26(6):910-914.
    [79]李强,李少杰,李志舜.分布源目标方位估计的降维最大似然估计.声学技术.2007,26(4):709-713.
    [80]郭贤生,万群.一种快速分布式目标波达方向估计新方法.现代雷达.2008,30(9):36-39.
    [81]韩英华,汪晋宽,宋昕等.基于Schur-Hardamard积波束域传播因子的分布式信源参数联合估计.信号处理.2008,24(4):534-537.
    [82]韩英华,汪晋宽,宋昕.相干分布式信源参数估计算法.系统仿真学报.2007,19(12):2694-2697.
    [83]韩英华,汪晋宽,宋昕.基于Schur-Hardamard积波束形成的相干分布式信源参数估计.系统工程与电子技术.2008,30(11):2099-2112.
    [84]S. Haykin. Adaptive radar signal processing. A John Wiley&Sons, Inc., Publication, New Jersey, 2007.
    [85] J.M.Mendel. Tutorial on higher-order statistics(spectra) in signal processing and system theory:theoretical results and some applications. Procedding of the IEEE, 1991, 79(3): 278-305.
    [86]M.C.Dogan, J .M.Mendel. Applications of cumulants to array processing Part Ⅰ: aperture extension and array calibration. IEEE Trans. Signal Processing. 1995, 43(5):1200-1216.
    [87] M.C.Dogan, J.M.Mendel. Applications of cumulants to array processing Part Ⅱ: non-Gaussian noise suppression. IEEE Trans. Signal Processing. 1997, 43(7):1663-1676.
    [88]E.Gonen, J.M.Mendel. Applications of cumulants to array processing Part Ⅲ: blind beamforming for cohernt signals. IEEE Trans. Signal Processing. 1997, 45(9):2252-2264.
    [89]E.Gonen, J.M.Mendel. Applications of cumulants to array processing Part Ⅳ: direction finding in coherent signals case. IEEE Trans. Signal Processing. 1997,45(9):2265-2276.
    [90]T.H.Liu, J.M.Mendel. Applications of cumulants to array processing Part Ⅴ: sensitivity issues.IEEE Trans. Signal Processing. 1999, 47(3):746-759.
    [91]E.Gonen, J.M.Mendel. Applications of cumulants to array processing Part Ⅵ: polarization and direction of arrival estimation with minimal constraned arrays. IEEE Trans. Sginal Processing.1999, 47(9):2589-2592.
    [92] P.Chevalier and A.Ferreol. On the virtual array concept for the fourth order direction finding problem. IEEE Trans. Sginal Processing. 1999,47(8):2592-2595.
    [93] P.Chevalier, LAlbera, A.Ferreol, et.al. On the virtual array concept for higher order array processing. IEEE Trans. Signal Processing. 2005, 53(4):1254-1271.
    [94] T.H.Liu, J.M.Mendel. Azimuth and elevation direction finding using arbitrary array geometries.IEEE Trans. Signal Processing. 1998, 46(7):2061-2065.
    [95]M.D.Zoltowski, C.P.Mathews. Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-temporal sampling. IEEE Trans. Signal Processing. 1994,42(10):2781-2794.
    [96] M.D.Zoltowski, D.Stavrinides. Sensor array signal processing via a procrustes rotations based on eigenanalysis of the ESPRIT data pencil. IEEE Trans. Signal Processing. 1989,37(6):832-861.
    [97] J.Y.Wang, F.Wang, Z.K.Yin. Wideband signal DOA estimation based on MP decomposition.IWSDA'07. Chengdu, China, 2007:18-21.
    [98] M.Max, T.Kailath. Detection of signals by information theoretic criteria IEEE Trans.Acoust.Speech. Sig. Proc, 1985, 33:387-392.
    [99]T. J. Shan, M. Wax and T. Kailith. On spatial smoothing for directions of arrival estimation of coherent signals. IEEE Trans. On ASSP, 1985, 33(4): 806-811
    [100]唐斌,施太和,肖先赐.一种新的空间信号三维参数可分离估计方法.信号处理.1996,12(2):174-178.
    [101]唐斌,肖先赐.一种新的信号多参数估计方法.电子科学学刊.1996,18(6):644-648.
    [102]唐斌,肖先赐.基于数据矩阵的信号频率和二维方向估计.电子科技大学学报.1996,25(3):225-230.
    [103]唐斌,肖先赐,施太和.空间信号二维到达方向估计的新方法.电子学报.1999,27(3):104-106.
    [104]唐斌,施太和,肖先赐.基于四阶累积量的空间信号2D-DOA分离估计.电子科学学刊.1998,20(6):745-749.
    [105]唐斌,肖先赐.圆阵列接收的信号二维到达方向估计.通信学报.Supplement,1999,20:279-283.
    [106]易岷,魏平,肖先赐.动目标多径回波的时延、到达角和多普勒频率联合估计.信号处理.2005,21(5):427-433.
    [107]吴湘霖,俞卞章,宋祖勋.未知噪声环境方位俯仰频率时延等四维参数联合估计方法.遥控遥测.2005,26(3):10-16.
