用户名: 密码: 验证码:
多孔形状记忆合金的相变机理和力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能材料是信息科学与材料科学相结合的产物,是材料科学领域一个非常重要的分支。由于形状记忆合金具有伪弹性和形状记忆效应等许多特有的性能,形状记忆合金及其复合材料引起了智能材料研究领域的广泛关注,并提出了智能形状记忆合金复合材料的概念。
     本构关系的研究是应用与发展这类材料的关键性问题,本文基于复合材料力学和细观力学的基本理论,分别对功能梯度形状记忆合金和多孔形状记忆合金的相变机理和力学性能进行研究。具体工作如下:
     将功能梯度形状记忆合金材料考虑为如下两种情况:一种是陶瓷和形状记忆合金组成的梯度复合材料,该材料既具有陶瓷材料的耐热性能又具有形状记忆合金的特殊力学特性;另一种是本身具有梯度特性的形状记忆合金材料。本文首先结合复合材料平均化理论和已有形状记忆合金的本构关系,分析了变温作用下陶瓷形状记忆合金功能梯度材料的力学性能。结果表明,与纯弹性金属陶瓷功能梯度复合材料相比,梯度形状记忆合金材料的最大应力明显降低,从而提高了材料的力学性能。对于本身具有梯度性能的形状记忆合金材料,则是采用Tresca屈服准则与实体形状记忆合金的本构关系相结合,分析了内压力作用下的功能梯度形状记忆合金筒的相变过程和力学性能,所得结果与有限元模拟吻合很好,能够为功能梯度形状记忆合金的设计和应用提供理论基础。
     静水压力对实体形状记忆合金材料的变形和相变影响很小且可以忽略。然而对于多孔形状记忆合金,由于材料内部有孔隙的存在,在受到外力作用时会产生应力集中现象,这样就会导致材料内部的孔隙附近会产生应力集中,突变的应力值可使其孔隙附近提前发生相变。本文首先对多孔SMA相变机理进行研究,分析了静水压力和偏应力单独作用于多孔形状记忆合金的情况,得到了多孔形状记忆合金的相变点分布位置和马氏体体积分数的变化规律。基于J2-I1理论,提出了一种近似的多孔形状记忆合金屈服方程和本构模型。基于Gurson理论和塑性扩展理论,推导了一种考虑静水压力下的多孔形状记忆合金的屈服方程和本构关系。两种方法的模拟结果均与实验吻合很好,且与已有细观力学模型相比,初始相变点更接近实验值。
As one of the important parts of the material science, intelligent material is developed by the combination of information and material. Shape memory alloy (SMA) has attracted great interest in the field of composite materials for the native abilities including pseudoelasticity and shape memory effect. What's more, the concept of 'intelligent SMA composite' has been proposed recently.
     The constitutive relations of these materials have been a crucial issue for application of these smart materials. In this dissertation, combined the composite mechanics and the micromechanical theory, transformation behaviors and mechanical properties for functionally graded SMA and porous SMA are developed. The main works are as follows:
     Some of the recent efforts have focused on incorporating the metal-ceramic FGM utilizing SMA as the metallic phase. By developing such a composite, the transformation capabilities of the SMA can be combined with the heat resisitant of ceramic and have great potential to be used in new sensor technology, information technology and the emerging field of smart materials systems. An analytical methodology combining averaging technique of composites and an SMA constitutive model is developed to determine the transformation properties of the FG-SMA composite. The results obtained from the analyses of such a composite show that after transformation the stress in the SMA composite is lower than in the case of pure elastic composite under the same thermal loading. This decrease stress can result in an increase in temperature resistance and improved mechanical properties of SMA composites. Considering the Tresca yield function and the constitutive model of SMA materials, Analytical solutions are derived for the pseudoelastic re-sponse of a functionally graded SMA thick-walled cylinder subjected to internal pressure. This work will be explored through a parametric study on SMA composites design.
