用户名: 密码: 验证码:
相移数字全息显微的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字全息显微是近年来逐步发展起来的一种新型显微成像技术,是目前光学领域中一个活跃的研究热点。它利用CCD等光电记录器件代替传统光学全息干板来记录被测样品的显微全息图并存入计算机,然后通过相应的数字算法模拟实际光学衍射过程,在计算机中数值再现被测样品的三维形貌,以实现显微测量。该技术融合了光学干涉显微和数字图像技术,具有全场、无接触、快速、三维实时测量等许多独特的优势,已经广泛应用于生物医学观察、振动分析、形变检测、粒子场分析、微纳器件检测等诸多领域。
     普通的离轴数字全息显微虽然可以有效地消除衍射再现过程中零级像和孪生像的干扰,但由于目前光电记录器件的分辨率限制,使得离轴数字全息显微的分辨率受到一定的影响,不利于数字全息显微技术的实际应用。为了提高数字全息显微的分辨率,同轴相移数字全息显微随之诞生。通过在记录过程中改变参考光相对于物光的相位来记录多幅相移全息图,然后利用相应的数值算法再现记录面上物光场的复振幅分布。相比离轴数字全息显微,同轴相移数字全息显微通过相移操作,在同轴记录的情况下解决全息再现时零级和孪生像的干扰问题,提高CCD空间带宽积的利用率,改善再现质量,提高显微观测的分辨率。围绕构建可实用的高稳定数字全息显微装置,本论文以相移数字全息显微技术为主要研究内容,主要完成了以下研究工作:
     1、综述了数字全息技术和数字全息显微技术的产生和发展历程。分析了相移数字全息显微的特点并介绍了该领域的国内外研究发展现状。详细介绍了相移数字全息显微技术中的一些基础知识,如相移的概念、相移的实现方法、数字全息图的记录与再现方法以及相移算法等等,为后面的研究提供理论支持。
     2、基于偏振相移的原理分别搭建了分步相移和同步相移数字全息显微装置,并对两种相移装置的结构特点、适用范围和性能特点进行了实验研究和对比分析。系统地分析了显微记录过程中聚光镜和物镜等透镜产生附加相位的原因和相移误差对再现结果的影响。分别提出了一种基于最小二乘椭球面拟合的方法和基于衍射相位统计分布的实际相移量获取方法,消除附加相位和相移误差的影响,提高测量精度。
     3、结合空间分光技术和点衍射干涉技术,分别搭建了基于分光棱镜和光栅衍射的物参共路相移数字全息显微装置。通过分光棱镜或光栅在空间分光,然后利用针孔滤波产生参考光使得物光和参考光沿着相同的路径传播。物参共路的结构使得外界环境的干扰在记录时被有效消除,提高了数字全息显微装置的稳定性和实用性。
     4、基于彩色CCD的特点和双波长成像特性,搭建了轻载频双波长数字全息显微装置。通过单次曝光可同时获得两幅不同波长的正交载频全息图并按比例相减消除零级项,实现了轻载频全息图记录并提高最终成像质量。同时,利用两个波长的“差频”产生大小为Λ12=λ1λ2/|λ1-λ2|的长“合成波长”,实现对样品的无包裹测量,为运动物体或动态过程的观测提供一种实时高精度观测手段。
     5、分别提出了双波长衍射差异自动聚焦法和单波长双离轴照明自动聚焦法。通过寻找不同波长或不同传播方向上再现像之间的最小像差位置,实现了全息图数字再现过程中的自动聚焦,使得再现像最清晰,从而消除误判,提高测量精度。这两种自动聚焦算法除了吸收型样品和双折射型样品外均适用,应用范围广。
Digital Holographic Microscopy (DHM) is a recently well developed microscopictechnique, and has been becoming a hot research spot in optic science. DHM uses acharge coupled device (CCD) camera, intead of the traditional hologram recordingmedium, to store the hologram in computer digitally, and then simulate the opticaldiffraction process with corresponding algorithms for reconstruction of the originalobject field to realize three-dimensional microscopic imaging and measurement of thespecimen. DHM combines the characteristics of optical interferometic technology andmodern digital image processing technology, and has the features of whole-field,nondestructive, high-speed, real-time3D measurement. It has been widely used inbiomedical diagnosis, vibration analysis, deformation detection, particle field analysis,micro-/nano device inspection, and so on.
     Although the common off-axis DHM can totally eliminate the affection of zeroorder and twin images in real-time measurement process, the low resolution ofreconstructed image is the major drawback of off-axis DHM, due to the limitedresolution of current CCDs. In order to improve the DHM's resolution, in-linePhase-Shifting Digital Holographic Microscopy (PSDHM) has been invented. Bychanging the phase of the reference wave with respect to the object wave, multiplephase-shifted holograms are captured during the recording process. Then the complexamplitude of the object field is reconstructed by using corresponding algorithms,which can eliminate zero order and twin images effectively. Compared with theoff-axis DHM, in-line PSDHM makes full use of CCD's space bandwidth, thus theresolution of the reconstructed image is improved. Aimed at constructing a highlystable DHM setup for practical application, this thesis focused on PSDHM, andaccomplished the following main contents:
     1. The history and progress of digital holography (DH) and DHM are reviewed.The characteristic of PSDHM and its development are introduced andanalyzed comprehensively. The basic knowledges of PSDHM are introduced,including the concept of phase-shifting, the methods to realize thephase-shifting, recording and reconstruction of digital holograms, phase-shifting algorithms, and so on. All these knowledges are the theoreticalbasis for the next research.
     2. Based on the principle of polarization phase-shifting, step-by-stepphase-shifting DHM and parallel phase-shifting DHM have been built up,respectively, and the configuration, performance and application scope ofthem are discussed and compared. The physical formation of phase aberrationintroduced by condenser lens and microscope objective and the effect ofphase-shifting error are theoretically analyzed. In order to eliminate theadditional phase aberration and phase-shifting errors to improve the accuracyof measurement, a fitting method based on least square ellipsoidal model anda simple algorithm based on the statistical property of object wave for blindextraction of real phase-shift have been proposed.3. Two kinds of common-path PSDHM have been built up by combining the
     spatial beam splitting technique and the point-diffraction interferometry. Withbeamsplitters or gratings to split the light beam in space, the reference wave isreproduced by a pinhole filter to ensure the object wave and the referencewave to share the same path. The common-path configuration makes thedistributions of the two beams counteracted by each other in recordingprocess, and improves DHM's stability and practicability.
