用户名: 密码: 验证码:
海上风电工程支承结构可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,我国开始大力发展海上风电工程。支承结构是海上风电工程中的重要组成部分。单立柱结构是海上风电工程中最常用的结构之一,但是在我国还没有得到具体应用。本文对单立柱支承结构在我国使用的可行性做了初步的探讨,计算分析了此结构的可靠指标,希望能为今后的研究提供一些有价值的信息。
     针对极值风浪荷载之间的相关性,提出了一种基于Nataf变换的相关非高斯分布随机数算法,并通过数值模拟和实际风浪组合荷载效应的计算,验证了方法的有效性。讨论了基于独立风浪的荷载效应和基于相关风浪的荷载效应的极值之间的关系。对不同的风浪组合荷载效应的拟合方法进行评定,证明了最小二乘法比矩法更精确。
     应用Archimedean Copula函数构造风浪联合概率分布,并对函数进行检验,认为Gumbel函数最适合描述涠洲岛风浪特性,并得出了χ2检验优于其他检验方法的结论。对经常在工程中应用的重现期和基于Archimedean Copula函数C-测度(C-measure)的第二重现期(Secondary Return Period)进行了理论分析,经实际数据证明,第二重现期定义严格,计算结果更接近荷载效应重现期。针对于海上风电工程单立柱支承结构的特点,对体系可靠度计算方法进行了探讨,分析了几种常用方法的优缺点。结合有限元分析软件ANSYS与科学计算软件MATLAB,采用响应面方法构造极限状态函数,将改进一次可靠度方法应用到求解可靠指标中,建立了以响应面方法为核心的一套完整可行的体系可靠度计算方法。
     基于平稳二项随机过程,建立地震、风、浪、海流的分布函数,参考挪威船级社规范,结合JCSS荷载组合方法,考虑不同的极限状态函数,计算了海上风电工程单立柱支承结构的可靠指标与失效概率。分析随机变量的灵敏度,对结构可靠度有重要影响的随机变量进行了探讨。研究了风浪相关性对结构可靠度的影响,并分析了原因。
In recent years, China began to develop offshore wind power project. Supporting structure is a major component of offshore wind power project. Monopile structure is one of the most common offshore wind power project, but has not been specific applied in our country. In this paper, preliminary study feasibility of the support structure used in our country, calculate and analyze the reliability index of this structure, hoping for future research to provide some valuable information.
     For the correlation between extreme wind and waves loads, a random sampling method based on Nataf transformation of the correlative non-Gaussian distributions is proposed. Applying this method the correlation of extreme values between mutually independent load effects and correlative load effects is dicussed. Through numerical simulation and actual load effect calculation, verified the validity of the method. Different fitting methods for wind and wave load effects are evaluated, and least square method is proved more suitable than the moment method.
     Application of Archimedean Copula functions to construct the joint probability distribution of wind and waves, the Gumbel function is considered to be best for Weizhou Islands by different test methods, andχ2 test is the most efficient test method of all. Shortcomings of several common return periods are analyzed. Secondary Return Period is constructed by the Archimedean Copula-based C-measure, the definition of which is stringent, the result of which is closer to the return of load effects Period by theoretical analysis and data analysis.
     Several system reliability methods are discussed for the mono pile supporting structure of offshore wind power project. With finite element analysis software ANSYS and scientific computing software MATLAB, using response surface method and advanced first order reliablility method to solve the structural system reliability index, and a complete feasible structural system reliability method is established. Base on stationary binomial random process, establishing earthquake, wind, waves and currents distribution functions, referring to DNV specification, using JCSS load combination method, considerring the different limit state functions, calculate the reliability index of the supporting structure. Sensitivity of random variables is analysised and random variables having a major impact on structural reliability are discussed. The effect of the correlation between wind and waves on the reliability index is studied.
引文
[1]葛川,何炎平,叶宇,等.海上风电场的发展、构成和基础形式[J].中国海洋平台, 2008, 23(6): 31-35.
    [2]黄东风.欧洲海上风电的发展[J].能源工程, 2008(2):24-27.
    [3]中国海上风电及陆上风电实施面临的挑战:实施指南[R].中国国家能源局,世界银行. 2010.
