用户名: 密码: 验证码:
多产低碳烯烃变径提升管数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固两相流态化渗透在石化、能源、冶金等各个领域,提升管工艺在石油加工中应用尤其广泛。对于多产低碳烯烃的过程,传统的提升管反应器很难同时满足大剂油比、适宜接触时间的目的,而变径提升管则可以较好地实现这两大目标。本文应用计算流体力学(CFD)商业软件,对重质油加工国家重点实验室内3m高的变径提升管冷模装置进行了数值模拟,摸索到一套能够描述该系统气固两相流动的计算模型及相关设置。此外,本文还对大庆炼化公司多产低碳烯烃工业装置内的气固两相的流动行为进行了模拟计算,给出气固两相在提升管内的分布状况,并依据计算的结果对比了不同结构对装置操作造成的影响。
     由冷模实验测得的固含率可知,提升管变径段内颗粒浓度非常高,团聚现象非常明显,在数值模拟中需要考虑这种团聚作用的影响,杨宁根据能量最小多尺度模型得到的曳力系数简化公式可以描述颗粒团聚的影响;对于固相采用颗粒动理学理论进行封闭,固相进口采用“进口固体通量=出口固体通量”的UDF设置,颗粒碰撞恢复系数取0.85。将模拟结果与相同工况下的实验值进行对比发现,除了轴线上一些位置存在较大的偏差外,其他位置尤其是在提升管边壁处吻合得较好,并且三维网格的计算结果比二维计算结果更准确。本文认为二维计算误差较大的原因主要在网格划分上,由于二维模型中的变径段面积扩大不够明显,导致轴线处气体速度偏大,因而固含率降低。
     大庆炼化两段提升管多产低碳烯烃(TMP)装置也采用变径提升管技术,并进行了部分装置的改造。本文着重对改造前后的装置的变径段部分进行气固两相流动模拟,同时对相同管径的传统提升管内气固流动状况进行了计算。通过计算结果的对比可以发现,改造后提升管内轴向上的催化剂分布比传统提升管要好,在主要反应区催化剂浓度高;径向上催化剂分布也比较均匀,环-核结构得到一定的弱化;有效避免了催化剂的高速碰撞,因而减小了催化剂磨损的量;催化剂的返混现象减小,可以减小催化剂的结焦,提高产品的结构;同时,变径段以上气固速度急剧增大,可以减少二次反应的发生。
Fluidized bed technology was widely encountered in petro-chemical, energy and metallurgy industry. Riser reactor has become one of the most ordinary used equipment in solid catalytic process because of the great success of Fluid Catalytic Cracking process. Enhanced propylene production through catalytic pyrolysis of heavy oil has become a promising technology to promote economic performance of enterprise. While, innovations should be introduced to archive high catalyst-oil ratio and appropriate residence time simultaneously, riser reactor with changing-diameter could be a probable solution. Ideal riser reactor for thus purpose should be made up of several sections with different diameter. Numerical simulations based on computational fluid-dynamic (CFD) technique have been performed to investigate the hydrodynamics of gas-solid two phase flow in a bench scale experiment. Commercial code FLUENT was used in the research and a suitable model was developed .Flow pattern of the gas-solid two phase flow in an industry scale reactor also has been simulated. Effect of different nozzle configuration and its influence on catalyst distribution in reactor were investigated and discussed.
     Experimental measurement on bench scale equipment indicates that the volume fraction of the catalyst in the larger diameter section of the riser was much higher comparing with the traditional riser, so the catalyst aggregating should have more evidence to influence whole flow pattern. Improved drag model based on EMMS (Energy-Minimization Multi-scale) model should have better ability to predict the dense solid flow behavior in the riser. Constant solid reserve was keep by setting solid inlet velocity according to the solid outlet flux. Kinetic Theory for Granular Flow (KTGF) model was used for solid phase. A value of 0.85 was used for particle restitution coefficient in the simulation. It was noticed that, CFD simulations results basically agree well with the measured experimental measurements. 3D CFD simulation gave better precision than 2D cases due to the more accurate description of real equipment in 3D simulation.
     Different configurations of nozzles and reactor structure on an industry scale reactor have been investigated by CFD simulation also. According to the numerical simulation, extra notice should be paid to the large-diameter zones, where the main reactions zone. By suitable retrofit, the axial distribution of catalyst particles could be improved significantly, in nozzle zones the solid volume fraction was higher and the catalyst radial distribution was well-proportioned. Ordinary core-annual structure was very weak and the collision between high velocity catalysts was avoided, so the attrition of the catalyst could be eliminated. High gas velocity could be gained in following small diameter riser section, so the undesired by-pass products could be controlled reasonably.
