用户名: 密码: 验证码:
肺炎衣原体诱导THP-1源性巨噬细胞胆固醇代谢稳态失衡的信号机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肺炎衣原体对THP-1源性巨噬细胞胆固醇代谢的影响
     目的观察肺炎衣原体(C.pn)对人单核细胞株(THP-1)源性巨噬细胞内胆固醇含量及参与胆固醇代谢的关键基因,包括清道夫受体A1 (SR-A1)、酰基辅酶A:胆固醇酰基转移酶1(ACAT1)、ATP结合盒转运体A1 (ABCA1)和ATP结合盒转运体G1 (ABCG1)表达的影响。
     方法在宿主细胞人喉上皮癌(Hep-2)细胞内繁殖C.pn。以160nmol/L佛波酯(PMA)诱导THP-1细胞48h后,分化为巨噬细胞。随机分为5组:(1)对照组;(2)1×105IFU C.pn感染组;(3)4×105IFU C.pn感染组;(4)5×105IFU Cpn感染组;(5)1×106IFU C.pn感染组。以上各组均在50μg/ml LDL存在条件下,孵育48h。采用透射电镜法鉴定C.pn对THP-1源性巨噬细胞的感染。运用酶化学法检测细胞内总胆固醇(TC)和胆固醇酯(CE)含量,油红0染色观察细胞浆内脂滴含量及进行泡沫细胞计数,分别使用RT-PCR和Western-blot的方法检测各组细胞SR-A1、ACAT1、ABCA1/G1基因和蛋白表达。
     结果随着C.pn感染浓度的递增,细胞内的脂质含量、泡沫细胞数逐渐增加,TC和CE含量也逐渐增多,SR-A1、ACAT1基因和蛋白表达逐渐上调,而且ABCA1/G1基因和蛋白表达也逐渐下调。
     结论C.pn感染THP-1源性巨噬细胞后,通过上调SR-A1和ACAT1表达,下调ABCA1/G1表达,增加胆固醇摄入和胆固醇酯合成,减少胆固醇流出,诱导巨噬细胞内的胆固醇代谢稳态失衡。
     第二部分过氧化物酶体增殖物活化受体γ信号通路在肺炎衣原体诱导巨噬细胞胆固醇代谢稳态失衡中的作用
     目的观察PPARγ信号通路在C.pn调控巨噬细胞内胆固醇代谢关键基因SR-A1、ACAT1、ABCA1/G1表达中的作用。
     方法以160 nmol/L PMA诱导THP-1细胞48 h后,分化为巨噬细胞。随机分为4组:(1)阴性对照组;(2)阳性对照组:给予1×106IFU C.pn感染;(3)罗格列酮(PPARγ特异性激动剂)干预组:分别给予1、10、20μmol/L罗格列酮预孵2 h后,再给予1×106 IFU C.pn感染;(4)单纯罗格列酮组:单纯给予20μmol/L罗格列酮预孵2h。以上各组均在负荷50μg/ml LDL的条件下,孵育48h。运用油红O染色观察各组细胞胞浆内脂滴含量和泡沫细胞计数的变化。采用酶化学法检测各组细胞TC和CE含量的变化,分别运用RT-PCR和Western-blot的方法检测各组细胞PPARγ、ACAT1、SR-A1、ABCA1/G1基因和蛋白表达。
     结果随着C.pn感染浓度的递增,PPARγ基因和蛋白的表达逐渐下调。与阳性对照组相比,罗格列酮干预后不仅呈浓度依赖性地抑制C.pn诱导的SR-A1、ACAT1基因和蛋白表达上调,而且呈浓度依赖性地抑制C.pn诱导的ABCA1/G1基因和蛋白表达下调。提示PPAR y参与了C.pn通过调控细胞内胆固醇代谢关键基因SR-A1、ACAT1、ABCA1/G1的表达,从而破坏胆固醇代谢稳态的过程。
     结论C.pn感染部分通过PPARγ信号通路,上调ACAT1、SR-A1表达,下调ABCA1/G1表达,增加胆固醇摄入和胆固醇酯合成,减少胆固醇流出,从而诱导THP-1源性巨噬细胞胆固醇代谢稳态的失衡。
     第三部分c-Jun氨基末端激酶信号通路在肺炎衣原体诱导巨噬细胞胆固醇代谢稳态失衡中的作用
     目的观察c-Jun氨基末端激酶(JNK)在C.pn通过PPARγ信号通路调控巨噬细胞内胆固醇代谢关键基因SR-A1、ACAT1、ABCA1/G1表达中的作用。方法以160nmol/L佛波酯(PMA)诱导THP-1细胞48h后,分化为巨噬细胞。随机分为4组,(1)阴性对照组;(2)阳性对照组:给予1×106IFU C.pn感染;(3)JNK抑制剂SP600125干预组:分别给予1、10、20μmol/L的SP600125预孵2h后,再给予1×106IFU C.pn感染;(4)单纯SP600125组:单纯给予20μmol/L SP600125预孵2h。以上各组均在负荷50μg/ml LDL的条件下,孵育48h。运用酶化学法检测各组细胞内TC和CE含量的变化,采用油红O染色观察细胞胞浆内脂滴含量的变化和泡沫细胞计数。分别使用RT-PCR和Western-blot的方法检测各组PPARγ、ACAT1、SR-A1、ABCA1/G1基因和蛋白表达。
     结果与阳性对照组相比,SP600125干预后不仅呈浓度依赖性地抑制C.pn感染对PPARy表达的下调,而且呈浓度依赖性地抑制C.pn感染调控的PPARy的下游靶基因SR-A1、ACAT1、ABCA1/G1的表达(p<0.05)。提示JNK参与了C.pn通过PPARy信号通路调控SR-A1、ACAT1、ABCA1/G1的表达,破坏胆固醇代谢稳态的过程。
     结论C.pn部分通过JNK-PPARy信号通路,上调SR-A1、ACAT1基因和蛋白表达,下调ABCA1/G1基因和蛋白表达,增加胆固醇摄入和胆固醇酯合成,减少胆固醇流出,从而诱导THP-1源性巨噬细胞胆固醇代谢稳态的失衡。这可能为我们进一步探讨C.pn感染促进动脉粥样硬化的机制提供新的理论依据。
PartⅠEffects of Chlamydia pneumoniae infection on the Cholesterol Metabolism In THP-1-derived macrophages
     Objective To observe the effects of Chlamydia pneumoniae (C.pn) infection on the cholesterol metabolism in THP-1-derived macrophages.
