用户名: 密码: 验证码:
风荷载作用下输电线塔—高边坡稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高边坡的稳定分析一直以来是边坡工程中的重难点问题,外来的扰动对高边坡产生的影响引起的边坡失稳现象时有发生,因此在工程建设中对高边坡的稳定分析十分重要。本文结合广贺高速公路路堑高边坡实例,首次在高边坡的动力稳定性分析中,综合考虑风荷载—输电线塔作用,分析高边坡坡顶矗立的高压输电线塔在风荷载作用下对边坡岩体及开挖过程产生的影响。
     输电线塔的高柔特性,使其对风的影响特别敏感,因此,当输电线塔受到风荷载作用产生振动时,这种振动势必会经由输电线塔向基底传递,从而对其基础下高边坡的稳定性产生影响。论文基于Davenport风速谱理论,介绍了脉动风的计算理论与公式,阐述了脉动风的线性滤波法与谐波叠加法等模拟方法,采用谐波叠加法并结合MATLAB软件,对顺风向脉动风进行了数值模拟,得到了相关的风速和风荷载时程曲线;应用有限元软件ANSYS建立了输电塔线—高边坡实体模型,将模拟的风荷载时程加载到输电线塔模型上,计算风荷载对输电塔线—高边坡体系的稳定影响。计算模型综合考虑了输电塔身与输电导线的耦合作用,将输电导线采用附加质量法简化到输电塔顶端,输电塔身杆件作梁单元处理,输电线塔受到风荷载产生的振动,经由桩土非线性接触面传递至边坡,产生对边坡岩体的扰动作用,从而对边坡岩体原始状态及开挖过程进行了加风载和不加风载的的计算分析。原始边坡受到的主要应力是输电塔与边坡自身的重力的影响,集中在自由坡面与输电塔基周围的土体处,开挖后,由于岩体卸载造成的应力释放,使得坡面及土层交界处位移及应变变化较大;原始边坡及开挖过程加载风荷载后,对于坡面及土层交界处的位移及应变变化明显,甚至开挖后的边坡在加载后出现了剪切错动带;采取锚杆加固后,边坡位移与应变变化得到了明显控制。
     通过分析风荷载对边坡岩体及边坡开挖过程的稳定性影响,以期能对实际工程起到一定的参考意义。
Stability analysis of slope always is the difficult point of slope engineering, and landslip happens occasionally when external disturbances works on high slope, it is necessary to analyze stability of high slope when engineering construct. The text combined practical project, cutting slope of Guang-He high speed road, considering comprehensively interaction of wind-load to transmission tower in slope stability first time, and analyzing stability of slope and cutting slope which under transmission tower.
     Transmission tower and line system is important to country people's life. As a kind of high-rise and flexibility structure, transmission tower is sensitive to wind load, so wind-load is as the most important control load to transmission tower and line, its influential action is significant and can not be ignored. When wind-load acts on tower, generated vibration transfer to foundation, which would influence on stability of high slope. Therefore analysis in the stable effect of high slope which is caused by tower under wind load is a very necessary for new topic.
     Combining an example of high cutting slope in the sixth section of Guang-He high speed road, which power transmission tower stands on top of high slope, and analyzing dynamic stable influence of the high slope. But it is too complicated and there are too much problems in the analysis progress, not only referring to vibrated interaction results from wind load to transmission tower, but also involing in interaction between high slope and transmission tower which caused by transmission tower vibration. It is nesessary to adopt reliability theory and methods in order to reflect practical situation in engineering and get more pricise result. The text is adopted finite element microsoft ANSYS to built model which includes transmission tower and high slope and calculate with finite element method. Transmission tower is tall and flexibility which causes it is sensitive to wind load, consequently simulation of wind load is the key to analysis of transmission tower and line. The paper is based on Devonport theory, employed CAWS(Constant Amplitude Eave Superposition) and adopted software MATLAB to simulate wind speed time series and wind load time series. Then wind load time series is loaded on transmission tower model in ANSYS. The transmission tower and line model considers coupling function between transmission tower and line, while transmission line is applied to added mass method and transmission tower is treated with beam element. Vibration caused by transmission tower under wind load passes to slope through nonlinear contact interface between foundation pile and soil, it would lead to disturbance in slope.
     Finally conditions of slope and cutting slope under or not under wind load were calculated and analyzed, and results were compared to get influence in disturbanced slope under wind load. The conclusions in the paper which is wished to refer to actual project cases.
引文
[1]郑颖人,陈祖煜,王恭先,凌天清.边坡与滑坡治理工程[M].北京:人民交通出版社.2007.