     4. A dual-wavelength DHM with a slightly off-axis configuration has beenproposed based on the imaging characteristic of color CCD anddual-wavelength illumination. To realize the slightly off-axis recording andimprove the resolution of image, two single wavelength holograms withorthogonal spatial carrier frequencies can be extracted from the recordedcolor hologram with one exposure, and the dc term can be suppressed bysubtracting one from the other in property. Meanwhile, the real-timeunwrapped phase measurement is achieved by a synthetic wavelengthΛ12=λ1λ2/|λ1-λ2|, which is produced by beat frequency of two wavelengths λ1and λ2, which provides a useful measuring tool for moving object or dynamicprocess detection.
     5. Two kinds of autofocusing schemes are proposed, which are based on thediffraction difference of dual-wavelength and two-angle off-axis illuminations of single wavelength, respectively. The image plane can be automaticallydetermined in the reconstructing process by seeking the minimal difference ofreconstructed images of two wavelengths or in different illuminationdirections. Both of algorithms can realize autofocusing exactly, and areapplicable to specimens without chromatic absorption and birefringence.
引文
1. D. Gabor. A new microscopic principle [J]. Nature,1948,161(4098):777-778.
    2. D. Gabor. Microscopy by reconstructed wave-fronts [J]. Proceedings of the Royal Society ofLondon. Series A, Mathematical and Physical Sciences,1949:454-487.
    3. D. Gabor. Microscopy by reconstructed wave fronts: II [J]. Proceedings of the PhysicalSociety. Section B,2002,64(6):449.
    4. G. L. Rogers. XIV. Experiments in Diffraction Microscopy [J]. Proceedings of the RoyalSociety of Edinburgh. Section A. Mathematical and Physical Sciences,1952,63(03):193-221.
    5. H. M. A. El-Sum, and P. Kirkpatrick. Microscopy by reconstructed wavefronts [J]. PhysicalReview,1952,85(763):3. Physical Review
    6. M. E. Haine, and T. Mulvey. Diffraction Microscopy with X-Rays [J].1952.
    7. E. N. Leith, and J. Upatnieks. Reconstructed wavefronts and communication theory [J].Journal of the Optical Society of America,1962,52(10):1123-1128.
    8. E. N. Leith, and J. Upatnieks. Wavefront reconstruction with continuous-tone objects [J].Journal of the Optical Society of America,1963,53(12):1377-1381.
    9. E. N. Leith, and J. Upatnieks. Wavefront reconstruction with diffused illumination andthree-dimensional objects [J]. Journal of the Optical Society of America,1964,54(11):1295-1301.
    10. Y. N Denisyuk. On the reflection of optical properties of an object in a wave field of lightscattered by it [J]. Doklady Akademii Nauk SSSR,1962,144(6):1275-1278.
    11. N. J. Phillips and D. Porter. An advance in the processing of holograms [J]. Journal ofPhysics E: Scientific Instruments,2001,9(8):631.
    12. G. Montemezzani, Holography and optical phase conjugation [J], Lecture at ETH Zurich,2002
    13. J. W. Goodman and R. W.Lwrence. Digital image formation from electronically detectedholograms [J]. Applied Physics Letters,1967,11(3):77-79.
    14. T. S. Huang. Digital holography. Proc. IEEE.1971,59(9):1335-1346.
    15. M. A. Kronrod, N. S. Merzlyakov and L. P. Yaroslavsky. Reconstruction of a hologram with acomputer [J]. Soviet Physics Technical Physics,1972,17:333-334.
    16. G. Liu and P. D. Scott. Phase retrieval and twin-image elimination for in-line Fresnelholograms [J]. Journal of the Optical Society of America. A,1987,4(1):159-165.
    17. T. H. Demetrakopoulos and R. Mittra. Digital and optical reconstruction of images fromsuboptical diffraction patterns [J]. Applied Optics,1974,13(3):665-670.
    18. L. P. Yaroslavskii and N. S. Merzlyakov. Methods of Digital Holography (Consultants Bureau,New York,1980)[J]. Chap,1:9-15.
    19. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K.Rhodes. Fourier-transform holographic microscope [J]. Applied Optics,1992,31(24):4973-4978.
    20. U. Schnars, and W. P O. Jüptner. Direct recording of holograms by a CCD target andnumerical reconstruction [J]. Applied Optics,1994,33(2):179-181.
    21. U. Schnars, and W. P O. Jüptner. Digital recording and reconstruction of holograms inhologram interferometry and shearography [J]. Applied Optics,1994,33(20):4373-4377.
    22. U. Schnars, T. M. Kreis and W. P O. Jüptner. Digital recording and numerical reconstructionof holograms: reduction of the spatial frequency spectrum [J]. Optical Engineering,1996,35(4):977-982.
    23. I. Yamaguchi and T. Zhang, Phase-shifting digital holography [J], Optics. Letters.1997,22(16):1268-1270.
    24. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb and C. Depeursinge.Digital holographic microscopy: a noninvasive contrast imaging technique allowingquantitative visualization of living cells with subwavelength axial accuracy [J]. Optics letters,2005,30(5):468-470.
    25. C. J. Mann, and M. K. Kim. Quantitative phase-contrast microscopy by angular spectrumdigital holography [C].Biomedical Optics2006. International Society for Optics andPhotonics,2006:60900B-60900B-8.
    26. B. Kemper and G. V.Bally. Digital holographic microscopy for live cell applications andtechnical inspection [J]. Applied optics,2008,47(4): A52-A61.