     It is well known that the phase transformation characteristics of dense SMA are independent of hydrostatic stress, while the macroscopic behavior of porous SMAs are significantly affected by hydrostatic stress because of stress concentrations caused by the existence of voids. And the phase transformation for porous SMAs occurs earlier than that of dense SMAs. Therefore, it is necessary to develop a model accounting for hydrostatic stresses to describe the constitutive relationship of porous SMAs. The cases under pure hydrostatic stress and pure deviatoric stress are analyzed respectively, and the relationships between martensite volume fraction and different stresses are then obtained. Base on the J2-I1theory, the approximate yield function and constitutive model for porous SMA are obtained. Based on Gurson's theory and dilatational plasticity theory, the analytical solution of the yield function and constutive model for porous SMA are finally obtained. Numerical results are compared with the experimental data and both show good agreement with the published experimental data. Importantly, the transformation initiation stress is much closer to the experiment data.
引文
[1]姚康德.智能材料.天津.天津大学出版社.1996.6
    [2]陶宝祺.智能材料结构.北京.国防工业出版社.1997.4
    [3]杨大智.智能材料与智能系统.天津.天津大学出版社.2000.3
    [4]杜善义,冷劲松,王殿富.智能材料系统和结构.北京.科学出版社.2001.5
    [5]Kurdjumov G. V., Khandros L. G. First reports of the thermoelastic behaviour of the martensitic phase of Au-Cd alloys. Doklady Akademii Nauk SSSR.1949,66:211-213.
    [6]Buehler W. J., Gilfrich J. V, Wiley R. C. Effects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of Applied Physics.1963,34(5): 1475-1482.
    [7]Wang F. E., Buehler W. J., Pickart S. J. Crystal structure and a unique "martensitic" transition of TiNi. Journal of Applied Physics.1965,36(10):3232-3239.
    [8]Doonkersloot H. C, Vucht V., Martensitic transformations in Au-Ti, Pd-Ti and Pt-Ti alloys. Journal of Less-Common Metals.1970.20:83-91.
    [9]Melton K., Mercier O., Deformation behavior of NiTi-based alloys. Metallic Tras.9A.1978. 9(10):1487-1488
    [10]Weschler M. S, Lieberman DS, Read JR. On the theory for the formation of martensite. Transaction of ASME.1976.5:1503
    [11]Lagoudas D. C. Shape memory alloys. Springer Science+Business Media, LLC 2008
    [12]贡长生,张克立.新型功能材料.北京:化学工业出版社,2001.1
    [13]Patoor E., Amrani M. E., Eberhardt A., Bervieller M. Determination of the origin for the dissymmetry observed between tensile and compression tests on shape memory alloys. Journal de Physique IV.1995,5(C2):495-500.
    [14]Sittner P., Novak V.. Anisotropy of Cu-based shape memory alloys in tension/compression thermomechanical loads. Journal of Engineering Materials and Technology.1999,121(1): 48-55.
    [15]Gall K., Sehitoglu H., Chumlyakov Y. I., Kireeva I.V. Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi. Acta Materialia.1999, 47(4):1203-1217
    [16]Sittner P., Lukas" P., et al. In situ neutron diffraction studies of martensitic transformations in NiTi polycrystals under tension and compression stress. Materials Science and Engineering: A.2004,378(1-2):97-104.
    [17]Adharapurapu R., Jiang F. Response of NiTi shape memory alloy at high strain rate:A systematic investigation of temperature effects on tension-compression asymmetry. Acta Materialia.2006.54(17):4609-4620.
    [18]Dolce M., Cardone D. Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion. International Journal of Mechanical Sciences.2001.43(11):2631-2656.
    [19]Sun Q. P., Li Z. Q. Phase transformation in superelastic NiTi polycrystalline micro-tubes undertension and torsion-from localization to homogeneous deformation. International Journal of Solids Structures.2002,39:3797-3809.
    [20]Thamburaja P., Anand L. Superelastic behavior in tension-torsion of an initially-textured Ti-Ni shape-memory alloy. International Journal of Plasticity.2002.18:1607-1617
    [21]Grabe C., Bruhns O.T. Tension/torsion tests of pseudoelastic polycrystalline NiTi shape memory alloys under temperature control. Materials Science Engineering A.2008,481-482: 109-113.