    [4]莫为泽,冯宾春,马素萍.利用国内现有装备安装海上风机的可行性调研[J].水利水电技术, 2009, 40(9): 28-31.
    [5]我国风能资源家底[J].广西电力建设科技信息,2006,4(14):24-25.
    [6]刘志强.海上风力发电支撑体系在环境荷载作用下动力响应分析[D].大连:大连理工大学学位论文, 2007: 1-2.
    [7] Summary of Wind Turbine Accident data to 30 June 2010[R]. Caithness Windfarms Information Forum. 2010.
    [8] OFFSHORE STANDARD DNV-OS-J101 DESIGN OF OFFSHORE WIND TURBINE STRUCTURES[S]. DET NORSKE VERITAS, 2009.
    [9] GB 50068-2001,建筑结构可靠度设计统一标准[S].中华人民共和国国家标准, 2001.
    [10] Freudental A M. The safety of structure[J]. Transaction, ASCE, 1947, 112: 125-180.
    [11] Freudental A M. Safety and probability of structural failure. Transaction, ASCE, 1956, 121: 1337-1375.
    [12] Cornell C A. A probability-based structural code[J], ACI, 1969, 66(12): 974-985.
    [13] Ditlevsen O. Structrual reliability and the invariant problem[R]. Resarch Reprot No.22, Solid Mechanics Division, University of Waterloo, Waterloo, Canda.1973.
    [14] Hasofer A M, Lind N C. Exact and invariant second-moment code format[J]. Journal of Engineering Mechanics Division, ASCE, 1974, 100(1) : 111-121.
    [15] Rackwitz R, Fiessler B. Structural reliability under combined random load sequences[J]. Computer Structure, 1978, 9(5): 489-494.
    [16]吕大刚,基于线性化Nataf变换的一次可靠度方法[J].工程力学, 2007, 24(5): 79-86.
    [17] Rosenblatt M. Remarks on a multivariate transformation[J]. The Annals of Mathematical reliability, 1952, 23: 470-472.
    [18] Liu P-L, Der Kiureghian A. Optimization algorithms for structural reliability[J]. Structural Safety, 1991, 9(3): 161-177.
    [19] Zhang Y, Der Kiureghian A. Two improved algorithms for reliability analysis. In reliability and optimization of structural systems[C]. Proceedings of the 6th IFIPWG7.5 working conference on reliability and optimization of structural systems (eds Rackwitz R, Augusti G, Borrri A), 1994: 297-304.
    [20] Fiessler B, Beumann H J, Rackwitz R. Quadratic limit states in structural reliability[J]. Eng. Mech. Div., ASCE, ASCE, 1979, 105(EM4): 661-676.
    [21] Der Kiureghian A, De Stafeno M. Efficient algorithm for second-order reliability analysis[J]. Engineering Mechanics, ASCE, 1991, 177(12): 2904-2923.
    [22] Tvedt L. Distribution of quadratic forms in the normal space-application to structural reliability [J]. Engineering Mechanics, 1990, 116(6): 1183-1197.
    [23] Aravelli L. A response surface approach for reliability analysis. Journal of Engineering Mechanics, ASCE, 1989, 115(12): 1311-1319.
    [24] Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems[J]. structural safety, 1990, 7(1): 115-127.
    [25] Ei-tawil k, lemaire m, muzeau j p. reliability method to solve mechanical problems with implicit limit functions[J]. reliability and optimization of structural systems, Rackwitz R and Thoft-Christensen P. springer, berlin, 1992: 181-190.
    [26] Rajashekhar m r, ellingwood b r. a new look at the response surface approach for reliability analysis[J], structural safety, 1993, 12(3): 205-220.
    [27] Maymon g. probability of failure of structures without a closed-form failure function[J]. computers&structures, 1993, 49(2): 301-313.
    [28]张伟.结构可靠性理论与应用[M].北京:科学出版社, 2008.
    [29] Lucia Faravelli. Response-Surface Approach for Reliability Analysis[J]. journal of engineering mechanics, 1989, 115(12): 2763-2781.
