用户名: 密码: 验证码:
微图案化表面的制备以及细胞间接触影响干细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调控细胞行为、尤其细胞黏附和干细胞分化是再生医学领域的一个研究重点,涉及到细胞生物学、医学、材料学等学科知识。迄今已有许多研究考察了生物材料模拟细胞外基质的物理、化学等特性去控制细胞的黏附,进而调控细胞的生命活动。但对细胞与细胞之间接触如何影响干细胞分化的研究则相对很少,已有研究的结论也有待确证,且不能定量给出接触程度与分化程度之间的关系。这并非因为细胞间接触对细胞生命活动不重要,在很大程度上是由于缺乏必要的研究技术手段,很难排除细胞密度变化导致的细胞自身分泌的因子浓度变化等因素的干扰。
     传统的细胞研究方式,比如在培养板上研究细胞,难以克服细胞迁移等问题,新发展起来的微图案技术则可以实现细胞定位,有助于研究细胞间接触等影响细胞生命活动的相关问题。本论文尝试了多种微图案制备方法,最终从中寻找到了一种能长时间阻止细胞迁移的微图案。我们以此首次定量考察了细胞接触程度对于干细胞定向分化的影响。我们的这些实验技术和方法,以及细胞研究结论不仅丰富了细胞学知识,也为细胞学研究提供了新的手段和途径;对再生医学领域里面诸如组织修复材料的设计、干细胞调控等提供了一些基本的实验和理论知识。
     本论文的主要创新性研究包括以下几方面:
     1.尝试了多种微图案制备方法,包括在PLGA膜上制备微拓扑形貌、PEG接枝表面制备有细胞黏附反差的化学微图案、PEG水凝胶形成的微凹坑图案、PEG水凝胶表面的化学微图案等。每种方法都反复摸索了详细的制备条件,根据细胞定位实验,从中确定了PEG水凝胶表面的化学微图案能够长时间控制细胞黏附位置,特别是阻止了细胞的迁移等运动,为后续的干细胞研究奠定了基础。其它几种方法制备的微图案,尽管不能长时间限制细胞的黏附位置,但也有各自的特点,适合于相应的细胞研究,例如微拓扑形貌可以调节细胞铺展;PEG接枝的表面可以考察短时间内的细胞形态、黏附、迁移等问题。
     2.建立了利用光学显微镜照片分析细胞内碱性磷酸酶活性的半定量分析方法。骨髓基质干细胞被定位在微图案上后成骨分化,但在同一微图案上面存在不同的细胞接触状况,比如有的细胞处于孤立状态;有的接触了一个细胞;有的接触了两个,乃至多个不等的细胞,它们的成骨分化程度存在差异,却又难以用直接测吸光度的方法来判别。比照分光光度法,我们通过染色、拍照,测量细胞灰度值,并根据吸光值计算公式,定量分析了不同细胞接触情况下的干细胞成骨分化水平。虽然我们是针对骨髓基质干细胞的成骨分化所建立的分析方法,但这个方法同样适用于其它的,能够通过染色来定性、定量分析的研究中。
     3.利用之前确定的微图案制备技术以及建立的半定量分析方法,我们考察了细胞接触对大鼠骨髓基质干细胞成骨分化和成脂分化的影响。我们在同一基底材料表面利用不同黏附圆岛导致不同细胞接触程度的技术排除了细胞密度变化导致因子浓度不同等因素的干扰。我们的结论确证了细胞接触能够促进干细胞定向分化,并首次发现这种促进作用与细胞接触程度成正比。我们还发现缝隙连接是相关细胞接触的重要因素,但并非唯一因素。
The relationship between cell communication and differentiation is a fundamental. problem of Cell Biology, which is closely related to Biomaterials and Regenerative Medicine. As cell studies are concerned, while differentiation of stem cells has been paid much attention to during the latest decade, relatively little is focused upon the relationship between cell differentiation and communication. Straightforward cell-cell contact is the most popular way of cell-cell interaction. It is, however, very hard to rule out the effects of soluble factors due to paracrine of cells and the effects of different concentrations of nutrients during cell culture, if one just examines differentiation of stem cells under a series of seeding concentration. An unambiguous research approach is thus desired.