    [108]廖桂生,保铮.一种新的旋转不变方法实现起伏目标的高分辨方向-多普勒频率盲估计.电子学报.1996,24(12):6-11.
    [109]吴云韬,廖桂生,田孝华.一种波达方向、频率联合估计快速算法.电波科学学报.2003,18(4):380-384
    [110]吴云韬,廖桂生,陈建锋.一种低复杂度的频率、时延联合估计新方法.系统工程与电子技术.2003,25(7):777-779.
    [111]李平安,孙进才,俞卞章.基于插值圆阵的宽带信号二维空间谱估计.电子科学学刊,1996,18(4):344-348.
    [112]王鼎,吴瑛.基于均匀圆阵的二维ESPRIT算法研究.通信学报,2006,27(9):89-95.
    [113]H. Chen, Y. L. Wang. A modified method of frequency and 2-D angle estimation, IEEE antennas and propagation society international symposium, Columbus, OH, USA, 2003, 22-27: 920-923.
    [114]H. Chen, Y. L. Wang, Z. W. Wu. Frequency and 2-D angle estimation based on uniform circular array. IEEE international symposium on phased array systems and technology, Boston, Massachusetts, USA, 2003, 22-27: 547-552.
    [115]N. Yilmazer, R. F. Recio, T. K. Sarkar. Matrix pencil method for simultaneously estimationg azimuth and elevation angles of arrival along with the frequency of the incoming signals. Digital Signal Processing. 2006, 16: 796-816.
    [116]N. Yilmazer, J. Koh, T. K. Sarkar. Utilization of a unitary transform for efficient computation in the matrix pencil method to fred the direction of arrival. IEEE Trans. Antennas and Propagation. 2006, 54(1): 175-181.
    [117]B. Friedlander, A. J. Weiss. Performance analysis of spatial smoothing with interpolated arrays. ICASSP'91. Toronto. ONT., Canada, 1991: 1377-1380.
    [118]B. Friedlander, A. J. Weiss. Performance analysis of wideband direction finding using interpolated arrays. ICASSP'92, San Francisco, CA, USA, 1992: 457-460.
    [119]B. Friedlander. Direction finding using spatial smoothing with interpolated arrays. IEEE Trans. on Aerospace and Electronic Systems. 1992, 28(2): 574-587.
    [120]B. Friedlander. The root-MUSIC algorithm for direction finding with interpolated arrays. IEEE Trans on Signal Processing, 1993, 41(1): 15-25.
    [121]A. J. Weiss, B. Friedlander. Performance analysis of spatial smoothing with interpolated arrays. IEEE Trans. on Signal Processing, 1993, 41(4): 1881-1892.
    [122]A. J. Weiss, M. Gavish. Direction finding using ESPRIT with interpolated arrays. IEEE Trans. on Signal Processing, 1991, 39(6): 1473-1478.
    [123]P. Hyberg, M, Jansson, B. Ottersten. Array interpolation and bias reduction. IEEE Trans. on Signal Processing, 2004, 52(10): 2711-2720.
    [124]P. Hyberg, M, Jansson, B. Ottersten. Array interpolation and DOA MSE reduction. IEEE Trans. on Signal Processing, 2005, 53(12): 4464-4471.
    [125]王永良,陈辉,彭应宁等.空间谱估计理论与算法.北京:清华大学出版社.2004.
    [126]Y. B. Hua. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Trans. Signal Processing. 1992, 40(9): 2267-2280.
    [127]Y.B.Hua, T.K.Sarkar. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acousitic, Speech and Signal Processing.1990, 38(5):814-824.
    [128]C.U.Padmini, P.S.Naidu. Circular array and estimation of direction of a wideband source.Signal Processing. 1994, 37(4):243-254.
    [129]Jakobsson, A.L.Swindlehurst and P.Stoica. Subspace-based estimation of time delays and Doppler shifts, IEEE Trans. Signal Processing. 1998, 46:2472-2483.
    [130]P.Zetterberg. Mobile cellular communications with base station antenna arrays: spectrum efficiency, algorithms and propagation models. Ph.D.dissertation, Stockholm,Sweden:R.Inst.Techno., 1997.
    [131]A.J.Paulraj, CB.Papadias. Space-time processing for wireless communications. IEEE Signal Processing Mag. 1997, 14:49-83.
    [132]D.Astely. Spatio and spatio-temporal processing with antenna arrays in wireless systems.Ph.D.dissertation, Stockholm, Sweden:R.Inst.Technol., 1999.
    [133]R.B.Ertel, P.Cardieri, K.W.Sowerby. T.S.Rappaport and J.H.Reed, Overview of spatial channel models for antenna array communication systems. IEEE Personal Communications,1998:10-22.
    [134]K.I.Pederson, P.E.Mogensen, B.H.Fleury. Analysis of time, azimuth and doppler dispersion in outdoor radio channels. in Proc. ACTS Mobile Commun. Summit, Aalborg, Denmark,1997:308-313.