    27. G. Pan, and H. Meng. Digital holography of particle fields: reconstruction by use of complexamplitude [J]. Applied Optics,2003,42(5):827-833.
    28. F. Verpillat, F. Joud, P. Desbiolles and M. GrossT. Kreis. Dark-field digital holographicmicroscopy for3D-tracking of gold nanoparticles [J]. Optics Express,2011,19(27):26044-26055.
    29. P. Memmolo,A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro. Twin-beams digitalholography for3D tracking and quantitative phase-contrast microscopy in microfluidics [J].Optics Express,2011,19(25):25833-25842.
    30. P. Ferraro, G. Coppola, S. D. Nicola, A. Finizio and G. Pierattini, Digital holographicmicroscope with automatic focus tracking by detection sample displacement in real time [J],Optics Letters,2003,28(14):1257-1259
    31. Y. Fu, G. Pedrini and W. Osten. Vibration measurement by temporal Fourier analyses of adigital hologram sequence [J]. Applied optics,2007,46(23):5719-5727.
    32. W. Jüptner, C. Kopylow, and C. Falldorf. Digital holography and its application formicrosystems inspection [J]. Optoelectronics Letters,2008,4(1):72-77.
    33. V. Kebbel, H. J. Hartmann, W. P. O. Jüptner. Characterization of micro-optics using digitalholography [C]. International Symposium on Optical Science and Technology. InternationalSociety for Optics and Photonics,2000:459-469.
    34. P. Ferraro, G. Coppola, S. D. Nicola. Digital holography for characterization and testing ofMEMS structures [C]. Optical MEMs,2002. Conference Digest.2002IEEE/LEOSInternational Conference on. IEEE,2002:125-126.
    35. L. Rebetto, R. Chittofrati, and E. Piano, Infrared lensless holographic microscope with avidicon camera for inspection of metallic evaporation on silicon wafers [J], Optics.Communications,2005,251,44-50.
    36. E. Cuche, P. Marquet and C. Depeursinge. Simultaneous amplitude-contrast and quantitativephase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms [J].Applied Optics,1999,38(34):6994-7001.
    37. E. Cuche, F. Bevilacqua and C. Depeursinge. Digital holography for quantitativephase-contrast imaging [J]. Optics Letters,1999,24(5):291-293.
    38. C. J. Mann, and M. K. Kim. Quantitative phase-contrast microscopy by angular spectrumdigital holography [C].Biomedical Optics2006. International Society for Optics andPhotonics,2006:60900B-60900B-8.
    39. B. Kemper and G. V.Bally. Digital holographic microscopy for live cell applications andtechnical inspection [J]. Applied optics,2008,47(4): A52-A61.
    40. F. Verpillat, F. Joud, P. Desbiolles and M. GrossT. Kreis. Dark-field digital holographicmicroscopy for3D-tracking of gold nanoparticles [J]. Optics Express,2011,19(27):26044-26055.
    41. P. Memmolo,A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro. Twin-beams digitalholography for3D tracking and quantitative phase-contrast microscopy in microfluidics [J].Optics Express,2011,19(25):25833-25842.
    42. W. Jüptner, C. Kopylow, and C. Falldorf. Digital holography and its application formicrosystems inspection [J]. Optoelectronics Letters,2008,4(1):72-77.
    43. L. Rebetto, R. Chittofrati, and E. Piano, Infrared lensless holographic microscope with avidicon camera for inspection of metallic evaporation on silicon wafers [J], Optics.Communications,2005,251,44-50.
    44. S. Takao, S. Yoneyama, and M. TAkashi. Minute displacement and strain analysis usinglensless Fourier transformed holographic interferometry [J]. Optics and Lasers inEngineering,2002,38(5):233-244.
    45. J. L. Valin, E. Goncalves, F. Palacios and JR Pérez. Methodology for analysis ofdisplacement using digital holography [J]. Optics and Lasers in Engineering,2005,43(1):99-111.
    46. A. Asundi and V. R. Singh. Amplitude and phase analysis in digital dynamic holography [J].Optics Letters,2006,31(16):2420-2422.
    47. B. Rappaz, P. Marquet, E. Cuche, Y Emery and C. Depeursinge, and P. Magistretti.Measurement of the integral refractive index and dynamic cell morphometry of living cellswith digital holographic microscopy [J]. Optics Express,2005,13(23):9361-9373.
    48. M. D. Angelis, S. D. Nicola, A. Finizio, G. Pierattint, P. Ferraro, S. Pelli, C.Giancarlo and S.Sebastiani. Digital-holography refractive-index-profile measurement of phase gratings [J].Applied Physics Letters,2006,88(11):111114-111114-3.
    49. M. H. Jericho, H. J. Kreuzer,M. Kanka,and R. Riesenberg. Quantitative phase and refractiveindex measurements with point-source digital in-line holographic microscopy [J]. AppliedOptics,2012,51(10):1503-1515.
    50. S. Sharma, G. Sheoran, and Chandra Shakher. Digital holographic interferometry formeasurement of temperature in axisymmetric flames [J]. Applied Optics,2012,51(16):3228-3235.
    51. S. Lai, and M. A. Neifeld. Digital wavefront reconstruction and its application to imageencryption [J]. Optics Communications,2000,178(4):283-289.
    52. P. Refregier, and B. Javidi, Optical image encryption based on input plane and Fourier planerandom encoding [J], Optics Letters,2005,20(7):767-769.
    53. H. Di, K. Zheng, X. Zhang, E. Y. Lam, T. Kim, Y. S Kim, T Poon, and C. Zhou.Multiple-image encryption by compressive holography [J]. Applied Optics,2012,51(7):1000-1009.
    54. M. D. H. Podbielska, and J. Kobel. Review of optical techniques for protection of documentsand other objects [C]. Proc. of SPIE.2001,4535:93-97
    55. J. S. Marsh, D. Watts, J. E. Gordon, C. Anderson, and D. L. Smith. Distortion compensationand elimination in holographic reconstruction [J]. Applied Optics,1998,37(11):2087-2093.