     Among several types of techniques for fabricating micropatterns on different substrates, we eventually determined a micropattern which can localized cells for a long time. Based upon the micropatterning technique, the effect of cell-cell contact on lineage differentiation of rat bone marrow stem cells (rMSC) was revealed semi-quantitatively. Our methodology and results not only augment fundamental knowledge of Cell Biology, but also offer innovative means and instruments for cell research as well as for regenerative medicine.
     The main innovative results are listed as follows:
     1. To find a technique to prepare micropattern of adhesive contrast with a background resistant to cell adhesion for a long time. Considering that differentiation of stem cells must proceed for at least several days, an excellent adhesion-resistant background is necessary. We developed several methods to prepare micropatterns, including topographic PLGA film, a self-assembly monolayer (SAM) of poly(ethylene glycol) (PEG) molecules on glass surface, micropits formed with PEG hydrogel, micropattern on PEG hydrogel surface. Eventually, a micropattern prepared on PEG hydrogel surface was found to meet the requirement, which made examination of differentiation of localized stem cells available.
     2. To establish a semi-quantitative analysis method to evaluate the osteogenesis level of stem cells. By using grey values on different adhesion microislands on micrographs, we established a semi-quantitative analysis of the activity of the expressed alkaline phosphatase (ALP). This method is likely to be applied in other semi-quantitative analysis of optical micrographs of stained samples.
     3. To put forward a unique methodology to examine the effects of cell-cell contact between stem cells per se on their lineage differentiation while ruling out the interference of soluble factors or cell seeding concentration etc. MSCs from neonatal Sprague Dawley (SD) rats are employed as demonstration. During osteogenesis, the cells are well localized on the micropatterns which prevent or ensure cell-cell contact persistently. Both osteogenic and adipogenic differentiations were found to be regulated by cell-cell contact, isolated cells exhibited less significant differentiation than paired or aggregated cells. For those stem cells in contact, extent of differentiation was fairly linearly related to extent of contact characterized by coordination number. Additionally, we revealed the existence of some unknown cues besides gap junction responsible for such effects of cell-cell contact. While cell studies based upon patterned surface have been reported in many literatures, this is, to the best of our knowledge, the first time to semi-quantitatively investigate the relationship between extent of differentiation of stem cells and extent of cell-cell contact.
引文
1. Fagotto, F.& Gumbiner, B. M. Cell contact-dependent signaling. Developmental Biology 180,445-54 (1996).
    2. Curtis, A.& Wilkinson, C. Nantotechniques and approaches in biotechnology. Trends in Biotechnology 19,97-101 (2001).
    3. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K.& Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell 6,483-95 (2004).
    4. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M.& Ingber, D. E. Geometric control of cell life and death. Science 276,1425-8 (1997).
    5. Discher, D. E., Janmey, P.& Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310,1139-43 (2005).
    6. Engler, A. J., Sen, S., Sweeney, H. L.& Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126,677-89 (2006).
    7. Even-Ram, S., Artym, V.& Yamada, K. M. Matrix control of stem cell fate. Cell 126,645-7 (2006).
    8. Langer, R.& Vacanti, J. P. Tissue Engineering. Science 260,920-926 (1993).
    9. Lanza, R. P., Langer, R.& Vacanti, J. Principles of Tissue Engineering (Academic Press, Orlando,2000).
    10. Mistry, A. S.& Mikos, A. G. in Regenerative Medicine Ii:Clinical and Preclinical Applications 1-22 (Springer, New York,2005).
    11. Tissue engineering. Biotechniques 43,557-+(2007).
    12. Aubin, J. E. Bone stem cells. Journal of Cellular Biochemistry Supplements 30/31,73-82(1998).
    13. Beele, H. Advances in tissue engineering-a clinical perspective. Wound Repair and Regeneration 15, A112-A112 (2007).
    14. Brown, K. L. B.& Cruess, R. L. Bone and cartilage transplantation in orthopedic-surgery-a review. Journal of Bone And Joint Surgery-American Volume 64,270-279 (1982).
    15. Bucheler, M. et al. Tissue engineering of respiratory epithelium-Regenerative medicine for reconstructive surgery of the upper airways. Hno 56,275-280 (2008).
    16. Chung, C. and Burdick, J. A. Engineering cartilage tissue. Advanced Drug Delivery Reviews 60,243-262 (2008).
    17. Ferrari, G. Skeletal muscle regeneration by bone marrow-derived myogenic progenitors (vol 280, pg 1528,1998). Science 281,923-923 (1998).