    [22]Peng X., Pi W., Fan J. A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs. International Journal of Plasticity.2008.24:966-990.
    [23]Raniecki B., Rejzner J., Lexcellent C. Anatomization of hysteresis loops in pure bending of ideal pseudoelastic SMA beams. International Journal Mechanical Sciences.2001.43(5): 1339-1368.
    [24]Rejzner J., Lexcellent C., Raniecki B. Pseudoelastic behaviour of shape memory alloy beams under pure bending:experiments and modeling. International Journal Mechanical Sciences. 2002.44(4):665-686.
    [25]Lim T. J., McDowell D. L. Mechanical behavior of a Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading. Journal Of Engineering Materials And Technology.1999.121 (1):9-18
    [26]Bouvet C., Calloch S., Lexcellent C. Mechanical behavior of a Cu-Al-Be shape memory alloy under multiaxial proportional and nonproportional loadings. Journal of Engineering Materials And Technology.2002.124(1):112-124.
    [27]Thamburaja P., Anand L. Polycrystalline shape-memory materials:effect of crystallographic texture. Journal of the Mechanics Physics of Solids.2001.49:709-737.
    [28]Grabe C., Bruhns O.T. Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes. International Journal of Plasticity.2009.25:513-545
    [29]朱玉平.形状记忆合金力学本构模型若干问题研究.北京.北京交通大学.2010:10-13
    [30]刘芹,任建亭,姜节胜,郭运强.SMA本构模型及其应用的研究进展.力学进展.2007.37:189-204
    [31]Patoor E., Lagoudas D. C., Entchev P. B., Brinson L. C., Gao X. Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials.2006.38(5-6): 391^129
    [32]Lagoudas D. C., Entchev P. B., Popov P., Patoor E., Brinson L. C., Gao X., Shape memory alloys, Part II:Modeling of polycrystals. Mechanics of Materials.2006.38(5-6):430-462.
    [33]Raniecki B., Lexcellent C. Thermodynamics of isotropic pseudoelasticity in shape memory alloys. European Journal of Mechanics-A/Solids.1998.17 (2):185-205.
    [34]Qidwai M. A., Lagoudas D. C. On the thermodynamics and transformation surfaces of polycrystalline NiTi shape memory alloy material. International Journal of Plasticity.2000. 16:1309-1343.
    [35]Lexcellent C., Vivet A., Bouvet C., Calloch S., Blanc P. Experimental and numerical determinations of the initial surface of phase transformations under biaxial loading in some polycrystalline shape-memory alloys. Journal of the Mechanics and Physics of Solids.2002. 50(12):2717-2735.
    [36]Brinson L. C. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of Intelligent Material Systems and Structures.1993,4:229-242.
    [37]Leclercq S., Lexcellent C. A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids.1996.44(6): 953-980.
    [38]Lagoudas D. C., Shu S. G. Residual deformation of active structures with SMA actuators, International Journal of Mechanical Sciences.1999.41:595-619.
    [39]Popov P., Lagoudas D. C. A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of selfaccommodated martensite. International Journal of Plasticity.2007.23(10-11):1679-1720.
    [40]Lexcellent C, Bourbon G. Thermodynamical model of cyclic behavior of Ti-Ni and Cu-Zn-A— shape memory alloys under isothermal undulated tensile tests. Mechanics of Materials.1996.24:59-73.
    [41]Fischer F., Oberaigner E., Tanaka K., Nishimura F. Transformation induced plasticity revised an updated formulation. International Journal of Solids and Structures.1998. 35(18):2209-2227.
    [42]Lexcellent C., Leclerq S., Gabry B., Bourbon G. The two way shape memory effect of shape memory alloys:An experimental study and a phenomenological model. International Journal of Plasticity.2000.16:1155-1168.
    [43]Abeyaratne R., Kim S. Cyclic effects in shape-memory alloys:a onedimensional continuum model. International Journal of Solids and Structures.1997.34 (25):3273-3289.
    [44]Bo Z., Lagoudas D. C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I:Theoretical Derivations. International Journal of Engineering Science.1999. 37:1089-1140.