    56. A. Stadelmaier, and J. H. Massig. Compensation of lens aberrations in digital holography [J].Optics Letters,2000,25(22):1630-1632.
    57. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu. Super-resolution digital holographic imagingmethod [J]. Applied Physics Letters,2002,81(17):3143-3145.
    58. V. Mico, Z. Zalevsky, P. García-Martínez P, and J. García. Superresolved imaging in digitalholography by superposition of tilted wavefronts [J]. Applied Optics,2006,45(5):822-828.
    59. B. Bhaduri, H. Pham, M. Mir, and G. Popescu. Diffraction phase microscopy with white light[J]. Optics Letters,2012,37(6):1094-1096.
    60. L Xu, C. Aleksoff, and J. Ni. High-precision three-dimensional shape reconstruction viadigital refocusing in multi-wavelength digital holography [J]. Applied Optics,2012,51(15):2958-2967.
    61. W. S. Haddad, D. Cullen D, J. C Solem Fourier-transform holographic microscope [J].Applied Optics,1992,31(24):4973-4978.
    62. T. Zhang and I. Yamaguehi. Three dimensional microscopy with phase shifting digitalholography. Optics Letters,1998,23(15):1221-1223.
    63. V. Mico and Z. Zalevsky, P. Garcia-Martinez, and J. Garcia. Single-step superresolution byinterferometric imaging [J]. Optics Express,2004,12(12):2589-2596.
    64. Y Emery, E Cuche, F Marquet, N Aspert, P Marqueta, J Kühn, M. Botkine, T. Colomb, F.Montfort, F. Charrière, and C. Depeursinge. Digital Holography Microscopy (DHM): Fastand robust systems for Industrial Inspection with interferometer resolution [C]. Proc. of SPIE.2005,5856:930-937.
    65. P Massatsch P, F Charrière F, E Cuche, P. Marquet, C. D. Depeursinge. Time-domain opticalcoherence tomography with digital holographic microscopy [J]. Applied Optics,2005,44(10):1806-1812.
    66. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C.Depeursinge, Submicrometer optical tomography by multiple-wavelength digital holographicmicroscopy [J]. Applied Optics,2006,45(32):8209-8217.
    67. T. Wilson. Confocal microscopy [J]. Academic Press: London, etc,1990,426:1-64.
    68. C. Sheppard, D. Shotton, C. Sheppard. Confocal laser scanning microscopy [M]. Oxford:BIOS Scientific Publishers,1997
    69. A Kalinin S, Gruverman A. Scanning probe microscopy [M]. Springer Science, BusinessMedia,2006.
    70. R. Barer. Interference microscopy and mass determination [J]. Nature,1952,169:366-367
    71. J. Mertz. Nonlinear microscopy: new techniques and applications [J]. Current opinion inneurobiology,2004,14(5):610-616
    72. Z. J. Lv, J. Z. Lu, Y. Q. Wu, and L. Y. Chen, Introduction to theories of severalsuperresolution fluorescence microscopy methods and recent advance in the Field [J].Progress in Biochemistry and Biophysics,2009,36(12),1626-1634
    73. K. Creath, Phase-measurement interferometry techniques in process in optics, XXXVI [M],Elsevier Science Publishers,1998,349-393
    74. C. Meneses-Fabian, G. Rodriguez-Zurita, J. F. Vazquez-Castillo, and V. Arrizon.Common-path phase-shifting interferometer with binary grating [J]. Optics Communications,2006,264(1):13-17.
    75. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. L. Yao. Phase-shifting point-diffractioninterferometry with common-path and in-line configuration for microscopy [J]. OpticsLetters,2010,35(5):712-714.
    76. C. S. Guo, L. Zhang, H. T. Wang, J. Liao, and Y. Y. Zhu. Phase-shifting error and itselimination in phase-shifting digital holography [J]. Optics Letters,2002,27(19):1687-1689.
    77. T. Kiire, S. Nakadate, and M. Shibuya. Phase-shifting interferometer based on changing thedirection of linear polarization orthogonally [J]. Applied Optics,2008,47(21):3784-3788.
    78. E. Li, J. Yao, D. Yu, J. Xi, J. Chicharo. Optical phase shifting with acousto-optic devices [J].Optics Letters,2005,30(2):189-191.
    79. M. Atlan, M.Gross, and E. Absil. Accurate phase-shifting digital interferometry [J]. OpticsLetters,2007,32(11):1456-1458.
    80. M. Cruz, A. Castro, and V. Arrizón. Phase shifting digital holography implemented with atwisted-nematic liquid-crystal display [J]. Applied Optics,2009,48(36):6907-6912.
    81..N. R. Sivakumar, W. K. Hui, K. Venkatakrishnan, and B. K. A. Ngoi, Large surface profilemeasurement with instantaneous phase-shifting interferometry [J]. Optical Engineering,2003,42(2):367-372.
    82. Y Awatsuji, M Sasada, T Kubota. Parallel quasi-phase-shifting digital holography [J].Applied Physics Letters,2004,85(6):1069-1071.
    83. C. Meneses-Fabian, G. Rodriguez-Zurita, and V. Arrizón. Optical tomography of transparentobjects with phase-shifting interferometry and stepwise-shifted Ronchi ruling [J]. JOSA. A,2006,23(2):298-305.
    84. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba. Parallel three-step phase-shifting digitalholography [J]. Applied Optics,2006,45(13):2995-3002.
    85. Y. Awatsuji, T. Koyama, T. Tahara, K. Ito, Y. Shimozato, A. Kaneko, K. Nishio, S.Ura, T.Kubota, and O. Matoba. Parallel optical-path-length-shifting digital holography [J]. AppliedOptics,2009,48(34): H160-H167.
    86. T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota,and O. Matoba. Experimental demonstration of parallel two-step phase-shifting digitalholography [J]. Optics Express,2010,18(18):18975-18980.
    87. J. Schwider, R. Burow, K. E. Elssner, J.Grzanna, R. Spolaczyk and K. Merkel. Digitalwave-front measuring interferometry: some systematic error sources [J]. Applied Optics,1983,22(21):3421-3432.