    18. Ferrari, G. et al. Muscle regeneration by bone marrow derived myogenic progenitors. Science 279,1528-1530 (1998).
    19. Fyhrie, D. P. Bone tissue engineering. Journal Of The American Academy Of Orthopaedic Surgeons 15,638-638 (2007).
    20. Gitelis, S. and Saiz, P. What's new in orthopaedic surgery. Journal Of The American College Of Surgeons 194,788-791 (2002).
    21. Petersen, M. C., Lazar, J., Jacob, H. J. and Wakatsuki, T. Tissue engineering:a new frontier in physiological genomics. Physiological Genomics 32,28-32 (2007).
    22. Suuronen, E. J. et al. Cell therapy without cell transplantation:A tissue engineering approach. Canadian Journal of Cardiology 23,289C-289C (2007).
    23. Teebken, O. E., Kofidis, T., Akhyari, P. and Haverich, A. Tissue engineering: In vitro creation of tissue substitutes. Zentralblatt Fur Chirurgie 132,236-246 (2007).
    24. Vacanti, J. P. Tissue engineering:From bench to bedside via commercialization. Surgery 143,181-183 (2008).
    25. 曹谊林,刘伟,崔磊.组织工程学理论与实践(上海科学技术出版社,上海,2004).
    26. Both, S. K., Fernandes, H. A. M., Blitterswijk, C. A.& De Boer, J. Bone tissue engineering in a rat cranial critical size defect with embryonic stem cells. Tissue Engineering 13,1647-1647 (2007).
    27. Caplan, A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology 213,341-347 (2007).
    28. Fan, H. B. et al. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27, 4573-4580 (2006).
    29. Freyman, T. M., Yannas, I. V. and Gibson, L. J. Cellular materials as porous scaffolds for tissue engineering. Progress In Materials Science 46,273-282 (2001).
    30. Hattori, H. et al. Bone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold. Journal of Biomedical Materials Research Part B-Applied Biomaterials 76B,230-239 (2006).
    31. Heath, C. A. Cells for tissue engineering. Trends In Biotechnology 18,17-19 (2000).
    32. Ishaug-Riley, S. L. et al. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. Journal Of Biomedical Materials Research 36,17-28 (1997).
    33. Jackson, K. A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation 107, 1395-1402(2001).
    34. Khan, Y., Yaszemski, M. J., Mikos, A. G.& Laurencin, C. T. Tissue engineering of bone:Material and matrix considerations. Journal of Bone and Joint Surgery-American Volume 90A,36-42 (2008).
    35. Trounson, A.& Elefanty, A. Stem cells in biology, tissue engineering and medicine:the leading edge keeps moving. Current Opinion in Biotechnology 18,432-433(2007).
    36. Boyan, B. D., Hummert, T. W., Dean, D. D.& Schwartz, Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17, 137-146(1996).
    37. Eisenbarth, E. Biomaterials for tissue engineering. Advanced Engineering Materials 9,1051-1060 (2007).
    38. Fleming, J. E., Cornell, C. N.& Muschler, G. E. Bone cells and matrices in orthopedic tissue engineering. Orthopedic Clinics of North America 31,357-+ (2000).
    39. Griffith, L. G. Polymeric biomaterials. Acta Materialia 48,263-277 (2000).
    40. Hench, L. L. Biomaterials:a forecast for the future. Biomaterials 19, 1419-1423 (1998).
    41. Falconnet, D., Csucs, G., Michelle Grandin, H.& Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27,3044-63 (2006).
    42. Flaim, C. J., Chien, S.& Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nature Methods 2,119-25 (2005).
    43. Fukuda, J. et al. Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials 27,1479-86 (2006).
    44. Goto, M., Sato, K., Murakami, A., Tokeshi, M.& Kitamori, T. Development of a microchip-based bioassay system using cultured cells. Analytical Chemistry 77,2125-31 (2005).
    45. Goto, M. et al. Nanometer-scale patterned surfaces for control of cell adhesion. Analytical Science 23,245-7 (2007).
    46. Hahn, M. S. et al. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27,2519-24 (2006).
    47. Idota, N., Tsukahara, T., Sato, K., Okano, T.& Kitamori, T. The use of electron beam lithographic graft-polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment. Biomaterials 30,2095-101 (2009).