    [30] Melchers R E. Improtance sampling in structural system[J]. Structural Safety. 1989, 6(1): 3-10.
    [31] Maes M A, Breitung K, Dupuis D J. Asymptotic importance sampling[J]. Structural Safety, 1993, 12(3): 167-186.
    [32] Bjerager P. Probability integration by directional simulation[J]. Journal of Engineering Mechanics, 1988, 144(8): 1285-1302.
    [33]张建仁.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社, 2003. [ 34 ] Thoft-Christensen P, Baker M J. Structural Reliability Theory and ItsApplications [M]. Springer-Verlag, Berlin, Heidelberg, New York, 1982.
    [35] Melchers R E, Tang L K. Dominat Failure Modes in Stochastic Structural Systems[J]. Structural Safety, 1984, 2: 127-143.
    [36] Feng Y S. Enumerating Significant Failure Modes of A Structural System by Using Criterion Methods[J], Computers&Structures, 1988, 30(5): 1153-1157.
    [37] Murotsu Y, Okada H, Niwa K, et al. Reliability Analysis of Truss Structures by Using Matrix Method, Trans. ASME, J. Mech. Design, 1980, 102(4): 749-756.
    [38] Moses F, Stevenson J D. Reliability-based Structural Design[J]. Journal of the Structural Division, Proceedings of the American Society of Civil Engineering, 1970, 96(2): 221-244.
    [39] Gorman M R. Reliability of Structural System[R]. Report No.2 79-2, Case Western Reserve University, 1979.
    [40] Ma H F, Ang A H-S. Reliability Analysis of Redundant Ductile Structural Systems[R]. Structural Research Series No. 494, University of Illinois, Urbara-Champaign, 1981.
    [41] Cornell C A. Bounds on the Reliability of Structural Systems[J]. Journal of Structural Division, ASCE, 1967, 93(ST1): 171-200.
    [42] Ditlevsen O. Narrow Reliability Bounds for Structural System[J]. Journal of Structural Mechanics, 1979, 7(4): 453-472.
    [43] Yan-Gang Zhao, Tetsuro Ono. System Reliability Evaluation of Ductile Frame Structures[J]. Journal of Structural Engineering, 1998, 124(6): 678-685.
    [44]吕大刚,宋鹏彦,于晓辉,等.基于矩法的结构非线性整体抗震可靠性分析[J].建筑结构学报(增刊2): 119-124.
    [45] Park Y J, Ang A H-S, Wen Y K. Damage-Limiting Aseismic Design of Buildings[J]. Earthquke Spectra, 1987, 3: 1-26.
    [46] Karamchandani A. Systems Reliability of Offshore Structures Including Fatigue and Extreme Wave Loading[J]. Marine Structures, 1991, 4: 353-379.
    [47] Tavner P J, Xiang J, Spinato F. Reliability Analysis for Wind Turbines[J]. WIND ENERGY, 2007, 10: 1-18.
    [48] Seebregts A J, Rademakers L W M M, van den Horn B A. Reliability Analysis in Wind Turbine Engineering[J]. Microelectronics and Reliability, 1995, 35(9-10): 1285-1307.
    [49] Osamu KIYOMIYA, Tatsuomi RIKIJI.Proceedings of The Twelfth International Offshore and Polar Engineering Conference: Dynamic response analysis of onshore wind energy power units during earthquakes and wind[C]. Kitakyushu, 2002: 520-526.
    [50] Silke Schwartz, Kimon Argyriadis. Analysis of the fatigue loading of an offshore wind turbine using time and frequency domain methods[R].Germanischer Lloyd Wind Energie GmbH, Johannishollwerk 6-8, 20459 Hamburg.
    [51] SLP Engineering Ltd, Shell Renewables Ltd, Enron Wind Overseas Development Ltd, Fugro Ltd, Aerolaminates Ltd, Garrad Hassan. The Application of Suction Caisson Foundations to Offshore Wind Turbines-Extracts from a proposal to the DTI, 2008.