    88. G. Sotilov and T. Dargostinov. Phase-stepping interferometry: five-frame algorithm with anarbitrary step [J]. Optics and Lasers in Engineering,1997,28(1):61-69.
    89. J. E. Greibenkamp. Generalized data reduction for heterodyne interferometry [J]. OpticalEngineering,1984,23(4):350-352.
    90. L. Z. Cai, Q. Liu, and X. L. Yang. Generalized phase-shifting interferometry with arbitraryunknown phase steps for diffraction objects [J]. Optics Letters,2004,29(2):183-185.
    91. X. F. Xu, L. Z. Cai, Y. R. Wang, X. L. Yang, X. F. Meng, G. Y. Dong, X. X. Shen, and H.Zhang. Generalized phase-shifting interferometry with arbitrary unknown phase shifts: Directwave-front reconstruction by blind phase shift extraction and its experimental verification [J].Applied Physics Letters,2007,90(12):121124-121124-3.
    92. X. F. Meng, L. Z. Cai, Y. R. Wang, X. L. Yang, X. F. Xu, G. Y. Dong, X. X. Shen, X. C.Cheng. Wavefront reconstruction by two-step generalized phase-shifting interferometry [J].Optics Communications,2008,281(23):5701-5705.
    93. G. Lai and T. Yaatgai. Generalized phase-shifting interferometry [J]. Journal of the OpticalSociety of America. A,1991,8(5):822-827.
    94. X. F. Xu, L. Z. Cai, Y. R. W ang, X. F. Meng, H. Zhang, X.C. Cheng, G.Y. Dong and X. X.Shen. Effect of phase shift selection and phase shift errors on wave-front reconstructionerrors in three-step generalized phase-shifting interferometry [J]. Journal of Modern Optics,2008,55(8):1291-1304.
    95. G. D. Lassahn, J. K. Lassahn, P. L. Taylor and V. A. Multiphase fringe analysis with unknownphase shifts [J]. Optical Engineering,1994,33(6):2039-2044.
    96. G. S. Han, and S. W. Kim. Numerical correction of reference phases in phase-shiftinginterferometry by iterative least-squares fitting [J]. Applied Optics,1994,33(31):7321-7325.
    97. K. Okada, A. Sato and J. Ysujiuchi. Simultaneous calculation of phase distribution andscanning phase shift in phase shifting interferometry [J]. Optics Communications,1991,84(3):118-124.
    98. X. Chen, M. Gramaglia, and J. A. Yeazell. Phase-shifting interferometry with uncalibratedphase shifts [J]. Applied Optics,2000,39(4):585-591.
    99. H. W. Guo, Y. J. Yu and M. Y. Chen. Blind phase shift estimation in phase-shiftinginterferometry [J]. Journal of the Optical Society of America. A,2007,24(1):25-33.
    100. S. Zhang. A non-iterative method for phase-shift estimation and wave-front reconstruction inphase-shifting digital holography [J]. Optics Communications,2006,268(2):231-234.
    101. E. Cuche, F. Bevilacqua, and C. Depeursinge. Digital holography for quantitativephase-contrast imaging [J]. Optics Letters,1999,24(5):291-293.
    102. S. Lai, B. King, and M. Neifeld. Wave front reconstruction by means of phase-shifting digitalin-line holography [J]. Optics Communications,2000,173(1):155-160.
    103. F. Charrière, N. Pavillon, T. Colomb and C. Depeursinge. Living specimen tomography bydigital holographic microscopy: morphometry of testate amoeba [J]. Optics. Express,2006,14(16):7005-7013.
    104. V Micó, Z Zalevsky, C Ferreira, and J García. Superresolution digital holographicmicroscopy for three-dimensional samples [J]. Optics Express,2008,16(23):19260-19270.
    105. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax. Two-step-only phase-shiftinginterferometry with optimized detector bandwidth for microscopy of live cells [J]. OpticsExpress,2009,17(18):15585-15591.
    106. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax. Simultaneoustwo-wavelength transmission quantitative phase microscopy with a color camera [J]. OpticsLetters,2010,35(15):2612-2614.
    107. M. Gross and M. Atlan. Digital holography with ultimate sensitivity [J]. Optics Letters,2007,32(8):909-911.
    108. V. Mico, Z. Zalevsky, J.Garcia. Synthetic aperture microscopy using off-axis illumination andpolarization coding [J]. Optics Communications,2007,276(2):209-217.
    109. T. M. Kreis, M. Adams, W. P. Jüptner. Methods of digital holography: a comparison [C].Lasers and Optics in Manufacturing III. International Society for Optics and Photonics,1997,3098:224-233.
    110. S. D. Nicola, A. Finizio, G. Pierattini, P. Ferraro and D. Alfieri. Angular spectrum methodwith correction of anamorphism for numerical reconstruction of digital holograms on tiltedplanes [J]. Optics Express,2005,13(24):9935-9940.
    111. C. J. Mann, and M. K. Kim. Quantitative phase-contrast microscopy by angular spectrumdigital holography [C]. Biomedical Optics2006. International Society for Optics andPhotonics,2006,6090:60900B-60900B-8.
    112. M. Liebling, T. Blu and M. Unser. Complex-wave retrieval from a single off-axis hologram[J]. Journal of the Optical Society of America. A,2004,21(3):367-377.
    113. B. Kemper, D. Carl, and S. Knoche. Holographic interferometric microscopy systems for theapplication on biological samples [C]. Proceedings of SPIE.2004,5457:581-588.
    114. M. Liebling, T. Blu and M. Unser. Fresnelets: new multiresolution wavelet bases for digitalholography [J]. Image Processing, IEEE Transactions on,2003,12(1):29-43.
    115. J. Zhong and J. Weng. Phase retrieval of optical fringe patterns from the ridge of a wavelettransforms [J]. Optics Letters,2005,30(19):2560-2562.
    116. J. Maycock, B. M. Hennelly, and J. B. McDonald. Reduction of speckle in digital holographyby discrete Fourier filtering [J]. Journal of the Optical Society of America. A,2007,24(6):1617-1622.