    48. Nie, Z. H.& Kumacheva, E. Patterning surfaces with functional polymers. Nature Materials 7,277-90 (2008).
    49. Raghavan, S.& Chen, C. S. Micropatterned environments in cell biology. Advanced Materials 16,1303-13 (2004).
    50. Zhu, J. M., Beamish, J. A., Tang, C., Kottke-Marchant, K.& Marchant, R. E. Extracellular matrix-like cell-adhesive hydrogels from RGD-containing poly(ethylene glycol) diacrylate. Macromolecules 39,1305-7 (2006).
    51. Graeter, S. V. et al. Mimicking cellular environments by nanostructured soft interfaces. Nano Letters 7,1413-8 (2007).
    52. Guilak, F. et al. Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix. Cell Stem Cell 5,17-26 (2009).
    53. Hersel, U., Dahmen, C.& Kessler, H. RGD modified polymers:biomaterials for stimulated cell adhesion and beyond. Biomaterials 24,4385-415 (2003).
    54. Huang, J. H. et al. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Letters 9,1111-6 (2009).
    55. Hui, E. E.& Bhatia, S. N. Micromechanical control of cell-cell interactions. Proceedings of the National Academy of Sciences of the United States of America 104,5722-6 (2007).
    56. Jang, K. et al. Surface modification by 2-methacryloyloxyethyl phosphorylcholine coupled to a photolabile linker for cell micropatterning. Biomaterials 30,1413-20 (2009).
    57. Jiang, X. Y., Bruzewicz, D. A., Wong, A. P., Piel, M. and Whitesides, G. M. Directing cell migration with asymmetric micropatterns. Proceedings of the National Academy of Sciences of the United States of America 102,975-8 (2005).
    58. Moeller, H. C., Mian, M. K., Shrivastava, S., Chung, B. G. and Khademhosseini, A. A microwell array system for stem cell culture. Biomaterials 29,752-63 (2008).
    59. Rosenthal, A., Macdonald, A. and Voldman, J. Cell patterning chip for controlling the stem cell microenvironment. Biomaterials 28,3208-16 (2007).
    60. Karp, J. M. et al. A photolithographic method to create cellular micropatterns. Biomaterials 27,4755-64 (2006).
    61. Zhang, M. Q., Desai, T. and Ferrari, M. Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 19,953-60 (1998).
    62. Jiang, X. Y., Bruzewicz, D. A., Wong, A. P., Piel, M. and Whitesides, G. M. Directing cell migration with asymmetric micropatterns. Proceedings of the National Academy of Sciences of the United States of America 102,975-978 (2005).
    63. Magnani, A., Priamo, A., Pasqui, D. and Barbucci, R. Cell behaviour on chemically microstructured surfaces. Materials Science and Engineering C-Biomimetic and Supramolecular Systems 23,315-328 (2003).
    64. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. and Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell 6,483-495 (2004).
    65. Sun, J. G. et al. Technique of Surface Modification of a cell-adhesion-resistant hydrogel by a cell-adhesion-available inorganic microarray. Biomacromolecules 9,2569-72 (2008).
    66. Balaban, N. Q. et al. Force and focal adhesion assembly:a close relationship studied using elastic micropatterned substrates. Nature Cell Biology 3,466-72 (2001).
    67. Walboomers, X. F., Croes, H. J. E., Ginsel, L. A. and Jansen, J. A. Growth behavior of fibroblasts on microgrooved polystyrene. Biomaterials 19, 1861-1868(1998).
    68. Balaban, N. Q. et al. Force and focal adhesion assembly:a close relationship studied using elastic micropatterned substrates. Nature Cell Biology 3, 466-472 (2001).
    69. Dalby, M. J., McCloy, D., Robertson, M., Wilkinson, C. D. W. and Oreffo, R. O. C. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials 27,1306-1315 (2006).
    70. Scheideler, L. et al. Investigation of cell reactions to microstructured implant surfaces. Materials Science and Engineering C-Biomimetic and Supramolecular Systems 23,455-459 (2003).
    71. Graeter, S.海德堡大学博士论文(2007).
    72. Falconnet, D., Csucs, G., Michelle Grandin, H. and Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27,3044-3063 (2006).