    [45]Lagoudas D., Bo Z. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, part II:Material characterization and experimental results for a stable transformation cycle. International Journal of Engineering Science.1999.37:1141-1173.
    [46]Bo Z., Lagoudas D. C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III:Evolution of plastic strains and twoway shape memory effect. International Journal of Engineering Science.1999.37:1175-1203.
    [47]Bo Z., Lagoudas D. C, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV:Modeling of minor hysteresis loops. International Journal of Engineering Science.1999.37:1205-1249.
    [48]Lagoudas D. C, Entchev P. B. Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I:Constitutive model for fully dense SMAs. Mechanics of Materials.2004.36(9):865-892.
    [49]Shaw J. A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities. International Journal of Solids and Structures.2002.39(5):1275-1305.
    [50]Birman V., Byrd L. W. Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews.2007.60:195-216
    [51]韩杰才,徐丽,王保林,张幸红.梯度功能材料的研究进展及展望.固体火箭技术.2004.27(3):207-215.
    [52]张新平等.一种具有梯度孔隙率镍钛形状记忆合金的制备方法.2009.中国专利101003868.
    [53]张宇鹏,张新平,钟志源.梯度孔隙率与大孔隙尺寸NiTi形状记忆合金制备及其相变和超弹性行为.金属学报.2007.43(11):1221-1227.
    [54]Liang C., Rogers C. A. One-dimensional thermomechanical constitutive relations for shape memory materials. Journal of Intelligent Material Systems and Structures.1990. 1(2):207-234
    [55]杜修力,霍达,邓宗才.形状记忆合金本构模型的研究进展.北京工业大学学报,2002.28(4):452-458.
    [56]李海涛,彭向和,黄尚廉.形状记忆合金的一种基于经典塑性理论的两相混合本构模型.固体力学学报.2004.25(1):58-62.
    [57]王健,王社良.形状记忆合金的本构关系.上海力学.1998.19(3):185-195.
    [58]王振清,周博,梁文彦.形状记忆合金的本构关系.金属学报.2007.43(11):1211-1216
    [59]朱祎国,吕和祥.形状记忆合金本构模型的热力学框架.大连理工大学学报.2003.43(6):729-732.
    [60]Gao X., Brinson L. C. A simplified multivariant SMA model based on invariant plane nature of martensitic transformation. Journal of Intelligent Material Systems and Structures.2001. 13(12):795-810.
    [61]Lu Z. K., Weng G. J. A self-consistent model for the stress:strain behavior of shape-memory alloy polycrystals. Acta Materialia.1998.46 (15):5423-5433.
    [62]Liang C., Rogers C. A. One-dimensional thermomechanical constitutive relations for shape memory materials. Journal of Intelligent Material Systems and Structures.1990.1:207-234.
    [63]Tanaka K. A thermomechanical sketch of shape memory effect:one-dimensional tensile behavior. Res. Mechanics 1986.18:251-263.
    [64]Boyd J., Lagoudas D. C. A thermodynamical constitutive model for shape memory materials. International Journal of Plasticity.1996.12(6):805-842.
    [65]Huo Y., Muller I. Nonequilibrium thermodynamics of pseudoelasticity. Continuum Mechanics and Thermodynamics.1993.5 (3):163-204.
    [66]Sun Q. P., Hwang K. C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloy. Journal of the Mechanics and Physics of Solids.1993. 41(1):1-33.
    [67]Yin H. M., Paulino G. H., Buttlar W. G., Sun L.Z. Effective thermal conductivity of two-phase functionally graded particulate composites. Journal of Applied Physics.2005.98:063704.
    [68]Lin G. R., Han X., Xu Y. G., Lam K. Y. Material characterization of functionally graded materials by means of elastic waves and a progressive-learning neural network. Composites Science and Technology.2001.61:1401-1411.
    [69]Shao Z.S., Wang T. J. Three-dimensional solutions for the stress fields in functionally graded cylindrical panel with finite length and subjected to thermal mechanical loads. International Journal of Solids and Structures.2006.43:3856-3874.