引文
[1]张执刚,谢朝钢,施至诚,等.催化热裂解制取乙烯和丙烯的工艺研究[J].石油炼制与化工, 2001,32(5): 21-24
    [2]李晓红,陈小博,李春义.两段提升管催化裂化生产丙烯工艺[J].石油化工, 2006, 35(8):749-753
    [3]陈小博,张星,韩忠祥,等.催化裂化汽油裂解制备低碳烯烃[J].石油化工, 2005, 34(10):943-947
    [4]李春义,袁起民,陈小博,等.两段提升管催化裂解多产丙烯研究[J].中国石油大学学报(自然科学版), 2007, 31(1):118-121
    [5]郑茂军,候栓弟,钟孝湘,等.两种提升管反应器中颗粒速度分布的测定[J].石油炼制与化工, 2000,31(2):45-51
    [6]李松年,钟孝湘,许克家,等.一种用于流化催化转化的提升管反应器[P].中国专利: 98125665.1,2002-12-04
    [7]刘献玲,雷世远,毕志豫,等.催化裂化提升管反应器[P] .中国专利: 96106441.2,2000-09-20
    [8]石宝珍,刘献玲,郝希仁.一种催化裂化提升管反应器[P].中国专利:99118229,2002-09-25
    [9]闫鸿飞,刘金龙,王文柯,等.一种降低催化裂化汽油硫含量的双提升管催化裂化装置[P].中国专利:1721055A,2006-01-18
    [10]许友好,张久顺.生产清洁汽油组分的催化裂化新工艺MIP[J].石油炼制与化工, 2001, 32(8): 1-5
    [11]王建文,杨朝合,山红红,等.催化裂化反应器研究的新进展[J].炼油技术与工程, 2004, 34: 1-7
    [12]刘清华,孙伟,钮根林,等.变径结构提升管反应器内颗粒流动特性的研究[J].炼油技术与工程,2007,37(10):32-36
    [13]孙伟.催化裂化反应器中气固两相流动的冷模实验研究[D].东营:中国石油大学(华东),2007
    [14]徐春明,高金森,林世雄,等.重油催化裂化反应过程分析[M].北京:石油工业出版社,2002
    [15]Gidaspow, D., J. Jung, and R.K. Singh. Hydrodynamics of fluidization using kinetic theory: an emerging paradigm: 2002 Flour-Daniel lecture[J]. Powder Technology,2004,V148(2-3):123-141
    [16]D.Gidaspow, L.Huilin. Equation of state and radial distribution function of FCC particles in a CFB[J]. AIChE J., 1998,V44(2):279-293
    [17]何玉荣,刘文铁,孙巧群,等.喷动床内气固二相流体动力行为颗粒动理学[J].化学工程, 2005,33(4):18-21
    [18]程易.气固两相流动数值模拟及其非线性动力学分析[D],北京:清华大学化工系, 2000
    [19]王嘉骏,顾雪萍,杨富军,等.双流体模型中曳力及恢复系数对气固流动的影响[J].高校化学工程学报, 2006, 20(2):164-168
    [20]Fluent User's guide. Fluent Inc.,2003
    [21]Srivastava, A. and S. Sundaresan. Analysis of a frictional-kinetic model for gas-particle flow[J]. Powder Technology, 2003, V129(1-3):72-85
    [22]Jiradilok, V. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser[J]. Chemical Engineering Science, 2006, V61(17):5544-5559
    [23]D.Gidaspow,L.Huilin.Collisional viscosity of FCC particles in a CFB.AIChE J.,1996,V42(9):2503-2510
    [24]Gidaspow,陆慧林,赵广播,等.管内稠密气固两相流数值模拟计算:颗粒动力学方法[J].化工学报, 2000, 51(1):31-38
    [25]陆慧林,赵广播,刘文铁,等.垂直管内气固两相流数值模拟计算--颗粒动力学理论方法[J].机械工程学报, 1999, 35(5):75-79
    [26]Benyahia, S., Arastoopour, H., Knowlton, T. M., et al. Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase[J]. Powder Technology, 2000, V112(1-2):24-33
    [27]Zhang, Y. and J.M. Reese. The drag force in two-fluid models of gas-solid flows[J]. Chemical Engineering Science, 2003, V58(8):1641-1644
    [28]Qi, Haiying. Li Fei,, Xi Bing, et al. Modeling of drag with the Eulerian approach and EMMS theory for heterogeneous dense gas-solid two-phase flow[J].Chemical Engineering Science, 2007, V62(6):1670-1681
    [29]Bing Sun, D.G.. Computation of Circulating Fluidized-Bed Riser Flow for the Fluidization VIII Benchmark Test[J]. Ind.Eng.Chem.Res, 1999, V38:787-792
    [30]Neri, D.G.. Riser hydrodynamic simulation using kinetic theory[J]. AIChE J, 2000, V46(1):52-67
    [31]刘阳,陆慧林,黄本诚.重力条件对稠密气固两相流动特性影响的数值模拟[J].中国电机工程学报, 2005, 25(20): 83-88
    [32]Cabezas Gomez, L. and F.E. Milioli . Numerical study on the influence of various physical parameters over the gas-solid two-phase flow in the 2D riser of a circulating fluidized bed[J]. Powder Technology, 2003, V132(2-3):216-225
    [33]张锴,张济宇,张碧江.气固流化床反应器内双流体力学模型及其验证I.数学模型和计算方法[J].燃料化学学报, 1997, V25(3):193-198
    [34]Cruz, E., F.R. Steward, and T. Pugsley. New closure models for CFD modeling of high-density circulating fluidized beds[J]. Powder Technology, 2006, V169(3):115-122