    73. Lin, C. C., Metters, A. T. and Anseth, K. S. Functional PEG-peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNF alpha. Biomaterials 30,4907-14 (2009).
    74. Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5,383-388 (2004).
    75. Cavalcanti-Adam, E. A. et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophysical Journal 92,2964-2974 (2007).
    76. Chen, C. S., Tan, J.& Tien, J. Mechanotransduction at cell-matrix and cell-cell contacts. Annual Review of Biomedical Engineering 6,275-302 (2004).
    77. Fiona M. Watt, P. W. J., charles H. O'Neill. cell shape controls terminal differentiation of human epidermal keratinocytes. Proceedings of the National Academy of Sciences of the United States of America 85,5576-5580 (1988).
    78. Curran, J. M., Chen, R. and Hunt, J. A. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 26,7057-67 (2005).
    79. Curran, J. M., Chen, R.& Hunt, J. A. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27,4783-93 (2006).
    80. Dalby, M. J. et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials 6,997-1003 (2007).
    81. Dalby, M. J. et al. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27,2980-7 (2006).
    82. Dalby, M. J., McCloy, D., Robertson, M., Wilkinson, C. D. W. and Oreffo, R. O. C. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials 27,1306-15 (2006).
    83. 郑国铝.《细胞生物学》(1992).
    84. Mbalaviele, G., Shin, C. S. and Civitelli, R. Cell-cell adhesion and signaling through cadherins:Connecting bone cells in their microenvironment. Journal of Bone and Mineral Research 21,1821-7 (2006).
    85. Yanagiya, T., Tanabe, A. and Hotta, K. Gap-junctional communication is required for mitotic clonal expansion during adipogenesis. Obesity 15,572-82 (2007).
    86. Zhang, J. C., Wu, L. B., Jing, D. Y.& Ding, J. D. A comparative study of porous scaffolds with cubic and spherical macropores. Polymer 46,4979-4985 (2005).
    87. Zhang, J. C., Zhang, H., Wu, L. B.& Ding, J. D. Fabrication of three dimensional polymeric scaffolds with spherical pores. Journal Of Materials Science 41,1725-1731 (2006).
    88. Yoon, S. J. et al. Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells. Tissue Engineering 13,1125-1133 (2007).
    89. Wu, L. B. and Ding, J. D. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25,5821-5830(2004).
    90. Wu, L. B. and Ding, J. D. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Journal Of Biomedical Materials Research Part A 75A,767-777 (2005).
    91. Wu, L. B., Jing, D. Y.& Ding, J. D. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials 27,185-191 (2006).
    92. Wu, L. B., Zhang, H., Zhang, J. C.& Ding, J. D. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering.Ⅰ. Compression molding based on flexible-rigid combined mold. Tissue Engineering 11,1105-1114 (2005).
    93. Vozzi, G., Flaim, C. J., Bianchi, F., Ahluwalia, A.& Bhatia, S. Microfabricated PLGA scaffolds:a comparative study for application to tissue engineering. Materials Science and Engineering C-Biomimetic And Supramolecular Systems 20,43-47 (2002).
    94. Sun, J. G., Tang, J. and Ding, J. D. Cell orientation on a stripe-micropatterned surface. Chinese Science Bulletin 54,3154-9 (2009).
    95. 丁建东.“有机高分子材料”,《实用生物医用材料学》(顾其胜,侯春林,徐政主编)第二章,41-89(上海科学技术出版社,上海,2005).
    96. 吴林波.复旦大学博士后出站报告(2003)
    97. 张俊川.复旦大学博士论文(2003)
    98. Thomson, R. C., Yaszemski, M. J., Powers, J. M. and Mikos, A. G. Fabrication Of Biodegradable Polymer Scaffolds To Engineer Trabecular Bone. Journal Of Biomaterials Science-Polymer Edition 7,23-38 (1995).
    99. Thomson, R. C., Wake, M. C., Yaszemski, M. J. and Mikos, A. G. in Biopolymers Ii 245-274 (Springer-Verlag Berlin, Berlin 33,1995).
    100. Temenoff, J. S., Lu, L. and Mikos, A. G. Bone tissue engineering using synthetic biodegradable polymer scaffolds (ed. Davies, J. E.) (em squared, Toronto,2000).