     Methods C.pn strain AR-39 was propagated in HEp-2 cells by centrifugation-driven infection. The human THP-1 monocytic leukemia cell line differentiated to macrophages by 160 nmol/L phorbol myristate acetate (PMA) for 48 h, and then were randomly allocated into five groups:①control group;②-⑤different concentrations(1×105,4×105,5×105 and 1×106 IFU) of C.pn infection group; each group was incubated with 50μg/ml LDL for 48 h. The infection of C.pn on THP-1-derived macrophages was figured by transmission electron microscope. Lipid droplets in cytoplasm and the number of foam cells were observed by oil red O staining. The contents of intracellular total cholesterol (TC) and cholesteryl esters (CE) were measured by enzymic chromatometry. The mRNA and protein
     expressions of scavenger receptor A1 (SR-A1), acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), ATP binding cassette transporter Al (ABCA1) and G1 (ABCG1) from each group were determined by RT-PCR and Western-blot, respectively.
     Results Compared with control group, C.pn infection increased the contents of intracellular lipid droplets, the number of foam cells, TC and CE in a concentration-dependent manner. Moreover, C.pn infection not only up-regulated the mRNA and protein expressions of SR-A1 and ACAT1, but also down-regulated the mRNA and protein expressions of ABCA1 and ABCG1 in a concentration-dependent manner in LDL-treated THP-1 macrophages (all p<0.05). Higher concentrations of C.pn infection (5×105 and 1×106 IFU) group obviously cause the effects as mentioned above (p<0.05).
     Conclusion C.pn infection may destroy the homeostasis of intracellular cholesterol metabolism by increasing SR-A1 and ACAT1 expressions, and inhibiting ABCA1 and ABCG1 expressions in LDL-treated THP-1-derived macrophages, which leads to foam cell formation.
     Part II The role of peroxisome proliferator-activated receptor y pathway in Chlamydia pneumoniae-induced imbalance of cholesterol metabolism homeostasis
     Objective To investigate the effects of peroxisome proliferator-activated receptor y (PPAR y) on the expressions of SR-A1, ACAT1, ABCA1 and ABCG1 regulated by Chlamydia pneumoniae (C.pn) infection, and to discuss the pathways of C.pn-induced imbalance of cholesterol metabolism homeostasis.
     Methods THP-1 monocytes were induced into macrophages by 160 nmol/L PMA for 48 h. and then were randomly allocated into seven groups:①control group,50μg/ml low density lipoprotein (LDL) for 48 h;②C.pn infection group,50μg/ml LDL plus 1×106 IFU C.pn infection for 48 h;③Rosiglitazone (a specific PPARγligand) plus C.pn infection group, pretreatment with different concentrations of rosiglitazone (1、10、20μmol/L) for 2 h,50μg/ml LDL plus 1×106 IFU C.pn infection for 48 h;④Rosiglitazone group,20μmol/L rosiglitazone for 48 h. Lipid droplets in cytoplasm and the number of foam cells were observed by oil red O staining. The contents of intracellular cholesteryl esters were detected by enzymic chromatometry. The mRNA and protein expressions of PPARγ, SR-A1, ACAT1, ABCA1 and ABCG1 were determined by RT-PCR and Western-blot, respectively.
     Results C.pn infection suppressed the expression of PPARγat mRNA and protein levels in concentration-dependent manner in LDL-treated THP-1 macrophages (all p <0.05). From morphological and biochemical criteria, higher concentrations of rosiglitazone (10 and 20μmol/L) markedly inhibited C.pn-induced imbalance of cholesterol metabolism homeostasis and foam cell formation. Compared with C.pn infection group, not only the up-regulation of SR-A1 and ACAT1 but also the down-regulation of ABCA1 and ABCG1 at mRNA and protein levels by C.pn infection were concentration-dependently inhibited by rosiglitazone (all p<0.05).
     Conclusion C.pn infection induces imbalance of cholesterol metabolism homeostasis and foam cell formation in THP-1 derived macrophages by up-regulating SR-A1 and ACAT1 expressions and down-regulating ABCA1 and ABCG1 expressions partly via PPAR y-dependent pathway.
     PartⅢThe role of c-Jun NH2 terminal kinase pathway in Chlamydia pneumoniae-induced imbalance of cholesterol metabolism homeostasis
     Objective To investigate the effects of c-Jun NH2 terminal kinase (JNK) on the expressions of SR-A1, ACAT1, ABCA1 and ABCG1 regulated by Chlamydia pneumoniae (C.pn) infection, and to discuss the pathways of C.pn-induced imbalance of cholesterol metabolism homeostasis.
     Methods THP-1 monocytes were induced into macrophages by 160 nmol/L PMA for 48 h. and then were randomly allocated into seven groups:①control group,50μg/ml low density lipoprotein (LDL) for 48 h;②different concentrations of C.pn infection group,50μg/ml LDL plus 1×105,4×105,5×105 and 1×106 IFU C.pn infection for 48 h;③SP600125 (a specific JNK inhibitor) plus C.pn infection group, pretreatment with different concentrations of (1、10、20μmol/L) for 2 h,50μg/ml LDL plus 1×106 IFU C.pn infection for 48 h;④SP600125 group,20μmol /L SP600125 for 48 h. Lipid droplets in cytoplasm and the number of foam cells were observed by oil red O staining. The contents of intracellular cholesteryl esters were detected by enzymic chromatometry. The mRNA and protein expressions of PPARγ, SR-A1, ACAT1, ABCA1 and ABCG1 were determined by RT-PCR and Western-blot, respectively.