    [35]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社,2004
    [36]陈新国,徐春明,郭印诚.颗粒动力学模型的建立[J].计算机与应用化学, 2000, 17(6):505-508
    [37]陈新国,徐春明,郭印诚.颗粒流的动力学模型在催化裂化中的应用[J].化工冶金增刊, 1999,598-602
    [38]万晓涛,郑雨,魏飞,等.循环流化床提升管气固湍流的计算流体力学模拟k-ε-Θh-kp-εs参数双流体模型[J].化工学报, 2002, 53(5):461-468
    [39]Hansen, K.G., T. Solberg, and B.H. Hjertager. A three-dimensional simulation of gas/particle flow and ozone decomposition in the riser of a circulating fluidized bed. Chemical Engineering Science[J], 2004, V59(22-23):5217-5224
    [40]刘新华,高士秋,李静海.循环流化床中颗粒团聚性质的PDPA测量[J].化工学报, 2004, 55(4):555-562
    [41]Huang, Y., Turton, Juchirl, et al., Dynamic model of the riser in circulating fluidized bed. Powder Technology[J], 2006, V163(1-2):23-31
    [42]Li, J., Cheng, Congli, Zhang, Zhongdong, et al. The EMMS model -- its application, development and updated concepts[J]. Chemical Engineering Science, 1999, V54(22):5409-5425
    [43]程从礼,李静海,张忠东,等.气固垂直并流向上两相流流体动力学模型[J].化工学报, 2001, 52(8):684-689
    [44]Ning Yang, W.W., Wei Ge, et al. Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow[J]. China particuology, 2003,V1(1):38-41
    [45]杨宁,葛蔚,王维,等.非均匀气固流态化系统中颗粒流体相互作用的计算[J].化工学报, 2003, 54(4): 538-542
    [46]Yang, N., Wang Wei, Ge Wei, et al. CFD simulation of concurrent-up gas-solid flow incirculating fluidized beds with structure-dependent drag coefficient. Chemical Engineering Journal, 2003, V96(1-3):71-80
    [47]肖海涛,祈海鹰,由长福,等.循环流化床气固曳力模型[J].计算物理, 2003, 20(1): 25-30
    [48]Du, W., Bao, Xiaojun, Xu Jian, et al. Computational fluid dynamics (CFD) modeling of spouted bed: Assessment of drag coefficient correlations[J]. Chemical Engineering Science, 2006, V61(5):1401-1420
    [49]Mabrouk, R., J. Chaouki, and C. Guy,. Effective drag coefficient investigation in the acceleration zone of an upward gas-solid flow[J]. Chemical Engineering Science, 2007, V62(1-2): 318-327
    [50]昌泽舟,A.Berlemont.考虑颗粒间碰撞的气固两相流拉格朗日模拟[J].计算力学学报, 2001, 18(4): 388-392
    [51]刘向军,徐旭常.稠密气固两相流中颗粒密集效应的研究与应用[J].燃烧科学与技术, 2004, 10(2):120-124
    [52]刘向军,徐旭常.稠密气固两相反应流的拉格朗日法[J].北京科技大学学报, 2004, 26(2):135-138
    [53]Helland, E., Bournot, H., Occelli, R., et al. Drag reduction and cluster formation in a circulating fluidised bed[J]. Chemical Engineering Science, 2007, V62(1-2): 148-158
    [54]Benyahia, S. Analysis of solid flow patterns and mixing in gas/solid flow systems[D]. Illinois Institute of technology,Chicago.USA:1999
    [55]Mathiesen, V., T. Solberg, and B.H. Hjertager,. Predictions of gas/particle flow with an Eulerian model including a realistic particle size distribution[J]. Powder Technology, 2000, V112(1-2): 44-45
    [56]Lu, B., Wang, Wei, Li, Jinghai, et al. Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J]. Chemical Engineering Science, 2007, V62(18-20):5487-5494
    [57]Wang, W. and J. Li,. Simulation of gas-solid two-phase flow by a multi-scale CFD approach--of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, V62(1-2):208-231
    [58]Cheng, Y., Wei Fei, Yang, Guoqiang, et al. Inlet and outlet effects on flow patterns in gas-solid risers[J]. Powder Technology, 1998,V98(2):151-156
    [59]杨宁.非均匀气固两相流动的计算机模拟--多尺度方法与双流体模型的结合[D].北京:中国科学院研究生院, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700