    117. J. G-Sucerquia, J. A. H. Ramírez, and D. V. Prieto. Reduction of speckle noise in digitalholography by using digital image processing [J]. Optik-International Journal for Light andElectron Optics,2005,116(1):44-48.
    118. X. Cai, and H. Wang. The influence of hologram aperture on speckle noise in thereconstructed image of digital holography and its reduction [J]. Optics Communications,2008,281(2):232-237.
    119. V. Mico, Z. Zalevsky, and J. García J. Superresolution optical system by common-pathinterferometry [J]. Opt. Express,2006,14(12):5168-5171.
    120. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro. Super-resolution indigital holography by a two-dimensional dynamic phase grating [J]. Optics Express,2008,16(21):17107-17118.
    121. B. Katz and J. Rosen. Super-resolution in incoherent optical imaging using synthetic aperturewith Fresnel elements [J]. Optics Express,2010,18(2):962-972.
    122. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson. Synthetic aperture Fourierholographic optical microscopy [J]. Physical Review Letters,2006,97(16):168102.
    123. T. S. Ralston, D. L. Marks, P. S. Careney, and S. A. Boppart. Interferometric syntheticaperture microscopy [J]. Nature Physics,2007,3(2):129-134.
    124. H. Li, L. Zhong, Z. Ma, and X. Lu. Joint approach of the sub-holograms in on-axis lenslessFourier phase-shifting synthetic aperture digital holography [J]. Optics Communications,2011,284(9):2268-2272.
    125. P. Ferraro and G. Coppola, S. D. Nicola, A. Finizio, and G. Pierattini. Digital holographicmicroscope with automatic focus tracking by detecting sample displacement in real time [J].Optics Letters,2003,28(14):1257-1259.
    126. M. Liebling and M. Unser. Autofocus for digital Fresnel holograms by use of aFresnelet-sparsity criterion [J]. Journal of the Optical Society of America. A,2004,21(12):2424-2430.
    127. P. Langehanenberg, B. Kemper, D. Dirksen, and G. Bally. Autofocusing in digital holographicphase contrast microscopy on pure phase objects for live cell imaging [J]. Applied Optics,2008,47(19): D176-D182.
    128. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A Gdeisat. Fast two-dimensionalphase-unwrapping algorithm based on sorting by reliability following a noncontinuous path[J]. Applied Optics,2002,41(35):7437-7444.
    129. S. Tomioka, S. Heshmat, N. Miyamoto, and S. Nishiyama. Phase unwrapping for noisy phasemaps using rotational compensator with virtual singular points [J]. Applied Optics,2010,49(25):4735-4745.
    130. A. Khmaladze, R. L. Matz, C. Zhang, T. Wang, M. M. B. Holl, and Z. Chen.Dual-wavelength linear regression phase unwrapping in three-dimensional microscopicimages of cancer cells [J]. Optics Letters,2011,36(6):912-914.
    131. F. Palacios, J. Ricardo, D. Palacios, E. Gon alves.3D image reconstruction of transparentmicroscopic objects using digital holography [J]. Optics Communications,2005,248(1):41-50.
    132. J. Schwider, R. Burow, K. E. Elssner, J.Grzanna, R. Spolaczyk and K. Merkel. Digitalwave-front measuring interferometry: some systematic error sources [J]. Applied Optics,1983,22(21):3421-3432.
    133. K. Creath Comparison of phase-measurement algorithms [C]. Proc. SPIE.1986,680:19-28.
    134. J. V. Wingerden, H. J. Frankena and C. Smorenburg. Linear approximation for measurementerrors in phase shifting interferometry [J]. Applied Optics,1991,30(19):2718-2729.
    135. L. Z. Cai, Q. Liu and X. L. Yang. Phase-shift extraction and wave-front reconstruction inphase-shifting interferometry with arbitrary phase steps [J]. Optics Letters,2003,28(19):1808-1810.
    136. X. F. Xu, L. Z. Cai, Y. R. Wang, X. F. Meng, W. J. Sun, H. Zhang, X. C. Cheng, G. Y. Dong,and X. X. Shen. Simple direct extraction of unknown phase shift and wavefrontreconstruction in generalized phase-shifting interferometry: algorithm and experiments [J].Optics Letters,2008,33(8):776-778.
    137. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P.Marquet, and C. Depeursinge. Numerical parametric lens for shifting, magnification, andcomplete aberration compensation in digital holographic microscopy [J]. Journal of theOptical Society of America. A,2006,23(12):3177-3190.
    138. M. K. Kim. Adaptive optics by incoherent digital holography [J]. Optics Letters,2012,37(13):2694-2696.
    139. N. T. Shaked, M. T. Rinehart, and A. Wax. Dual-interference-channel quantitative-phasemicroscopy of live cell dynamics [J]. Optics Letters,2009,34(6):767-769.
    140. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax. Parallel on-axis holographic phasemicroscopy of biological cells and unicellular microorganism dynamics [J]. Applied Optics,2010,49(15):2872-2878.
    141. N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax. Reflective interferometric chamberfor quantitative phase imaging of biological sample dynamics [J]. Journal of BiomedicalOptics,2010,15(3):030503-030503-3.
    142. S. K. Debnath and Y. Park. Real-time quantitative phase imaging with a spatial phase-shiftingalgorithm [J]. Optics Letters,2011,36(23):4677-4679.
    143. J. Millerd, N. Brock, J. Hayes, M. Morris, M. Novak and J. Wyant. Pixelated phase-maskdynamic interferometer [C]. Optical Science and Technology, the SPIE49th Annual Meeting.International Society for Optics and Photonics,2004,5531:304-314.
    144. G. Rodriguez-Zurita, C. Meneses-Fabian, N. I. Toto-Arellano, J. F. Vázquez-Castillo, and C.Robledo-Sánchez. One-shot phase-shifting phase-grating interferometry with modulation ofpolarization: case of four interferograms [J]. Optics Express,2008,16(11):7806-7817.