     Results From morphological and biochemical criteria, higher concentrations of SP600125 (10 and 20μmol/L) markedly inhibited C.pn-induced imbalance of cholesterol metabolism homeostasis and foam cell formation. Compared with C.pn infection group, not only the down-regulation of PPAR y, but also the regulation of the taget genes of PPAR y (SR-A1, ACAT1, ABCA1 and ABCG1) at mRNA and protein levels by C.pn infection were concentration-dependently inhibited by SP600125(all p<0.05).
     Conclusion C.pn infection induces imbalance of cholesterol metabolism homeostasis and foam cell formation in THP-1 derived macrophages by up-regulating SR-A1 and ACAT1 expressions and down-regulating ABCA1 and ABCG1 expressions partly via JNK-PPARγdependent pathway.
引文
1. Saikku P, Leinonen M, Mattila K, et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet,1988,332(8618):983-986.
    2. Strachan DP, Carrington D, Mendall MA, et al. Relation of chlamydia pneumoniae serology to mortality and incidence of ischaemic heart disease over 13 years in the caerphilly prospective heart disease study. BMJ,1999,318 (7190):1035-1039
    3. Kuo CC, Shor A, Campbell LA, et al. Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis,1993,167 (4):841-849.
    4. Thomas M, Wong PDY, Thomas D, et al. Relation between direct detection of chlamydia pneumoniae DNA in human coronary arteries at postmortem examination and histological severity of associated atherosclerotic plaque. Circulation,1999,99:2733-2736
    5. Kathariana E, Tom GP, Saldeen. Relationship of chlamydia pneumoniae infection to severity of human coronary atherosclerosis. Circulation,2000,101:256-257
    6. Gaydos CA, Summersgill JT, Sahney NN, et al.Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immunol,1996,64:1614-1620.
    7. Dechend R, Maass M, Gieffers J, et al. Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF 2kappa B and induces tissue factor and PAI 21 expression:a potential link to accelerated arteriosclerosis. Circulation,1999,100: 1369-1373.
    8. Blessing E, Campbell LA, Rosenfeld ME, et al. Chlamydia pneumoniae infection accelerates hyperlipidemia induced atherosclerotic lesion development in C57BL/6J mice, Atherosclerosis,2001,158(1):13-17.
    9. Gluseppina C, Martin R, Antonino N, et al. Chlamydia pneumonia Infection does not induce or modiy atherosclerosis in mice. Circulation,2001,103:2834-2838.
    10. Grayston JT, Kuo CC, Wang SP, et al. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med,1986,315(3):161-168.
    11. Grayston JT, Wang SP, Kuo CC, et al. Current knowledge on Chlamydia pneumoniae, strain TWAR, an important cause of pneumonia and other acute respiratory diseases. Eur J Clin Microbiol Infect Dis,1989,8(3):191-202.
    12. Byrne GI, Kalayoglu MV. Chlamydia pneumoniae and atherosclerosis:links to the disease process. Am Heart J,1999,138:488-490.
    13.金俊飞,杨永宗.肺炎衣原体对C57BL/6J小鼠腹膜巨噬细胞泡沫化的影响.中国病理生理杂志,2000,16:730-733
    14. Metzler B, Schett G, Kleindienst R, et al. Epitope specificity of anti 2heat shock protein 65/60 serum antibodies in atherosclerosis. Arterioscler Thromb Vasc Biol,1997,17: 536-541.
    15. Ezzahiri R, Stassen FR, Kurvers HA,et al. Chlamydia pneumoniae infection induces an unstable atherosclerotic plaque phenotype in LDL2receptor, Apo E double knockout mice. Eur J Vasc Endovasc Surg,2003,26:88-95.
    16. Kalayoglu MV, Hoerneman B, LaVerda D, et al. Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae. J Infect Dis,1999,180 (3):780-790.
    17. Fong IW. Value of animal models for Chlamydia pneumoniae-related atherosclerosis.. Am Heart J,1999,138:512-513.
    18. Kalayoglu MV, Miranpuri GS, Golenbock DT, et al. Characterization of low-density lipoprotein uptake by murine macrophages exposed to Chlamydia pneumoniae. Microbes Infect,1999,1(6):409-418.
    19. Buhman KF, Accad M, Farese RV. Mammalian acyl-COA:cholesterol acyltransferases. Biochim Biophys Acta,2000,1529(1-3):142-154.
    20. Chang TY, Chang CC, Lin S, et al. Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and-2. Curr Opin Lipidol,2001,12 (3):289-296.
    21.何平,成蓓,彭雯,等.泡沫细胞形成过程中酰基CoA:胆固醇酰基转移酶1活性改变及其机制研究.中华心血管病杂志,2004,32(2):158-160.
    22.何平,成蓓,戚本玲.酰基辅酶A:胆固醇酰基转移酶1反义寡核苷酸对泡沫细胞形成的影响.中国病理生理杂志,2008,24(8):1616-1619.
    23. Geng YJ, Kodama T, Hansson GK. Differential expression of scavenger receptor isoforms during monocyte-macrophage differentiation and foam cell formation. Arterioscler Thromb,1994; 14(5):798-806.
    24. Suzuki H, Kufihara Y, Takeya M, et al. A role for the macrophage scavenger receptors in atheroselerosis and suseeptihility to infection. Nature,1997,386(6622):292-296.
    25. Wang N,Silver DL,Thiele C,et al.ATP-binding cassette transpoter A1(ABCA1) functions as a cholesterol efflux regulatory protein.Biol Chem,2001,276(26):23742-23747.
    26. Kennedy MA, Barrera GC,Nakamura K,et al.ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation.Cell Metab,2005,1(2):121-131.