    [70]Shen H. S. Nonlinear bending response of functionally graded plate subjected to transverse loads and in thermal environments. International Journal of Mechanical Sciences.2002.44: 561-584.
    [71]Han X., Xu D., Liu G. R. Transient responses in a functionally graded cylindrical shell to a point load. Journal of Sound and Vibration.2002.251:783-805.
    [72]Wang J. P., Chen G., Zhai P. C. Creep property of functionally graded materials. Materials Science Forum.2005.492-493:441-446.
    [73]Chen B., Tong L. Sensitivity analysis of heat conduction for functionally graded materials. Materials & Design.2004.25:663-672.
    [74]Chen J., Liu Z., Zou Z. Transient internal crack problem for a non-homogeneous orthotropic strip (Mode I). International Journal of Engineering Science.2002.40:1761-1774.
    [75]Guler M. A., Erdogan F. Contact mechanics of graded coatings. International Journal of Mechanical Sciences.2004.41:3865-3889.
    [76]Giannakopoulos A. E., Pallot P. Two-dimension contact analysis of elastic graded materials. Journal of the Mechanics and Physics of Solids.2000.48:1597-1631.
    [77]Ke L. L., Wang Y. S. Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. International Journal of Solids and Structures.2006.43:5779-5798.
    [78]Huang G. Y., Wang Y. S. A new model for fracture analysis of a functionally graded interfacial zone under harmonic anti-plane loading. Engineering Fracture Mechanics.2004.71: 1841-1851.
    [79]Zhou Z. G., Wang B., Yang L. J. Investigation of the behavior of an interface crack between two half-planes of orthotropic functionally graded materials by using a new method. JSME International Journal Series A.2004.47:467-478.
    [80]Zhong Z., Shang E. T. Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate. International Journal of Solids and Structures.2003. 40:5335-5352.
    [81]Wang B. L., Noda N. Design of a smart functionally graded thermo-piezoelectric composite structure. Smart Materials and Structures.2001.10:189-193.
    [82]Gyunter V. E. Superelastic Shape Memory Implants in Maxillofacial Surgery,Traumatology, Orthopaedics and Neurosurgery. Tomsk:Tomsk university publishing house,1995.14.
    [83]李丙运,Gjunter V. E.生物医用多孔Ti-Ni形状记忆合金的研究进展.材料研究学报.2000,14:561-569.
    [84]邓松华,杨贤金,朱胜利,崔振铎.多孔NiTi形状记忆合金的生物医学特性及其医用前景.金属热处理.2003.28(12):12-15.
    [85]白玉俊,陈蕴博,徐庆莘.医用多孔Ni-Ti形状记忆合金的研究与应用进展.材料导报.2003.16(9):12.
    [86]陆荣林,孙庆平,方如华.多孔Ni-Ti形状记忆合金的力学性能的实验研究.力学季刊.2001.22(2):270-272.
    [87]Qidwai M. A, Entchev P. B, Lagoudas D. C, DeGiorgi V. G. Modeling of the Thermornechanical Behavior of Porous Shape Memory Alloys. International Journal of Solids and Structures.2001.38:8653-8671.
    [88]Sirikul W., Nipon D., Lek S. Characteristics and Compressive Properties of Porous NiTi Alloy Synthesized by SHS Technique. Materials Science and Engineering:A.2009.515(1-2):93-97.
    [89]Zhao Y., Taya M., Kang Y. S., Kawasaki, A. Compression behavior of porous Ni-Ti shape memory alloy. Acta. Materials.2005.53(2):337-343.
    [90]Entchev P. B., Lagoudas D. C. Modeling of Transformation Induced Plasticity and Its Effect on the Behavior of Porous Shape Memory Alloys. Part Ⅱ:Porous SMA Response.Mechanics of Materials.2004.36(9):893-913.
    [91]Entchev P. B., Lagoudas D. C. Modeling Porous Shape Memory Alloys Using Micromechanical Averaging Techniques. Mechanics of Materials,2002,34(1):1-24.
    [92]Martynova I., Skorohod V., Solonin S., Goncharuk S. Shape Memory and Superelasticity Behavior of Porous Ti-Ni Material. Journal de Physique IV.1991.1(C4):421-426.