    101. Seal, B. L., Otero, T. C. and Panitch, A. Polymeric biomaterials for tissue and organ regeneration. Materials Science& Engineering R-Reports 34,147-230 (2001).
    102. Zhu, W. and Ding, J. D. Synthesis and characterization of a redox-initiated, injectable, biodegradable hydrogel. Journal of Applied Polymer Science 99, 2375-2383 (2006).
    103. Zhu, J. M., Beamish, J. A., Tang, C., Kottke-Marchant, K. and Marchant, R. E. Extracellular matrix-like cell-adhesive hydrogels from RGD-containing poly(ethylene glycol) diacrylate. Macromolecules 39,1305-1307 (2006).
    104. Wen, F., Chang, S., Toh, Y. C., Teoh, S. H.& Yu, H. Development of poly (lactic-co-glycolic acid)-collagen scaffolds for tissue engineering. Materials Science and Engineering C-Biomimetic And Supramolecular Systems 27, 285-292 (2007).
    105. Tae, S. K., Lee, S. H., Park, J. S. and Im, G. I. Mesenchymal stem cells for tissue engineering and regenerative medicine. Biomedical Materials 1,63-71 (2006).
    106. Simmons, P. J.& Torokstorb, B. Identification of stromal cell precursors in human bone-marrow by a novel monoclonal-antibody, Stro-1. Blood 78,55-62 (1991).
    107. Sanchez-Ramos, J. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology 164,247-256 (2000).
    108. Sammons, J., Ahmed, N., El-Sheemy, M.& Hassan, H. T. The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development: Effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D3. Stem Cells and Development 13,273-280 (2004).
    109. Parenteau, N. L., Rosenberg, L. and Hardin-Young, J. in Current Topics In Developmental Biology, Vol 64 101-139 (Elsevier Academic Press Inc, San Diego,2004).
    110. Harris, M. T. et al. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. Journal of Orthopaedic Research 22,998-1003 (2004).
    111. Barry, F. P. and Murphy, J. M. Mesenchymal stem cells:clinical applications and biological characterization. International Journal of Biochemistry& Cell Biology 36,568-584 (2004).
    112. Kraus, K. H.& Kirker-Head, C. Mesenchymal stem cells and bone regeneration. Veterinary Surgery 35,232-242 (2006).
    113. Rodriguez, J. P., Gonzalez, M., Rios, S.& Cambiazo, V. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. Journal of Cellular Biochemistry 93,721-731 (2004).
    114. Wang, Z., Peng, R.& Ding, J. D. Periodically discontinuous induction of bone marrow stem cells toward osteogenic differentiation in vitro. Biotechnology Progress 24,766-72 (2008).
    1. Walboomers, X. F., Croes, H. J. E., Ginsel, L. A. and Jansen, J. A. Growth behavior of fibroblasts on microgrooved polystyrene. Biomaterials 19, 1861-1868(1998).
    2. Alenghat, F. J. and Ingber, D. E. Mechanotransduction:all signals point to cytoskeleton, matrix, and integrins. Sci. STKE 2002, pe6 (2002).
    3. Yim, E. K. F. et al. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26,5405-13 (2005).
    4. Biggs, M. J. P. et al. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials 30,5094-103 (2009).
    5. Clark, P., Connolly, P., Curtis, A. S. G., Dow, J. A. T. and Wilkinson, C. D. W. Topographical control of cell behavior.1. simple step cues. Development 99, 439-48(1987).
    6. Dalby, M. J. et al. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27,2980-7 (2006).
    7. Dalby, M. J., McCloy, D., Robertson, M., Wilkinson, C. D. W. and Oreffo, R. O. C. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials 27,1306-15 (2006).
    8. Falconnet, D., Csucs, G., Michelle Grandin, H. and Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27,3044-63 (2006).
    9. Goto, M. et al. Nanometer-scale patterned surfaces for control of cell adhesion. Analytical Sciences 23,245-7 (2007).
    10. Hahn, M. S. et al. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27,2519-24 (2006).
    11. Idota, N., Tsukahara, T., Sato, K., Okano, T. and Kitamori, T. The use of electron beam lithographic graft-polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment. Biomaterials 30,2095-101 (2009).