    27. Yvan-Charvet L, Ranalletta M, Wang N, et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest, 2007,117(12):3900-3908.
    28. Van Eck M, Singaraja RR, Ye D, et al. Macrophage ATP-binding cassette transporter A1 overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol,2006,26(4):929-934.
    29. Scidmore MA, Fischer ER, Hackstadt T. Sphingolipids and glycoproteins are differentially trafficked to the chlamydia trachomatis inclusion.J Cell Biol,1996,134(2):363-374.
    30. Barbier O, Torra IP, Duguay Y,et al.Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2002,22(5):717-726.
    31. Moore KJ, Rosen ED, Fitzgerald ML, et al. The role of PPAR-garamain macrophage differentiation and cholesterol uptake.Nal Med,2001,17(1):41-47.
    32. Chawla A,Biosvert WA,Lee CH,et al.A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis[J].Mol cell Biol,2001;7(1):161-171.
    33. Nakamura K,Kennedy M A,Baldan A,et al.Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein[J]. The Journal of biological chemistry,2004, 279(44):45980-45989.
    34.白志峰,成蓓,李长运,等.PPARγ对单核/巨噬细胞酰基辅酶A:胆固醇酰基转移酶-1表达效应的研究.中国老年学杂志,2004,24(8):717-720.
    35. Kim YH, Choi SY, Suh JH, et al. The effect of Chlamydia pneumoniae on the expression of peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells. Yonsei Med J,2008,49 (2):230-236.
    36. Kitazawa T, Fukushima A, Okugawa S, et al.Chlamydophilal antigens induce foam cell formation via c-Jun NH2-terminal kinase[J].Microbes and Infection,2007,9(12-13): 1410-1414.
    37. Camp HS, Tafuri SR, and Leff T. C-Jun N-Terminal Kinase Phosphorylates Peroxisome Proliferator-Activated Receptor-gl and Negatively Regulates Its Transcriptional Activity. Endocrinology,1999,140(1):392-397.
    38. Ran YIN, Yu-gang DONG, Hong-liang LI. PPARγ phosphorylation mediated by JNK MAPK:a potential role in mac-rophage-derived foam cell formation[J]. Acta Pharmacologica Sinica,2006,27(9):1146-1152.
    1. Vainio S, Ikonen E. Macrophage cholesterol transport:a critical player in foam cell formation. Ann Med,2003,35(3):146-155.
    2.潭健苗,杨永宗,袁中华,等.巨噬细胞源性与肌源性泡沫细胞的不同特性研究.广州医学院学报,2001,29(2):25-29.
    3.何平,成蓓,王洪星,等.酰基辅酶A胆固醇酰基转移酶1基因过表达对泡沫细胞形成的影响.中国动脉硬化杂志,2007,15:325-328.
    4. Jessup W, Gelissen IC, Gaus K, et al. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol,2006,17(3):247-257.
    5. Cavellier C, Lorenzi I, Rohrer L, et al. Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta,2006,1761(7):655-666.
    6. Out R, Hoekstra M, Habets K, et al. Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels. Arterioscler Thromb Vasc Biol,2008, 28(2):258-264.
    7. Out R, Jessup W, Le Goff W, et al. Coexistence of foam cells and hypocholesterolemia in mice lacking the ABC transporters A1 and G1. Circ Res,2008,102(1):113-120.
    8. Watson C, Alp NJ. Role of Chlamydia pneumoniae in atherosclerosis. Clin Sci (Lond),2008, 114(8):509-531.
    9. Shor A, Kuo CC, Patton DL. Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S Afr Med J,1992,82(3):158-161.
    10. Dugan JP, Feuge RR, Burgess DS. Review of evidence for a connection between Chlamydia pneumoniae and atherosclerotic disease. Clin Ther,2002,24(5):719-735.
    11. Kuo CC, Gown AM, Benditt EP, et al. Detection of Chlamydia pneumoniae in aortic lesions of atherosclerosis by immunocytochemical stain. Arterioscler Thromb,1993,13 (10):1501-1504.
    12. Roblin PM, Dumornay W, Hammerschlag MR. Use of HEP-2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clinical Microbiology,1992,30 (8):1968-1971.
    13. Mukhopadhyay S, Clark AP, Sullivan ED, et al. Detailed protocol for purification of Chlamydia pneumoniae elementary bodies. J Clin Microbiol,2004,42(7):3288-3290.
    14.王淳本,宗义强,吴万生,等.两步超速离心法快速分离血浆极低密度脂蛋白及低密度脂蛋白.同济医科大学学报,1995,24(3):169-171.
    15. Chen Q, Esterbauen H, Jurgegns G. Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination. Biochem J,1992, 288 (pt 1):249-254.
    16. Auwerx J. The human leukemia cell line, THP-1:a multifaceted model for the study of monocyte-macrophage differentiation. Experientia,1991,47(1):22-31.
    17. Wada Y, Sugiyama A, Yamamoto T, et al. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions. Arterioscler Thromb Vasc Biol,2002,22(10):1712-1719.
    18. Fogelman AM, Shechter I, Seager J, et al. Malondialdehyde alteration of low density lipoprotein leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA,1980,77(4):2214-2218.
    19. Saikku P, Leinonen M, Tenkanen L, et al. Chronic Chlamydial pneumoniae infection as a risk factor for coronary heart disease in the Helsin-ki heart study. Ann Intern Med,1992, 116:273-278.
    20.王宗仁,郑瑾,马爱玲,等.中药芪丹通脉片对动脉粥样硬化大鼠主动脉内皮细胞及PAI21表达影响[J].第四军医大学学报,2004,25(14):1290-1293.
    21. Kalayoglu MV, Byrne GI. Induction of macrophage foam cell formation by Chlamydia pneumoniae. J Infect Dis,1998,177 (2):725-729.
    22. Cheung MC, Wolfbauer G, Kennedy H, et al. Plasma phospholipid transfer protein activity in patients with low HDL and cardiovascular disease treated with simvastatin and niacin. Biochem Biophys Acta,2001,1537:117-124.