    [2]章勇武;马惠民.山区高速公路滑坡与高边坡病害治理防治技术实践[M].北京:人民交通出版社.2007
    [3]马惠民,王恭先,周德培.山区高速公路高边坡病害治理防治实例[M].北京:人民交通出版社.2006
    [4]蒋爵光.铁路工程地质学[M].北京:中国铁道出版社.1991
    [5]John Krahn. Stability Modeling with SLOPE/W An Engineering Methodology. GEO-SLOPE/W Internationa Ltd. Canada,2004
    [6]Bishop,A.W. The Use of The Slip Circle in The Stability Analysis of Slopes[J]. Geotechnique. London.1955, Vol.5(1)
    [7]Morgenstern N. R. and Price. V. E. The Analysis of the Stability of General Slip Surface[J].Geotechnique,1965,15(1):36-51
    [8]Lee W.Abrarnson, Thomas S. Lee. Slope Stability and Stabilization Methods. A Wiley-Interscience Publication.2001
    [9]Duncan J M. State of the art:limit equilibrium and finite element analysis of slopes. Journal of Geotechnical and Geoenvironmental Engineering,1996,122(7):577-596.
    [10]Naylor D J. Finite element and slope stability. Numerical Methods in Geomechnics.D. Reidel Publishing Company, Dordrecht, Holland,1982
    [11]Fredlund D G, Scoular R E G. Using limit equilibrium concepts in finite element slope stability analysis. Prceedings of the International Symposium on Slope Stability Engineering, Rotterdam, Balkema,1999,31-47
    [12]殷宗泽,吕擎峰.圆弧滑动有限元土坡稳定分析.岩土力学,2005,26(10):1525-1529
    [13]Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated viscoplasticity and plasticity in soil mechanics. Geotechnique,1975,25(4):671-689
    [14]Ugai K. A method of calculation of total factor of safety of slope by elasto-plastic FEM. Soils and Foundations,1989,29(2):190-195
    [15]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应力.防灾减灾工程学报,2003,23(3):1-8
    [16]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用.岩石力学与工程学报,2004,23(19):3381-3388
    [17]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].东北工学院出版社,1991
    [18]Itasca Consulting Group, Inc. FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimension) User's Manuals, Version2.1, Minneapolis, Minnesota,2002
    [19]石根华.块体系统不连续变形数值分析方法[M].北京:科学出版社,1993
    [20]裴觉民.数值流形方法与非连续变形分析[J].岩石力学与工程学报,1997,16(3)
    [21]H. Max Irvine. Cable Structures[M].The MIT Press,1981
    [22]S. Ozono, J. Maeda. In plane dynamic interaction between a tower and conductors at lower frequencies[J].Eng. Struct.1992,14(4):210-216
    [23]Mononobe, H. A. et al. Seismic stability of the earth dam, Proc.2nd Congress on large dams, Washington DC. IV,1936
    [24]李宏男.输电塔-电缆体系的合理抗震简图[J].地震工程与工程振动,1989,10(2):73-87
    [25]李宏男,王前信.大跨越输电塔体系的动力特性[J].土木工程学报,1997,30(5):28-36
    [26]曹枚根,徐忠根.输电塔线体系抗震研究现状及前瞻[C].全国首届防震减灾工程学术研讨会.广州.2004.
    [27]Shinozuka M, Jan C M. Digital simulation of random process and its application[J]. Journal of Sound and Vibration.1972,25(1):111-128
    [28]Iannuzzi A. Spinelli P. Artificial wind generation and structural response[J].Journal of Structural Engineering, ASCE 1987.113(12):2382-2398
    [29]王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(2):41-52
    [30]Samaras E, Shinozuka M, Tsurui A. ARMA representation of random process[J].J. of Engineering Mechanics. ASCE,1985.111(3):449-461
    [31]Naganuma T, Deodatis G, Shinozuka M. ARMA model for two dimensional process[J]. Journal of Engineering Mechanics, ASCE,1987,113(2):234-251
    [32]Mignolet P M, Spanos P D. Recursive simulation of stationary multivariate random process[J]. Transactions of the ASME, Journal of Applied Mechanics,1987,54:674-680
    [33]Mignolet M P. Spanos P D. Simulation of homogeneous two dimensional random fields:part 1-AR to ARMA models[J]:part2-MA to ARMA models[J]. Journal of Applied Mechanics, Transactions of the ASME,1992,59.partl:260-269;part2:270-277
    [34]Paola M D. Digital simulation of wind field velocity[J]. J. Wind Eng. Ind. Aerodyn.1998,74-76;91-109
    [35]Lamb H. On the propagation of tremor over the surface of an elastic solid. Philosn[J]. Trans. Roy. Soc. Ser. A,1904,203:1-42
    [36]Reissner E. Stationare axial symmetrische durch eine schuttelndemassee rtregte schwinguugen eines homogenen dlastischen halbraumes[J]. Ingenious Arch,1936,7(6):381-396