    [52] EMCiakelcech uLalanethiicomsn aa nannndd, A FRrlcoitsrikica nEE vnBgailieunhaelte.i roCinno[gCl.l i]2s.0 io20n56st:h 6o 6Ifn 3St-eh6ri7np0as.t iaonnda l OC?osnhfoerree nWcei nodn TOufrfbsihnoerse:
    [53]徐亚洲.随机海浪谱的物理模型与海洋结构波浪动力可靠度分析[D].上海:同济大学学文论文, 2008.
    [54]李玉刚.桩式海上风机基础可靠度分析及优化方法研究[D].大连:大连理工大学学文论文, 2009.
    [55]秦振江,孙广华,闫同新等.基于Copula函数的联合概率法在海洋工程中的应用[J].海洋预报, 2007, 24(2): 83-90.
    [56]周道成,段忠东,欧进萍.建筑结构相关荷载组合的平稳二项随机过程方法[J].工程力学, 2007, 24(4): 97-103.
    [57] Simiu E, Heckert N A. Extreme wind distribution tails: A’peaksover threshold’approach[J]. Journal of Structural Engineering, 1996, 122(5): 539-547.
    [58] Xu Delun, Zhang Jun, Zheng Guizhen. Maximum entropy estimation of n-year extreme wave heights[J]. China Ocean engineering, 2004, 18(2): 307-314.
    [59]周道成,段忠东,欧进萍.荷载平稳二项随机过程简化组合方法[J].哈尔滨工业大学学报, 2009, 41(6): 6-10.
    [60] Robert E. Melchers Structral Reliability Analysis and Prediction Second Edition [M]. John Wiley&Sons Ltd, 1999.
    [61]欧进萍,段忠东,肖仪清.海洋平台结构安全评定——理论、方法与应用[M].北京:科学出版社, 2003.
    [62]周道成.导管架平台结构的可靠度设计与安全监测评定[D].哈尔滨:哈尔滨工业大学学文论文, 2006.
    [63]段忠东.海洋平台结构的实时监测与检测成像技术验收报告分册二:海洋平台结构损伤识别、安全评定与预警技术[M].哈尔滨:哈尔滨工业大学图书馆, 2006.
    [64] Simiu E, Changery M J, Filliben J J. Extreme Wind Speeds at 129 Airport Stations [J]. Journal of the Structural Division, 1980, 106(ST4): 809-817.
    [65] Simiu E, Bietry J, Filliben J J. Sampling errors in estimation of extreme winds[J]. Journal of the Structural Division, ASCE, 104(ST3): 491-501.
    [66] Harris R I. Gumbel re-visited-a new look at extreme value statistics applied to wind speeds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59(1): 1-22.
    [67]陈英俊,于希哲.风荷载计算[M].北京:中国铁道出版社, 1998.
    [68] Cunnane C. Unbiased plotting positions-a review [J]. Hydrol, 1978, 37(3/4): 205-227.
    [69] Gringorten II. A plotting rule for extreme probability paper[J]. Geophys Res, 1963, 68(3): 813-817.
    [70] Guo SL. A discussion on unbiased plotting positions for the general extreme value distribution[J]. Hydrol, 1990, 212: 33-77.
    [71]周道成,段忠东.耿贝尔逻辑模型在极值风速和有效波高联合概率分布中的应用[J].海洋工程, 2003, 21(2): 45-51.
    [72]董胜,丛锦松,余海静.涠洲岛海域年极值风浪联合设计参数估计[J].中国海洋大学学报, 2006, 36(3): 489-492.
    [73]刘德辅,施建刚,王铮.海洋环境条件联合设计标准[J].海洋学报, 1994, 16(2): 116-123.
    [74]刘德辅,温书勤,王利萍.泊松-混合冈贝尔复合极值分布及其应用[J].科学通报, 2002, 47(17): 1356-1360.
    [75]冯平,毛慧慧,王勇.多变量情况下的水文频率分析方法及其应用[J].水利学报, 2009, 40(1): 33-37.
    [76] Roger B.Nelsen. An Introduction to Copulas (Second Editon)[M]. Springer, 2006.
    [77]韦艳华,张世英. Copula理论及其在金融分析上的应用[M].北京:清华大学出版社, 2008.
    [78] Hollander M, Wolfe D A. Nonparametric Statistical Methods [M]. New York: John Wiley&Sons Ltd, 1973.