    23. Pennings M, Meurs I, Ye D, et al. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. FEBS Lett,2006,580 (23):5588-5596.
    24. Hihunen TP, Luoma JS, Nikkari T, et al. Expression of LDL receptor, VLDL Receptor, LDL Receptor-related protein, and scavenger Receptor in Rabbit Atherosclerotic lesions. Circulation,1998,97(11):1079-1086.
    25. Chang TY, Chang CC, Lin S, et al. Roles of mammalian acyl-CoA:cholesterol acylt ransferase-1 and 2. Curr Opin Lipidol,2001,12(3):289-296.
    26. Wang N, Silver DL, Thiele C, et al. ATP-binding cassette transpoter A1(ABCA1) functions as a cholesterol efflux regulatory protein.Biol Chem,2001,276(26):23742-23747.
    27. Kennedy MA, Barrera GC, Nakamura K, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation.Cell Metab,2005,1(2):121-131.
    28. Kalayoglu MV, Hoerneman B, LaVerda D, et al. Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae. J Infect Dis,1999,180 (3):780-790.
    29. Kalayoglu MV, Miranpuri GS, Golenbock DT, et al. Characterization of low-density lipoprotein uptake by murine macrophages exposed to Chlamydia pneumoniae. Microbes Infect,1999, 1(6):409-418.
    30. Suzuki H, Kufihaa'a Y, Takeya M, et al. A role for the macrophage scavenger receptors in atheroselerosis and suseeptihility to infection. Nature,1997,386 (6622):292-296.
    31. Febbraio M, Hajjar DP, Silverstein RL. CD36:a class B scavenger receptor involved in angiogenesis, atherosclerosis, inftammation, and lipid metabolism. J Clin Invest,2001, 108(6):785-791.
    32. Hihunen TP, Luoma JS, Nikkari T, et al. Expression of LDL receptor, VLDL Receptor, LDL Receptor-related protein, and scavenger Receptor in Rabbit Atherosclerotic lesions. Circulation,1998,97(11):1079-1086.
    33.何平,成蓓,戚本玲.酰基辅酶A:胆固醇酰基转移酶1反义寡核苷酸对泡沫细胞形成的影响.中国病理生理杂志,2008,24(8):1616-1619.
    34. Scidmore MA,Fischer ER,Hackstadt T. Sphingolipids and glycoproteins are differentially trafficked to the chlamydia trachomatis inclusion. J Cell Biol,1996,134(2):363-374.
    35. Castrillo A, Joseph SB, Vaidya SA, et al. Crosstalk between LXR and Toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell,2003, 12(4):805-816.
    1. Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature,2008,454(7203):470-477.
    2. Lee CH, Olson P, Evans RM. Minireview:lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology,2003,144 (6):2201-2207.
    3. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism andinflammation. Inflamm Res, 2000,49(10):497-505.
    4. Kuusisto J, Andrulionyte L, Laakso M. Atherosclerosis and cardiovascular risk reduction with PPAR agonists. Curr Atheroscler Rep,2007,9 (4):274-280.
    5. Feige JN, Gelman L, Michalik L, et al. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res,2006,45(2):120-159.
    6. Moore KJ, Rosen ED, Fitzgerald ML, et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nal Med,2001,17 (1):41-47.
    7.白志峰,成蓓,李长运,等.PPARγ对单核/巨噬细胞酰基辅酶A:胆固醇酰基转移酶-1表达效应的研究.中国老年学杂志,2004,24(8):717-720.
    8. Bouhlel MA, Staels B, Chinetti-Gbaguidi G. Peroxisome proliferator-activated receptors--from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. J Intern Med,2008,263(1):28-42.
    9. Kim YH, Choi SY, Suh JH, et al. The effect of Chlamydia pneumoniae on the expression of peroxisome proliferator activated receptor-y in vascular smooth muscle cells. Yonsei Med J, 2008,49(2):230-236.
    10. Huang B, Dong Y, Mai W, et al. Effect of Chlamydia pneumoniae infection and hyperlipidaemia on the expression of PPAR y, P50 and c-Fos in aortic endothelial cells in C57BL/6J mice. Acta Cardiol,2005,60 (1):43-49.
    11. Chawla A, Barak Y, Nagy L, et al. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med,2001,7(1): 48-52.
    12. Blaschke F, Bruemmer D, Law RE.Will the potential of peroxisome proliferator activated receptor agonists be realized in the clinical setting. Clin Cardiol,2004,27(4):3-10.
    13. Chinetti G, Lestavel S, Fruchart JC, et al. Peroxisome proliferator-activated receptor alpha reduces cholesterol esterification in macrophages.Circ Res,2003,92(2):212-217.
    14. Ikeda Y, Sugawara A, Taniyama Y, et al. Suppression of rat thromboxane synthase gene transcription by peroxisome proliferator-activated receptor gamma in macrophages via an interaction with NRF2. J Biol Chem,2000,275 (42):33142-33150.
    15. Guan Y, Zhang Y, Breyer MD. The role of PPARs in the transcriptional control of cellular processes. Drug News and Perspective,2002,15:147-154.
    16. Barbier O, Torra IP, Duguay Y, et al. Pleiptropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol,2002,22(5):717-726.
    17. Kuusisto J, Andrulionyte L, Laakso M. Atherosclerosis and cardiovascular risk reduction with PPAR agonists. Curr Atheroscler Rep,2007,9 (4):274-280.
    18. Chinetti G, Fruchart JC, Staels B, et al. Peroxisome proliferator-activated receptors:new targets for the pharmacological modulation of macrophage gene expression and function. Curr Opin Lipidol,2003,14(5):459-468.
    19. Chawla A, Biosvert WA, Lee CH, et al. A PPAR gamma-LXR-ABCA 1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol cell Biol,2001,7(1): 161-171.