    145. G. Rodriguez-Zurita, N. I. Toto-Arellano, C. Meneses-Fabian and J. F. Vázquez-Castillo.One-shot phase-shifting interferometry: five, seven, and nine interferograms [J]. OpticsLetters,2008,33(23):2788-2790.
    146. N.I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, J. F. Vazquez-Castillo,Phaseshifts in the Fourier spectra of phase gratings and phase grids: an application for one-shotphase-shifting interferometry [J]. Optics Express,2008,16(23):19330-19341.
    147. L. C Chen, S. L. Yeh, A. M. Tapilouw, and J. C. Chang.3-D surface profilometry usingsimultaneous phase-shifting interferometry [J]. Optics Communications,2010,283(18):3376-3382.
    148. M. Vannoni, A. Sordini, and G. Molesini. He-Ne laser wavelength-shifting interferometry [J].Optics Communications,2010,283(24):5169-5172.
    149. R. Jang, C. S. Kang, J. A. Kim, J. W. Kim, J. E. Kim, and H. Y. Park. High-speedmeasurement of three-dimensional surface profiles up to10μm using two-wavelengthphase-shifting interferometry utilizing an injection locking technique [J]. Applied Optics,2011,50(11):1541-1547.
    150. J. L. Di, J. L. Zhao, W. W. Sun, H. Z. Jiang, and X. B. Yan. Phase aberration compensation ofdigital holographic microscopy based on least squares surface fitting [J]. OpticsCommunications,2009,282(19):3873-3877.
    151. J. L. Zhao, H. Z. Jiang, and J. L. Di. Recording and reconstruction of a color holographicimage by using digital lensless Fourier transform holography [J]. Optics express,2008,16(4):2514-2519.
    152. X. B. Yan, J. L. Di, J. L. Zhao, H. Z. Jiang and W. W. Sun. Resolution improvement of digitalholographic images based on angular multiplexing with incoherent beams in orthogonalpolarization states [J]. Optics Letters,2010,35(20):3519-3521.
    153. J. L. Zhao, X. B. Yan, W. W. Sun, and J. L. Di. Resolution improvement of digitalholographic images based on angular multiplexing with incoherent beams in orthogonalpolarization states [J]. Optics Letters,2010,35(20):3519-3521.
    154. J. Wang, J. L. Zhao, C. Qin, J. L. Di, A. Rauf, and H. Z. Jiang. Digital holographicinterferometry based on wavelength and angular multiplexing for measuring the ternarydiffusion [J]. Optics Letters,2012,37(7):1211-1213.
    155. J. C. Li, Z. Peng, and Y. C. Fu. Diffraction transfer function and its calculation of classicdiffraction formula [J]. Optics Communications,2007,280(2):243-248.
    156. J. C. Li, P. Tankam, Z. Peng, and P. Picart. Digital holographic reconstruction of large objectsusing a convolution approach and adjustable magnification [J]. Optics Letters,2009,34(5):572-574.
    157. C. J. Yuan, L. Y. Zhong, X. X. Lv, Y. Zhu. Numerical compensation in phase-shifting in-linelensless Fourier digital holographic microscopy [C]. Proc. of SPIE.2004,5636:212-219
    158.葛宝臻,罗文国.数字再现三维物体菲涅耳计算全息的研究[J].光电子.激光,2002,13(12):1289-1292.
    159.钟丽云,张以谟,吕晓旭,钱晓凡,熊秉衡.数字全息中的一些基本问题分析[J].光学学报,2004,24(4):465-471.
    160.吕且妮,葛宝臻,张以谟.数字显微像面全息技术研究[J].光电子.激光,2006,17(4):475-478.
    161.吕晓旭,张以谟,钟丽云,罗印龙,佘灿麟.相移同轴无透镜傅里叶数字全息的分析与实验[J].光学学报,2005,24(11):1511-1515.
    162. C. S. Guo, L. Zhang, and Z. Rong. Effect of the fill factor of CCD pixels on digitalholograms: comment on the papers Frequency analysis of digital holography andFrequency analysis of digital holography with reconstruction by convolution [J]. OpticalEngineering,2003,42(9):2768-2771.
    163. X. F. Xu, L. Z. Cai, Y. R. Wang, X. F. Meng, X. C. Cheng, H. Zhang, G Y Dong and X. X.Shen. Correction of wavefront reconstruction errors caused by light source intensityinstability in phase-shifting interferometry [J]. Journal of Optics A: Pure and Applied Optics,2008,10(8):085008.
    164. H. Y. Wang, H. J. Wei, Y. Wang, J. Zhao, and D. Y. Wang. Lateral resolution of digitalholographic system [C]. Photonics Asia2007. International Society for Optics and Photonics,2007:683213-683213-9.
    165. H. Y. Wang, B. Q. Zhao, Y. Wang, L. Zheng, G, J, Wang and D. Y. Wang, Depths of view andfocus of digital holographic imaging system [C].International Symposium on PhotoelectronicDetection and Imaging: Technology and Applications2007. International Society for Opticsand Photonics,2007:662213-662213-8.
    166. Y. Li, D. Y. Wang, G. J. Wang, Y. Z. Zhang and C. G. Liu, Measurement of temperature fieldin the region near to the radiator by using digital holography [C] International Symposium onPhotoelectronic Detection and Imaging2009. International Society for Optics and Photonics,2009:738240-738240-8
    167. D. X. Zheng, Y. Zhang, and J.L. Shen. Wave field reconstruction from a hologram sequence[J]. Optics Communications,2005,249(1):73-77.
    168. P. Carre′Installation et utilisation du comparateur photoe′lectrigue et Interferentiel duBureau International des Poids ek Measures [J], Metrologia,1966,1,13-23.
    169. R. Crane. Interference phase measurement [J]. SPIE milestone series,1991,28:284-288.
    170. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J.Brangaccio. Digital wavefront measuring interferometer for testing optical surfaces andlenses [J]. Applied Optics,1974,13(11):2693-2703.