    [93]Nemat-Nasser S., Su Y, Guo W. G.., Isaacs J. Experimental characterization and micromechanical modeling of superelastic response of a porous Ni-Ti shape memory alloy. Journal of the Mechanics and Physics of Solids.2006.53:2320-2346.
    [94]Dui G. S. A new approach to the application of Mori-Tabaka's theory in multi-phase composites. Depart. Mechanical Engineering, University of Houston.2003, March.
    [95]Garner L. J., Wilson L.N., Lagoudas D. C, Rediniotis, O.K. Development of a shape memory alloy actuated biomimetic vehicle. Smart Materials and Structures.2000.9:673-683.
    [96]Ilyin A., Dudin M., Makarova I. NiTi instruments for TMJ surgeries. In:Conf. Proc. Superelastic shape memory Implants in Medicine. Tomsk,1995:61-62.
    [97]Li Y H., Rong L. J., Li Y. Y. Pore characteristics of porous NiTi alloy fabricated by combustion synthesis. Journal of Alloys and Compounds.2001.325:259-262
    [98]Liang C, Davidson R, Scjetky L. M., Straub, F. K. Applications of torsional shape memory alloy actuators for active rotor blade control:opportunities and limitations. In:SPIE Proc. Mathematics and Controls in Smart Structures.1996.2717:91-100
    [99]Lipscomb, I. P., Nokes L. D. M. The application of shape memory alloys in medicine. Mechanical Engineering Publications.1996. suffold.
    [100]Sato Y, Tanaka K. Estimation of energy dissipation in alloys due to stress induced martensitic transformation. Res Mechanica1988.18:251-263
    [101]Tanaka K., Sato Y Phenomenological descripation of the mechanical behavior of shape memoty alloys.Tranaction of JSME.1992.53:1368-1373
    [102]Raniecki B., Lexcellent C, Tanaka K. Thermodynamic models of pesudoelastic behavior of shape memory alloys. Archives of Mechanics.1992.44:3-9
    [103]Lin P., Tobushi H., Tanaka K. Deformation properties associated with martensitic and R-phase transformation in TiNi shape memory alloy. Transaction of JSME.1994. 60:126-133
    [104]Liang C, Rogers C. A. A multi-dimensional thermomechanical constitutive relations or shape memory materials. Journal of Engineering Mathematics.1992.26:429-443
    [105]Boyd J. G., Lagoudas D. C.Thermomechanical response of shape memory composites. Journal of Intelligent Material Systems and Structures.1994.5:333-346
    [106]Lagoudas D. C, Zhonhe B., Qidwai M. A. Micromechanics of active composites with SMA fibers.Journal of Material Science and Technology.1994.116:337-347
    [107]Lagoudas D. C, Zhonhe B., Qidwai M. A. A unified thermodynamic constitutive model for SMA and finit element analysis of active metal matrix composites.Mechanical of Composite Materials and Structures.1996.3:153-179
    [108]Gillet Y., Patoor E., Berveiller M. Calculation of pseudoelastic elements using a non-symmetrical thermomechanical transformation criterion and associated rule. Journal of Intelligent Material Systems and Structures.1998.9:366-378
    [109]Zhu Y. P., Dui G. S., A model considering the hydrostatic stress for porous SMA. Acta Mechanica Solida Sinica.2011.24(4):289-298
    [110]Patoor E., Eberhardt A., Berveiller, M. Micromechanical modelling of superelasticity in shape memory alloys. Journal de Physique IV.1996.6.C1-277-C1-292.
    [111]Sun Q. P., Hwang K. C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys-Ⅰ:Derivation of general relations. Journal of the Mechanics and Physics of Solids.1993a.41:1-17
    [112]Sun Q. P., Hwang K. C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys-Ⅱ:Study of the individual phenomena. Journal of the Mechanics and Physics of Solids.1993b.41:19-33
    [113]Gao X., Hwang M., Brinson L. C. A multivariant micromechanical model for SMAs. Part 1. Crystallographic issues for single crystal model. International Journal of Plasticity.2000a 16:1345-1369.