    12. Karp, J. M. et al. A photolithographic method to create cellular micropatterns. Biomaterials 27,4755-64 (2006).
    13. Tan, J. L. et al. Cells lying on a bed of microneedles:An approach to isolate mechanical force. Proceedings of the National Academy of Sciences of the United States of America 100,1484-1489 (2003).
    14. Scheideler, L. et al. Investigation of cell reactions to microstructured implant surfaces. Materials Science& Engineering C-Biomimetic and Supramolecular Systems 23,455-459 (2003).
    15. Fan, H. B. et al. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27, 4573-4580 (2006).
    16. Jeon, Y. H. et al. Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering. Journal Of Craniofacial Surgery 18,1249-1258 (2007).
    17. Li, X. K. et al. Characteristics of PLGA-gelatin complex as potential artificial nerve scaffold (57, pg 198,2007). Colloids and Surfaces B-Biointerfaces 59, 224-224 (2007).
    18. Nie, H., Soh, B. W., Fu, Y. C.& Wang, C. H. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnology And Bioengineering 99,223-234 (2008).
    19. Vozzi, G., Flaim, C. J., Bianchi, F., Ahluwalia, A.& Bhatia, S. Microfabricated PLGA scaffolds:a comparative study for application to tissue engineering. Materials Science& Engineering C-Biomimetic and Supramolecular Systems 20,43-47 (2002).
    20. Wu, L. B.& Ding, J. D. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25,5821-5830 (2004).
    21. Wu, L. B., Zhang, H., Zhang, J. C. and Ding, J. D. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering.Ⅰ. Compression molding based on flexible-rigid combined mold. Tissue Engineering 11,1105-1114 (2005).
    22. 丁建东.“有机高分子材料”,《实用生物医用材料学》(顾其胜,侯春林,徐政主编)第二章,41-89(上海科学技术出版社,上海,2005).
    23. 张俊川.复旦大学博士论文(2003)
    24. 吴林波.复旦大学博士后出站报告.(2003).
    1. Griffith, L. G. Polymeric biomaterials. Acta Materialia 48,263-277 (2000).
    2. Zhu, J. M., Beamish, J. A., Tang, C., Kottke-Marchant, K.& Marchant, R. E. Extracellular matrix-like cell-adhesive hydrogels from RGD-containing poly(ethylene glycol) diacrylate. Macromolecules 39,1305-1307 (2006).
    3. 丁建东.“有机高分子材料”,《实用生物医用材料学》(顾其胜,侯春林,徐政主编)第二章,41-89(上海科学技术出版社,上海,2005).
    4. Tan, H., DeFail, A. J., Rubin, J. P., Chu, C. R.& Marra, K. G. Novel multiarm PEG-based hydrogels for tissue engineering. Journal of Biomedical Materials Research 92A,979-987.
    5. Salinas, C. N.& Anseth, K. S. Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. Journal Of Biomedical Materials Research Part A 90A,456-64 (2009).
    6. Akiyama, H., Ito, A., Kawabe, Y.& Kamihira, M. Cell-patterning using poly (ethylene glycol)-modified magnetite nanoparticles. Journal of Biomedical Materials Research 92A,1123-1130.
    7. Akiyama, Y., Mori, T., Katayama, Y& Niidome, T. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. Journal of Controlled Release 139,81-84 (2009).
    8. Kim, M. K. et al. Effect of poly(ethylene glycol) (PEG) graft polymerization onto polymethylmethacrylate (PMMA) on cell adhesion-In vitro and in vivo study. Iovs 41, S699 (2000).
    9. Lin, C. C., Metters, A. T.& Anseth, K. S. Functional PEG-peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNF alpha. Biomaterials 30,4907-14 (2009).
    10. Wagner, V. E., Koberstein, J. T.& Bryers, J. D. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers. Biomaterials 25,2247-2263 (2004).
    11. Shin, H.-S. et al. Biocompatible PEG Grafting on DLC-coated Nitinol Alloy for Vascular Stents. Journal of Bioactive and Compatible Polymers 24, 316-328(2009).
    12. Zhang, M. Q., Desai, T.& Ferrari, M. Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 19,953-60 (1998).
    13. Nie, Z. H.& Kumacheva, E. Patterning surfaces with functional polymers. Nature Materials 7,277-90 (2008).
    14. Falconnet, D., Csucs, G, Michelle Grandin, H.& Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27,3044-63 (2006).