    20. Nakamura K, Kennedy MA, Baldan A, et al. Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. The Journal of biological chemistry,2004,279(44): 45980-45989.
    21. Winther MPJ, Dijk KWV, Havekes LM, et al. Macrophage scavenger receptor classA:a multifunctional receptor in atherosclerosis. Artefioscler Thromb Vasc Biol,2000,20(2): 290-297.
    22. Lefebvre AM, Peinado-Onsurbo J, Leitersdor FI, et al. Regulation of lipoprotein metabolism by thiazolidinediones occurs through a distinct but complementary mechanism relative to fibrate. Arterioscler Thromb Vasc Biol,1997,17(9):1756-1764.
    23. Jandeleit-Dahm KA, Calkin A, Tikellis C, et al. Direct antiatherosclerotic effects of PPAR agonists. Curr Opin Lipidol,2009,20 (1):24-29.
    24. Villacorta L, Schopfer FJ, Zhang J, et al. PPAR gamma and its ligands:therapeutic implications in cardiovascular disease. Clin Sci (Lond),2009,116(3):205-218.
    25. Chen S, Sorrentino R, Shimada K, et al. Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and-independent signaling and is reciprocally modulated by liver X receptor activation. J Immunol,2008,181(10):7186-7193.
    26. Ricote M, Valledor AF, Glass CK. Decoding Transcriptional Programs Regulated by PPARs and LXRs in the Macrophage:Effects on Lipid Homeostasis, Inflammation, and Atherosclerosis. Arterioscler Thromb Vasc Biol,2004,24(2):230-239.
    27. Pelton PD, Patel M, Demarest KT. Nuclear receptors as potential targets for modulating reverse cholesterol transport. Curr Top Med Chem,2005,5:265-282.
    28. Rigamonti E, Helin L, Lestavel S, et al. Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages. Circ Res,2005, 97(7):682-689.
    29. Li AC, Glass CK. PPAR-and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res,2004,45(12):2161-2173.
    30. Kim YH, Choi SY, Suh JH, et al. The effect of Chlamydia pneumoniae on the expression of peroxisome proliferator activated receptor-γ in vascular smooth muscle cells. Yonsei Med J, 2008,49(2):230-236.
    31. Huang B, Dong Y, Mai W, et al. Effect of Chlamydia pneumoniae infection and hyperlipidaemia on the expression of PPAR γ, P50 and c-Fos in aortic endothelial cells in C57BL/6J mice. Acta Cardiol,2005,60 (1):43-49.
    1. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by st ress and inflammation. Physiol Rev,2001,81:807-869.
    2. Jin H, Axtell M, Dahlbeck D, et al. NPK1,an MEKK1 like mitogen activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell, 2002,3:291-297.
    3. Ling MT, Wang X, Ouyang XS, et al. Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth. Oncogene,2002,21: 8498-8505
    4. Lee KH, Hyun MS, Kim JR. Growth factor-dependent activa-tion of the MAPK pathway in human pancreatic cancer:MEK/ERK and p38 MAP kinase interaction in uPA synthesis. Clin Exp Metastasis,2003,20:499-505
    5. Nichols A, Camps M, Gillieron C, et al. Substrate recognition domains within extracellular signal regulated kinase mediate binding and catalytic activation of mitogen activated protein kinase phosphatase 3. J Biol Chem,2000,275: 24613-24621.
    6. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell,2000,103: 239-252.
    7. Kitazawa T, Fukushima A, Okugawa S, et al. Chlamydophilal antigens induce foam cell formation via c-Jun NH2-terminal kinase. Microbes and Infection,2007,9:1410-1414.
    8. Camp HS, Tafuri SR, and Leff T. C-Jun N-Terminal Kinase Phosphorylates Peroxisome Proliferator-Activated Receptor-gl and Negatively Regulates Its Transcriptional Activity. Endocrinology,1999,140(1):392-397.
    9. Ge C, Xiao G, Jiang D, et al. Identification and Functional Characterization of ERK/MAPK Phosphorylation Sites in the Runx2 Transcription Factor. J Biol Chem,2009, 284,32533-32543.
    10. Isoda M, Kanemori Y, Nakajo N, et al. The Extracellular Signal-regulated Kinase-Mitogen-activated Protein Kinase Pathway Phosphorylates and Targets Cdc25A for SCF{beta}-TrCP-dependent Degradation for Cell Cycle Arrest. Mol Biol Cell,2009, 20,2186-2195.
    11. Pages G, Lenorm and P, L'Allemain G,et al. Mitogen-activated proein kinase p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad,1993,90: 8319-8323.
    12. Xia Z, Dickens M, Rainge J, et al. Opposing effects of ERK and JNK-p38 MAP kinase on apoptosis. Science,1995,270:13326-13331.
    13. Wang CH, Tang CW, Liu CL, Tang LP. Inhibitory effect of octreotide on gastric cancer growth via MAPK pathway. World J Gastroenterol,2003,9:1904-1908.
    14. Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs. TIBS, 1995,20:117
    15. Krull M, Klucken AC, Wuppermann FN. Signal transduction pathways activated in endothelial cells following infection with chlamydia pneumoniae. J Immunol,1999,162: 4834-4841.
    16. Bea F, Puolakkainen MH, McMillen T, et al. Chlamydia pneumoniae induces tissue factor expression in mouse macrophages via Activation of Egr-1 and the MEK-ERK1/2 Pathway. Circ Res,2003,92:394-401
    17. Jiang SJ, Kuo CC, Berry MW, et al. Identification and Characterization of Chlamydia pneumonia-specific proteins that activate tumor necrosis factor alpha RAW 264.7 murine macrophages. Infect Immun.2008,76:1558-1564.
    18. Xia HH, He H, De Wang J, et al. Induction of apeptosis and cell cycle arrest by a specific c-Jun NH2-terminal kinase (JNK) inhibitor, SP-600125, in gastrointestinal cancers. Cancer Latt,2006,241:268-274.