    [114]Gao X., Hwang M., Brinson L. C. A multivariant micromechanical model for SMAs. Part 2. Polycrystal model. International Journal of Plasticity.2000b.16:1371-1390.
    [115]Sun Q. P, Hwang K. C. Micromechanics constitutive description of thermoelastic martensitic transformation. In:Hutchinson, J., Wu, T.W., (Eds.), Advances in Applied Mechanics, Academic Press, New York.1994.31:249-298.
    [116]Achenbach M., Muller I. Creep and yield in martensite transformations.Ingenieur Archiv.1983,53:73-83
    [117]Graesser E. J., Cozzarelli F. A. A proposed three dimensional constitutive for SMAs. Journal of Intelligent Material Systems and Structures.1994.5:78-89
    [118]Miyamoto Y., Kaysser W. A., Rabin B. H., Kawasaki A., Ford R. G. Functionally Graded Materials:Design, Processing and Applications, KluwerAcademic Publishers.1999. Dordrecht.
    [119]刘亦农,郑玉峰,李莉,赵继忠.Ni-Ti系功能连续梯度形状记忆合金的制备方法.2007.中国专利:CN1904102.
    [120]郑斌,徐军,齐民.医用TiNi合金表面等离子体沉积梯度DLC膜及抗腐蚀性能.功能材料.2007.38(1):115-118.
    [121]Fu Y. L., Du H. J., Zhang S. Functionally graded TiN/TiNi shape memory alloy films. Materials Letters,2003.57:2995-2999.
    [122]Sepiani H., Ebrahimi F., Karimipour H. A mathematical model for smart functionally graded beam integrated with shape memory alloy actuators. Journal of Mechanical Science and Technology.2009.23(12):3179-3190.
    [123]Birman V. Review of Mechanics of Shape Memory Alloy Structures. Applied Mechanics Reviews.1997.50(11):629-645.
    [124]Pitakthapanaphong S., Busso E. P. Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids.2002.50:695-716
    [125]Berrabah H. M., Mechab I., Tounsi A., Benyoucef S., Krour B., Fekrar A., Adda Bedia E.A. Electro-elastic stresses in composite active beams with functionally graded layer. Computational Materials Science,2010.48(2):366-371
    [126]Lin M. W., Rogers C. A. Analysis of stress distribution in a shape memory alloy composite beam,AIAA-91-1164-CP.1991
    [127]Lester B. T., Chenisky Y., Lagoudas D. C. Transformation characteristics of shape memory alloy composites. Smart Materials and Structure.2011.20(9):1-13.
    [128]Mahmud A. S.S., Liu Y. N., Nam T. H. Gradient anneal of functionally graded NiTi. Smart Materials and Structure.2008.17:1-5.
    [129]Ochonski W. Application of shape memory mate-rials in fluid sealing technology. Industrial Lubrication and Tribology.2010.62(2):99-110.
    [130]Rogers C. A., Smith R. A. Adaptive Composite Materials with Shape Memory Alloy Actuators for Cylind-ers and Pressure Vessels. Journal of Intelligent Material Systems and Structures.1995.6(2):210-219
    [131]Koiter W. T. On partially plastic thick-walled tubes, Applied Mechanics,1953.48:233-251
    [132]Hill R. The Mathematical Theory of Plasticity.1950. Oxford University Press
    [133]Hodge P. G., White G. N. A quantitative comparison of flow and deformation theories of plasticity. Journal of Applied Mechanics.1950.17:180-184
    [134]De G. Allen D. N., Sopwith D. G. The Stresses and Strains in a Partly Plastic Thick Tube under Internal Pressure and End-Load. Proceedings of the Royal Society of London, A.1951. 205 (1080):69-83
    [135]Steele M. C. Partially plastic thick-walled cylinder theory. Journal of Applied Mechanics.1952. 19(2):133
    [136]Bland D. R. Elastoplastic thick-walled tubes of work-hardening material subject to internal and external pressures and to temperature gradients. Journal of the Mechanics and Physics of Solids.1956.4(4):209-229
    [137]Mirzaeifar R., Shakeri M., DesRoches R., Yavari A. A semi-analytic analysis of shape memory alloy thick-walled cylinders under internal pressure. Archive of Applied Mechanics. 2011.81(8):1093-1116
    [138]Tabesh M., Liu B. F., Boyd J., Lagoudas D. C. Analytical Solution for pseudoelastic response of a shape memory thick-walled cylinder under interal pressure. SMASIS2012-8187. (ASME)
    [139]Wang Z. D., Li Z. F., Wang Y. S. Micro-buckling solution of elastic memory laminates under bending. Journal of Intelligent Material Systems and Structures.2009.20:1565-1572.