    [37]Lysmer J, Richart F E. Dynamic response of footings to vertical loading[J]. Soil Mech. Found. Div. ASCE,1966,92(1):65-91
    [38]Paramelee R A. Building-foundation interaction effects[J]. Engineering Mechanics Div,ASCE,1967,93(2):131-152
    [39]Wolf J P, Chongmin Sond. Dynamic-stiffness matrix in time domain of unbound medium by infinitesimal finite element cell method[J]. Earthquake Engineering and Structural Dynamics,1994,23(10):1235-1249
    [40]Han Y C. Dynamic vertical response of piles in nonlinear soil[J]. Journal of Geotechnical and Geo-environmental Engineering,ASCE,1997,123(8):710-716
    [41]Bernal D, Youseff A. A hybrid time-frequency domain formulation for nonlinear soil-structure interaction [J]. Earthquake Engineering and Structural Dynamic,1998,27(6):670-685
    [42]陈镕,薛松涛,王远功,秦岭.土-结构相互作用对结构风振响应的影响[J].岩石力学与工程学报.2003,22(2):309-315
    [43]徐静,李宏男.考虑SSI的输电塔-线体系地震反应分析[D].大连:大连理工大学防灾减灾工程及防护工程.2008
    [44]Goodman R F, Taylor R L, Brekke T L. A model for the mechanics of jointed rock. Journ Soil Mech & Found Div ASCE,1986,94(SM3):637-660
    [45]Clough G W, Duncan J M. Finite element analysis of retaining wall behavior. Journ Soil Mech & Found Div ASCE,1971,97(SM12):1657-1674
    [46]Desai C S, Zaman M M. Thin layer element for interfaces and joints. Int Journ for Num & Analy Meth in Geomech,1984,8(1):19-34
    [47]Boulon M, Nova R. Modeling of soil structure interface behavior:A comparison between elastoplastic and rate-type laws. Computers and Geotechnics.1990(9):21-46
    [48]殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学模拟[J].岩土工程学报.1994,16(3):15-22
    [49]Lysmer J, Waas G. Shear waves in plane infinite structures[J]. Eng Mech ASCE,1972.(82):85-105
    [50]廖振鹏.建筑物对竖向地面运动的反馈影响和暂态透射边界的研究[J].地震工程与工程振动(试刊).1980.(2):9-25
    [51]Lysmer J, Kahlemeyer R L. Finite dy namic model for infinite media[J]. Eng Mech ASCE.1972,95(EM4):859-877
    [52]Kunar R R, Beresford P J, Cundall P A. A tested soil-structure model for surface interactionpp[J]. Meerat, India, Sarita, Prakshan,1977,1:137-144
    [53]Mononobe N, Takata A and Matumura M. Seismic stability of the earth dam. Section and Congress on Large Dams, Washington.1936:435-442
    [54]Newmark N M. Effects of earthquakes on dams and embankments[J]. Geotechnique.1965,15(2):139-160
    [55]Chowdury R N. Developments in geotechnical engineering[M].Slope analysis.1978
    [56]Crawford A W, Curran J H. The influence of shear velocity on the frictional resistance of rock discontinuities[J]. Int J Rock Mech Min Sci&Geomech Abstr,1981.81:505-515
    [57]Ling H I, Leshchinsky D. Seismic stability and permanent displacement of landfill cover system[J]. J Geotech Engrg,1997,123(2):113-122
    [58]Kumsar H, Aydan O, Ulusay R. Dynamic and static stability assessment of rock slopes against wegde failures[J].Rock Mechanics and Rock Engrg.2000,33(1):31-51
    [59]王思敬,张菊明.边坡岩体动态稳定性的初步探讨[J].地质科学.1982,(2):162-170
    [60]王存玉.地震条件下二滩水库岸坡稳定性研究[M].岩体工程地质力学问题.科学出版社.1987
    [61]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报.1998,20(2):66-68
    [62]祁生文,伍法权,孙进忠.边坡动力响应规律研究[J].中国科学(E)增刊.2003.(33):28-40
    [63]毕继红,吴丽艳.列车荷载对桥梁及桩基下边坡的动力作用[J].岩土工程学报.2005,27(12):1458-1462
    [64]徐力群,沈振中,俞凯加.思林水电站通航建筑物高边坡稳定分析和评价.岩土力学.2008,29(11):42-46
    [65]GB50009—2001.建筑结构荷载规范[S].北京:中国建筑工业出版社.2002
    [66]赵滇生,金三爱.有限元模型对输电塔架结构动力特性分析的影响[J].特种结构.2004.21(3):8-11
    [67]Prasad Rao N, Kalyanaraman V. Nonlinear behavior of lattice panel of angle towers. Journal of Constructional Steel Research,2001,57(12):1337-1357
    [68]李宏男,胡大柱,路颖超.输电铁塔交叉斜材非线性极限承载力研究.特种结构,2004,21(3):22-24
    [69]Duncan J M. State of the art:limit equilibrium and finite element analysis of slope[J]. Journal of Geotechnical engineering,ASCE,1996,122(7)
    [70]柳国环,李宏男.高压输电塔-线体系风致动力响应分析与优化控制[J].中国电机学院.2008:28(19):131-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700