    19. Vamecq J, Latrtlffe N. Medical significance of peroxisome proliferator-activated receptors. J Lancet,1999,354:141-148.
    20. Yin R, Dong YG, Li HL. PPARy phosphorylation mediated by JNK MAPK:a potential role in mac-rophage-derived foam cell formation. Acta Pharmacologica Sinica,2006,27: 1146-1152.
    21. Ahn KS, Sethi G, Aggarwal BB. Nuclear factor-kappa B:from clone to clinic. Curr Mol Med,2007,7:619-637.
    22. Necela BM, Su M, Thompson EA, Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-actived receptor gamma and nuclear factor-kappa B in macrophages. Immunology,2008,125:344-358.
    23. Ferreira V, van Dijk KW, Groen AK, et al. Macrophage-specific inhibition of NK-kappaB activation reduces foam-cell formation. Atherosclerosis,2007,192:282-290.
    24. Tobias P, Curtiss LK. Paying the price for pathogen protection:toll receptors in atherogenesis. J Lipid Res,2005,46(3):404-411.
    25. Joyee AG, Yang X. Role of toll-like receptors in immune responses to chlamydial infections. Curr Pharm Des,2008,14(6):593-600.
    26. Rodriguez N, Wantia N, Fend F, et al. Differential involvement of TLR2 and TLR4 in host survival during pulmonary infection with Chlamydia pneumoniae. Eur J Immunol, 2006,36(5):1145-1155.
    27. Bulut Y, Faure E, Thomas L, et al. Chlamydial Heat Shock Protein 60 activates macrophages and endothelial cells through Toll-Like receptor 4 and MD2 in a MyD88-dependent Pathway. J Immun,2002,168 (3):1435-1440.
    28. Cao F, Castrillo A, Tontonoz P, et al. Chlamydia pneumoniae-induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun,2007,75(2):753-759.
    7 Moulder JW. Interaction of chlamydiae and host cells in vitro. Microbiol. Rev.1991, 55:143-190.
    8 Wolf K, Fischer E, Hackstadt T. Ultrastructural analysis of developmental events in Chlamydia pneumoniae-infected cells. Infect Immun,2000,68:2379-2385.
    9 Godzik KL, O'Brien ER, Wang SK, Kuo CC. In vitro susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae. J Clin Microbiol,1995,33:2411-2414
    10 Dechend R, Maass M, Gieffers J, Dietz R, Scheidereit C, Leutz A, et al. Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF 2kappa B and induces tissue factor and PAI 21 expression:a potential link to accelerated arteriosclerosis. Circulation,1999,100:1369-1373.
    11 Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC. Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immunol,1996,64:1614-1620.
    12 Leinonen M. Pathogenetic mechanisms and epidemiology of Chlamydial pneumoniae. Eur Heart J,1993,14:57-61.
    13 Saikku P, Leinonen M, Mattila K, et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet,1988,332:983-986.
    14 Manuel M, Stefan K, Johann W, et al. Infections, immunity and atherosclerosis. Circulation,2000,102:833-839.
    15 Arcari CM, Craydos CA, Nieto FJ, et al. Association between Chlamydia pneumonia and Acute Myocardial I nfarction in Young Men in the United States Military:The importance of Timing of Exposure Measurement. Clin Infect Dis,2005,40:1123-1130.
    16 Ramirez JA. Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae/Atherosclerosis Study Group. Ann Intern Med,1996,125:979-982.
    17 Grayston JT, Kuo CC, Campbell LA, et al. Chlamydia pneumoniae and cardiovascular disease. Cardiology,1997,42:1145-1151.
    18 Leinonen M, Linnanmaki E, Mattila K, et al. Circulating immune complexes containg chlamydia lipopolysaccharidein acute myocardial infarction. Microb Pathog,1990,9:67-73.
    19 Joseph B, Muhlestein, Jeffrey L, et al. Infection with Chlamydia pneumonia accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model. Circulation,1998,97:633-636.
    20 Blessing E, Lin TM, Campbell LA, et al. Chlamydia pneumoniae induces inflammatory changes in the heart and aorta of normocholesterolemic C57BL/6J mice. Infect Immun,2000, 68:4765-4768.
    21 Grayston JT. Background and current knowledge of Chlamydia pneumoniae in atherosclerosis. J Infect Dis,2000,181:402-410.
    22 Krayenbuehl PA, Wiesli P, Maly FE, et al. Progression of peripheral arterial occlusive disease is associated with Chlamydia pneumoniae seropositivity and can be inhibited by antibiotic treatment. Atherosclerosis,2005,179:103-110.
    23 Gupta S, Leatham EW, Carrington D et al. Elevated Chlamydia pneumoniae antibodies, cardiovascular events and azithromycin in male survivors of myocardial infarction. Circulation,1997,96:404-407.
    24 Gurfinkel E, Bozovich G, Beck E, et al. Treatment with antibiotic roxithromycin in patients with non-Q-wave coronary syndromes. The final report of the ROXIS study. Eur Heart J, 1999,20:121-127.
    25 Muhlestein JB, Anderson JL, Carlquist JF, et al. Randomized secondary prevention trial of azithromycin in patients with coronary artery disease:primary clinical results of the ACADEMIC study. Circulation,2000,102:1755-1760.
    26 Ngeh J, Anand V, Gupta S. Chlamydia pneumoniae and atherosclerosis-what we know and what we don't. Clin Microbiol Infect,2002,8:2-13.
    27 Sessa R, Nicoletti M, Di Pietro M, et al. Chlamydia pneumoniae and atherosclerosis:current state and future prospectives. Int J Immunopathol Pharmacol,2009,22:9-14.
    28 Gupta S, Camm AJ. Chlamydia pneumoniae, antimicrobial therapy and coronary heart disease. Coronary Artery Disease,1998,9:339-343.
    29 Byrne GI, Kalayoglu MV. Chlamydia pneumoniae and atherosclerosis:links tothe disease process. Am Heart J,1999,138:488-490.