    15. Magnani, A., Priamo, A., Pasqui, D.& Barbucci, R. Cell behaviour on chemically microstructured surfaces. Materials Science& Engineering C-Biomimetic and Supramolecular Systems 23,315-328 (2003).
    16. Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5,383-388 (2004).
    17. Zhu, J. M., Beamish, J. A., Tang, C., Kottke-Marchant, K.& Marchant, R. E. Extracellular matrix-like cell-adhesive hydrogels from RGD-containing poly(ethylene glycol) diacrylate. Macromolecules 39,1305-7 (2006).
    1. Sun, J. G.et al. Technique of Surface Modification of a Cell-Adhesion-Resistant Hydrogel by a Cell-Adhesion-Available Inorganic Microarray. Biomacromolecules 9,2569-72 (2008).
    2. Huang, J. H. et al. Impact of Order and Disorder in RGD Nanopatterns on Cell Adhesion. Nano Letters 9,1111-6 (2009).
    3. Sun, J. G., Tang, J.& Ding, J. D. Cell orientation on a stripe-micropatterned surface. Chinese Science Bulletin 54,3154-9 (2009).
    4. Graeter, S. V. et al. Mimicking cellular environments by nanostructured soft interfaces. Nano Letters 7,1413-8 (2007).
    1. Hughes, F. J.& McCulloch, C. A. G. stimulation of the differentiation of osteogenic rat bone marrow stromal cells by osteoblast cultures. LABORATORY INVESTIGATION 64,617-22 (1991).
    2. Jaiswal, N., Haynesworth, S. E., Caplan, A. I.& Bruder, S. P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal Of Cellular Biochemistry 64,295-312 (1997).
    3. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284,143-7 (1999).
    4. Wang, Z., Peng, R.& Ding, J. D. Periodically discontinuous induction of bone marrow stem cells toward osteogenic differentiation in vitro. Biotechnology Progress 24,766-72 (2008).
    5. Jiang, Y. H. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418,41-9 (2002).
    6. Chen, J. W. et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell And Tissue Research 319,429-438 (2005).
    7. Katagiri, T. et al. Bone Morphogenetic Protein-2 Converts The Differentiation Pathway Of C2c12 Myoblasts Into The Osteoblast Lineage. Journal Of Cell Biology 127,1755-1766(1994).
    8. Sammons, J., Ahmed, N., El-Sheemy, M.& Hassan, H. T. The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development: Effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D3. Stem Cells And Development 13,273-280 (2004).
    9. Willerth, S. M., Faxel, T. E., Gottlieb, D. I.& Sakiyama-Elbert, S. E. The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells 25,2235-2244 (2007).
    10. Charest, J. L., Jennings, J. M., King, W. P., Kowalczyk, A. P.& Garcia, A. J. Cadherin-Mediated Cell-Cell Contact Regulates Keratinocyte Differentiation. Journal of Investigative Dermatology 129,564-572 (2009).
    11. Kumar, N. M.& Gilula, N. B. The gap junction communication channel. Cell 84,381-8(1996).
    12. 郑国铝.细胞生物学(1992).
    13. Kamijo, M., Haraguchi, T., Tonogi, M.& Yamane, G. Y. The function of connexin 43 on the differentiation of rat bone marrow cells in culture. Biomedical Research-Tokyo 27,289-95 (2006).
    14. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K.& Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell 6,483-95 (2004).
    15. James S. Davidson, I. M. B. a. E. H. H. Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochemical and biophysical research communications 134,29-36 (1986).
    16. Dorshkind, K., Green, L., Godwin, A.& Fletcher, W. H. Connexin-43 Type Gap-Junctions Mediate Communication between Bone-Marrow Stromal Cells. Blood 82,38-45 (1993).
    17. Discher, D. E., Janmey, P.& Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310,1139-43 (2005).
    18. Engler, A. J., Sen, S., Sweeney, H. L.& Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126,677-89 (2006).
    19. Williams, D. F. On the mechanisms of biocompatibility. Biomaterials 29, 2941-53 (2008).
    20. Williams, D. F. On the nature of biomaterials. Biomaterials 30,5897-909 (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700