    [135]K.I.Pederson, P.E.Mogensen, B.H.Fleury. A stochastic model of the temporal and azimuthal disperson seen at the base station in outdoor propagation enviroments. IEEE Trans. Vehicular Technology. 2000, 49(2):437-447.
    [136]J.P.Kermoal, L.Schumacher, KJ.Pedersen, et.al. A Stochastic MIMO Radio Channel Model With Experimental Validation. IEEE Journal on Selected Areas in Communications. 2002,20(6):1211-1226.
    [137]G.Durgin, T.S.Rappaport. Basic relationship between multipath angular spread and narrowband fading in wireless channels. Electron.Lett. 1998, 34: 2431-2432.
    [138]G. Durgin, T. S. Rappaport. Effects of multipath angular spread on the spatial cross-correlation of received voltage envelopes, in Proc. Vehicular Technolgy Conf., Houston, TX, 1999: 996-1000.
    [139]P. Petrus, J. H. Reed, T. S. Rappaport. Effects of directional antennas at the base station on the Doppler spectrum. IEEE Commun. Lett. 1997, 1: 40-42.
    [140]李欣,新一代无线通信系统中的MIMO信道建模与多天线设计研究,[博士学位论文].成都:电子科技大学,2005.
    [141]肖景明,王元坤,电波传播工程计算,西安:西安电子科技大学出版社,1989.
    [142]张瑜,电磁波空间传播,西安:西安电子科技大学出版社,2007.
    [143]A. Belouchrani, K. A. Meraim, et. al. A blind source separation technique using second-order statistics. IEEE Trans. Signal Processing. 1997, 45(2): 434-444.
    [144]P. Comon. Independent component analysis, A new concept?, Signal Processing, 1994, 36(3): 287-314.
    [145]L. Albera, A. Ferreol, P. Chevalier, et. al. ICAR: a tool for blind source separation using fourth-order statistics only, IEEE Trans. Signal Processing. 2005, 53(10): 3633-3643.
    [146]P. E. Howland. Target tracking using television-based bistatic radar. IEE Proc. -Radar Sonar Navig. 1999, 146(3): 166-174.
    [147]P. E. Howland, D. Maksimiuk, G. Reitsma. FM radio based bistatic radar. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 107-115.
    [148]K. S. Kulpa, Z. Czecala. Masking effect and its removal in PCL radar. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 174-178.
    [149]K. S. Kulpa. Multi-static entirely passive detection of moving targets and its limitations. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 169-173.
    [150]D. K. P. Tan, H. Sun, Y. Lu, et. al. Passive radar using global system for mobile communication signal: theory, implementation and measurements. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 116-123.
    [151]R. Saini, M. Chemiakov. DTV signal ambiguity function analysis for radar application. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 133-142.
    [152]D. Poullin. Passive detection using digital broadcasters (DAB, DVB) with COFDM modulation. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 143-152.
    [153]H. D. Griffiths, C. J. Baker. Passive coherent location radar systems. Part 1: Performance prediction. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 153-159.
    [154]C. J. Baker, H. D. Griffiths, I. Papoutsis. Passive coherent location radar systems. Part 2: Waveform properties. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 160-168.
    [155]M. C. Etin, A. D. Lanterman. Region-enhanced passive radar imaging, IEE Proc. -Radar Sonar Navig. 2005, 152(3): 185-194.
    [156]M. Tobias, A. D. Lanterman. Probability hypothesis density-based multitarget tracking with bistatic range and Doppler observations. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 195-205.
    [157]C. M. Hoyuela, A. J. Terzuoli, Jr, et. al. Determining possible receiver locations for passive radar. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 206-214.
    [158]A. N. Morabito, M. G. Meyer, J. D. Sahr. Inproved computational performance for distributed passive radar processing through channelised data. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 179-184.
    [159]X. He, M. Cherniakov, T. Zeng. Signal detectability in SS-BSAR with GNSS non-cooperative transmitter, IEE Proc. -Radar Sonar Navig. 2005, 152(3): 124-132.
    [160]W. C. Li, P. Wei, X. C. Xiao. TDOA and T2/R radar based target location method and performance analysis. IEE Proc. -Radar Sonar Navig. 2005, 152(3): 219-223.
    [161]M. Lesturgie. Use of dynamic radar signature for multistatic passive localisation of helicopter. IEE Proc. -Radar Sonar Navig. 2005, 152(6): 395-403.
    [162]A. Gunner, M. A. Temple, R. J. Claypoole. Direct path filtering of DAB waveform from PCL receiver target channel. Electron. Letter. 2003, 39(1): 1005-1007.
    [163]丁鹭飞,耿富录,雷达原理.西安西安电子科技大学出版社,2002.
    [164]杨振起,张永顺,骆永军,双(多)站雷达系统.北京:国防工业出版社,2001.
    [165]S. M. Kay. Fundamentals of statistical signal processing Volume Ⅰ: estimation theory, Volume Ⅱ: detection theory. Englewood Cliffs, N. J: Prentice Hall. 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700