    [79] Lehmann E L. Nonparametrics: Statistical Methods Based on Ranks [M]. San Francisco: HoldemDay, Inc, 1975.
    [80] Frees E W, Valdez E A. Understanding relationships using Copulas[J]. North American actuarial journal, 1998, 2(1): 1-25.
    [81] Patton A J. Skewness, Asymmetirc dependence,and portfolios[Z]. London School of Economics&Political Science, 2002.
    [82] Yue S, Ouarda TBMJ, Bobée B, et al. The Gumbel mixed model for floodfrequency analysis [J]. Hydrol, 1999, 226(1-2): 88-100.
    [83] Hu L. Essays in econometrics with applications in macroeconomic and financial modeling [D]. New Haven: Yale University, 2002.
    [84] Salvadori G. Bivariate return periods via 2-Copulas[J]. Statistical Methodology, 2004, l(1-2):129-144.
    [85] American Petroleum Institute ( API ). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms - Load and Resistance Factor Design, American Petroleum Institute Production Department, Washington, D. C, 1993.
    [86] SY/T 4802-92海上固定平台规划、设计和建造的推荐作法[S].中华人民共和国能源部, 1992.
    [87]海上固定平台入级与建造规范[S].中国船级社. 1992.
    [88]欧进萍,肖仪清,段忠东,等.基于风浪联合概率模型的海洋平台结构系统可靠度分析[J].海洋工程, 2003, 21(4): 2-7.
    [89]李玉刚.桩式海上风机基础可靠度分析及优化方法研究[D].大连:大连理工大学学文论文, 2010.
    [90]陈丽琴.高桩承台桩基计算与分析[D].大连:大连理工大学学文论文, 2006.
    [91] DBJ-61-97上海市基坑工程设计规程[S].上海市标准. 1997.
    [92]孟珣,侯金林,于春洁,等.海上风力发电单立柱支承结构拟静力分析[J].中国海洋大学学报. 2010, 40(2): 89-94.
    [93] GBJ 135-90高耸结构设计规范[S].中华人民共和国国家标准, 1990.
    [94]欧进萍,段宇博,刘会仪.结构随机地震作用及其统计参数[J].哈尔滨建筑工程学院学报, 1994, 27(5): 1-10.
    [95] GB 50011-2001建筑抗震设计规范[S].中华人民共和国国家标准. 2001.
    [96]高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J],地震工程与工程振动, 1985, 5(1): 13-22.
    [97]张相庭.工程抗风设计计算手册[M].北京:中国建筑工业出版社. 1998.
    [98] JB/T 10300-2001风力发电机组设计要求[S].中华人民共和国机械行业标准. 2001.
    [99] GB 50009-2001建筑结构荷载规范[S].中华人民共和国国家标准, 2002.
    [100]李继华,林忠民.建筑结构概率极限状态设计[M].北京:中国建筑工业出版社, 1990.
    [101] JTJ 213-98海港水文规范[S].中华人民共和国交通部, 1998.
    [102]金伟良,工程荷载组合理论与应用[M].北京:机械工业出版社, 2006: 384 -385.
    [103] Ferry Borges J, Castenheta M. Structure Safety[M]. Lisbon: Laboratoria Nacional de Engenhera Civil, 1971.
    [104] Turkstra C J, Madesen H O. Load combination in codified structural design. Journal of the structural division[J], Proc. ASCE, 1980, 106(12): 2527-2543.
    [105] John Dalsgaard Sorensen. International Forum on Engineering Decision Masking Second IFED Forum: Optimal reliability-based design of offshore wind turbine parks[C]. Canada: Lake Louise, 2006: 26-29.
    [106]肖仪清.现役固定式海洋平台结构体系可靠度分析与安全评定[D].哈尔滨:哈尔滨工业大学学文论文, 2001.
    [107] GB/T 1591-2008低合金高强度结构钢[S].中华人民共和国国家标准, 2008.
    [108] Hohenbichler M, Rakwitz R. Sensitivity and importance measures in structural reliability[J], Civil Engineering Systems, 3(4):203-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700