    [140]Wang Z. D., Li Z. F., Xiong Z. Y. Viscoelastic characteristics of shape memory polymers. Journal of Applied Polymer Science.2010.118:1406-1413.
    [141]Liu Y. Y., Han C. M. Thermal, mechanical and shape memory properties of shape memory epoxy resin. Materials Science and Engineering A.2010.527:2510-2514.
    [142]Tabaka K., Watanabe T. Transformation conditions in SMAs under multiaxial stress state:experiment and simulations. Key Engineering Materials.2000.177-180:413-424
    [143]PenceT J., Ivshin Y. Building proper behacior into mathematical models for shape memory alloys. SPIE.1994.2192:94-105
    [144]周博,刘彦菊,王振清.形状记忆合金的剪切本构模型.2009.金属学报.45(10):1179-1184.
    [145]Sun Q. P., Hwang K. C. Micromechanics constitutive description of thermoelastic martensitic transfotmations. Advances in Applied Mechanics.1994.31:249-298.
    [146]Birman V. Analysis of an infinite shape memory alloy plate with a circular hole subjected to biaxial tension. Solids and Structures,1999:167-178.
    [147]Bert C. W., Birman V. Modeling of a shape-memory alloy sheet with a circular hole and subjected to arbitrary in-plane loading. Smart structures and materials,1998.3323:503-511.
    [148]Chi Y. W., Pence T. J., Tsai H. Plane stress analysis of a shape memory annular plate subject to edge pressure. Journal de Physique Archives IV.2003.112:245-248.
    [149]Chi Y. W., Pence, T. J., Tsai, H., Numerical algorithms for cyclic phase transformation hysteresis in a shape memory plate subject to axisymmetric plane stress. International Journal for Numerical Methods in Engineering.2007.69:1819-1850
    [150]Qu J. M., Cherkaoui M. Fundamentals of micromechanics of solids. John Wiley & Sons, Inc. 2006. New Jersey.
    [151]Christensen P. M., Lo K. H. Mechanics of composite materials.1979. Wiley, New York.
    [152]Mochida T., Taya M., Lloyd D. J. Fracture of particles in a particle/metal matrix composite under plastic straining and its effects on the young's modulus of the composite. Materials Transactions.1991.32(10),931-942
    [153]Shen H., Brinson L. C. Finite element modeling of porous titanium. International Journal of Solids and Structures.2007.44:320-335.
    [154]Panico M., Brinson L. C. Computational modeling of porous shape memory alloys. International Journal of Solids and Structures.2008.45:5613-5626.
    [155]Yin Y. J., Xue M. D., Yu S.W. Lower bound and upper bound rigid plastic constitutive models for porous materials:comparison and examination. JSME International Journal. 2001.44(l):45-56
    [156]Gurson A. L. Continuum theory of ductile rupture by void nucleation and growth Part I. Yield cirteria and flow rules for porous media. Journal of Engineering Materials and Technology.1977.99(1):2-15
    [157]Wang Z. P., Lam K. Y., Cotterell B. An approximate yield criterion for voided nonlinear materials. Mechanics of Materials.1996.22(4):291-300.
    [158]Jeong H.Y., Pan J. A macroscopic constitutive law for porous solids with pressure sensitive matrices and its implications to plastic flow localization. International Journal of Solids and Structures.1995.32(24):3669-3691
    [159]Lee H. J., Qung J. Yield functions and flow rules for porous pressure dependent strain hardening polymeric materials. Journal of applied mechanics.2000.67:288-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700