    30金俊飞,杨永宗.肺炎衣原体对C57BL/6J小鼠腹膜巨噬细胞泡沫化的影响.中国病理生理杂志,2000,16:730-733.
    31 Metzler B, Schett G, Kleindienst R, vander-Zee R, Ottenhoff T, Hajeer A, et al. Epitope specificity of anti-heat shock protein 65/60 serum antibodies inatherosclerosis. Arterioscler Thromb Vasc Biol,1997,17:536-541.
    32 Ezzahiri R, Stassen FR, Kurvers HA, et al. Chlamydia pneumoniae infection induces an unstable atheroscleroticplaque phenotype in LDL-receptor, ApoE double knockout mice. Eur J VascEndovasc Surg,2003,26:88-95.
    33 Fong IW. Value of animal models for Chlamydia pneumoniae-relatedatherosclerosis. Am Heart J,1999,138:512-513.
    34 Kaul R, Wenman WM. Chlamydia pneumoniae facilitates monocyte adhesion to endothelial and smooth muscle cells. Microbial Pathog,2001,30:149-155.
    35 Krull M, Klucken AC, Wuppermann FN, et al. Signal transduction pathways activated in endothelial cells following infection with Chlamydia pneumoniae. J Immunol,1999,162 (8): 4834-4841.
    36 Shi Y, Tokunaga O. Chlamydia pneumoniae (C. pneumoniae) infection upregulates atherosclerosis-related gene expression in human umbilical vein endothelial cells (HUVECs). Atherosclerosis,2004,177:245-253.
    37 Krull M, Kramp J, Petrov T, et al. Differences in cell activation by Chlamydophila pneumoniae and Chlamydia trachomatis infection in human endothelial cells. Infect Immun, 2004,72:6615-6621.
    38 Villegas E, Sorlozano A, Camacho A, et al. Chlamydophila pneumoniae:from proteomics to atherosclerosis. Enferm Infect Microbiol Clin,2008,26:629-637.
    39 Cunningham AF, Ward ME. Characterization of human humoral responses to the major outer membrane protein and OMP2 of Chlamydophila pneumoniae. FEMS Microbiol Lett,2003, 277:73-79.
    40 Huittinen T, Leinonen M, Tenkanen L, et al. Autoimmunity to human heat shock protein 60, Chlamydia pneumoniae infection, and inflammation in predicting coronary risk. Aterioscler Thromb Vasc Biol,2002,22:431-437.
    41 Kol A, Lichtman AH, Finberg RW, et al. Cutting edge:heat shock protein (HSP) 60 activates the innate immune response:CD 14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol,2000,164:13-17.
    42 Kalayoglu MV, Indrawati, Morrison RP, et al. Chlamydial virulence determinants in atherogenesis:the role of chlamydial lipopolysaccharide and heat shock protein 60 in macrophage-lipoprotein interactions. J Infect Dis,2000,181:483-489.
    43 Yamaguchi H, Haranaga S, Widen R, et al. Chlamydia pneumoniae Infection Induces Differentiation of Monocytes into Macrophages. Infect Immun,2002,70:2392-2398.
    44 Kalayoglu MV, Byrne GI. A Chlamydia pneumoniae component that induces macrophage foam cell formation is Chlamydial lipopolysaccharide. Infect Immun,1998,66:5067-5072.
    45 Kalayoglu MV, Miranpuri GS, Golenbock DT, et al. Characterization of low-density lipoprotein uptake by murine macrophages exposed to Chlamydia pneumoniae. Microbes Infect,1999,1:409-418.
    46 Castrillo A, Joseph SB, Vaidya SA, et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell,2003, 12:805-816.
    47 Kol A, Sukhova GK, Lichtman AH, et al. Chlamydial heat shock protein 60 localizes in hu man atheroma and regulates macrophage tumor necrosis factor-α and matrix metalloproteinase expression. Circulation,1998,98:300-307.
    48 Coombes BK, Chiu B, Fong IW, et al. Chlamydia pneumoniae infection of endothelial cells induces transcriptional activation of platelet-derived growth factor-B:a potential link to intimal thickening in a rabbit model of atherosclerosis. J Infect Dis,2002,185:1621-1630.
    49 Vehmaan-Kreula P, Puolakkainen M, Sarvas M, et al. Chlamydia pneumoniae proteins induce secretion of the 92-kDa gelatinase by human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol,2001,21:E1-E8.
    50 Krull M, Klucken AC, Wuppe rmann FN, et al. Signal transducti on pathways activated in endothelial cells following infection wi h Chlamydiapneumoniae. J Immunol,1999,162:4 834-4841.
    51 Jiang SJ, Kuo CC, Berry MW, et al. Identification and characteriz ation of Chlamydia pneu moniae specific proteins that activate tumor necrosis factor alpha production in RAW 264.7 murine macrophages. Infect Immun,2008,76:1558-1564.
    52 Paterson DL, Hall J, Rasmussen SJ, et al. Failure to detect Chlamydia pneumoniae in atherosclerotic plaques of Australian patients. Pathology,1998,30 (2):169-172.
    53 Zhang L, Ishikawa Y, Akasaka Y, et al. Limited association of Chlamydia pneumoniae detection with coronary atherosclerosis. Atherosclerosis,2003,167 (1):81-88
    54 O'Connor CM, Dunne MW, Pfeffer MA, et al. Azithromycin for the secondary prevention of coronary heart disease events:the WIZARD study:a randomized controlled trial. JAMA, 2003,290(11):1459-1466.
    55 Andraws R, Berger JS, Brown DL. Effects of antibiotic therapy on outcomes of patients with coronary artery disease:A meta-analysis of randomized controlled trials. JAMA,2005,293 (21):2641-2647.
    56 Grayston JT, Kronmal RA, Jackson LA, et al.Azithromycin for the secondary prevention of coronary events. N Engl J Med,2005,352 (16):1637-1645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700