    171. J. C. Wyant. Use of an ac heterodyne lateral shear interferometer with real-time wavefrontcorrection systems [J]. Applied Optics,1975,14(11):2622-2626.
    172. J. Schwider, O. Falkenst rfer, H. Schreiber, A. Z ller, N. Streibl. New compensatingfour-phase algorithm for phase-shift interferometry [J]. Optical Engineering,1993,32(8):1883-1885.
    173. J. Schmit and K. Creath. Extended averaging technique for derivation of error-compensatingalgorithms in phase-shifting interferometry [J]. Applied Optics,1995,34(19):3610-3619.
    174. H. Bi, Y. Zhang, K. V. Link, and C. Wen. Class of4+1-Phase algorithms with errorcompensation [J]. Applied Optics,2004,43(21):4199-4207.
    175. R. Smythe and R. Moore. Instantaneous phase measuring interferometry [J]. OpticalEngineering,1984,23(4):361-364.
    176. G. Lai and T. Yatagai. Generalized phase-shifting interferometry [J]. Journal of the OpticalSociety of America. A,1991,8(5):822-827.
    177. K. Creath, Phase-measure interferometry techniques in Progress in Optics, Vol. XXXVI [M].Elsevier Science,1988
    178. H. Iwai, C. F. Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld.Quantitative phase imaging using actively stabilized phase-shifting low-coherenceinterferometry [J]. Optics Letters,2004,29(20):2399-2401.
    179. P. Gao, B. L. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist. Phase-shift extraction forgeneralized phase-shifting interferometry [J]. Optics Letters,2009,34(22):3553-3555.
    180. H. Schreiber, J. H. Bruning. Phase shifting interferometry [J]. Optical Shop Testing, ThirdEdition, New York: Wiley2006:547-666.
    181. E. Li, J. Yao, D. Yu, J. Xi, and J. Chicharo. Optical phase shifting with acousto-optic devices[J]. Optics Letters,2005,30(2):189-191.
    182. C. S. Guo, X. Cheng, X, Y. Ren, J. P. Ding, and H. T. Wang. Optical vortex phase-shiftingdigital holography [J]. Optics Express,2004,12(21):5166-5171.
    183.祝绍箕,邹海兴,包学诚,郭厚林编著,衍射光栅[M],机械工业出版社,1986
    184. C. K. Hong, S. R. Ryu and H. C. Lim. Least-squares fitting of the phase map obtained inphase-shifting electronic speckle pattern interferometry [J]. Optics Letters,1995,20(8):931-933.
    185. J. H. Bruning, Fringe scanning interferometer in Optical Stop Testing [M], New York: Wiley,1978
    186. P. D. Groot. Derivation of algorithms for phase-shifting interferometry using the concept of adata-sampling window [J]. Applied Optics,1995,34(22):4723-4730.
    187. Y. Surrel. Design of algorithms for phase measurements by the use of phase stepping [J].Applied Optics,1996,35(1):51-60.
    188. C. T. Farrell and M. A. Player. Phase-step insensitive algorithms for phase-shiftinginterferometry [J]. Measurement Science and Technology,1999,5(6):648-652.
    189. D. W. Phillion. General methods for generating phase-shifting interferometry algorithms [J].Applied Optics,1997,36(31):8098-8115.
    190. X. Chen, M. Gramaglia, and J. A. Yeazell. Phase-shifting interferometry with uncalibratedphase shifts [J]. Applied Optics,2000,39(4):585-591.
    191. G. Stoilov, and T. Dragostinov. Phase-stepping interferometry: five-frame algorithm with anarbitrary step [J]. Optics and Lasers in Engineering,1997,28(1):61-69.
    192. P. Hariharan, B. F. Oreb, and T. Eiju, Digital phase-shifting interferometry: a simpleerror-compensating phase calculation algorithm [J], Applied Optics,1987,26(13):2504-2506
    193.徐先锋.广义相移数字全息干涉术相移提取及波前再现算法的理论及实验研究[D].山东大学,2008.
    194. F. Zhang, G. Pedurini and W. Osten. Reconstruction algorithm for high-numerical-apertureholograms with diffraction-limited resolution [J]. Optics Letters,2006,31(11):1633-1635.
    195. I. Daubechies. The wavelet transform, time-frequency localization and signal analysis [J].IEEE Transactions on Information Theory,1990,36(5):961-1005.
    196. J. E. Greivenkamp, and J. H. Brunning, Phase shifting interferometry [J], in Optical ShopTesting, D. Malacara ed., John Wiley&Sons, Inc., New York, Chichester, Brisbane, Toronto,Singapore,1992, Chap.14, pp.501-598.
    197. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim. High-resolution quantitative phase-contrastmicroscopy by digital holography [J]. Optics Express,2005,13(22):8693-8698.
    198. W. J. Qu, K. Bhattacharya, C. Q. Choo, Y. J. Yu, and A. Asundi. Transmission digitalholographic microscopy based on a beam-splitter cube interferometer [J]. Applied Optics,2009,48(15):2778-2783.
    199. G. Pedrini, S. Schedin, and H. J. Tiziani. Aberration compensation in digital holographicreconstruction of microscopic objects [J]. Journal of Modern Optics,2001,48(6):1035-1041.
    200. P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini.Compensation of the inherent wave front curvature in digital holographic coherentmicroscopy for quantitative phase-contrast imaging [J]. Applied Optics,2003,42(11):1938-1946.
    201. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C.Depeursinge. Automatic procedure for aberration compensation in digital holographicmicroscopy and applications to specimen shape compensation [J]. Applied Optics,2006,45(5):851-863.
    202. C. L. Koliopoulos. Simultaneous phase-shift interferometer [C].Society of Photo-OpticalInstrumentation Engineers (SPIE) Conference Series.1992,1531:119-127.
    203. N. R. Sivakumar, W. K. Hui, K. Venkatakrishnan, and B. K. A. Ngoi. Large surface profilemeasurement with instantaneous phase-shifting interferometry [J]. Optical Engineering,2003,42(2):367-372.
    204. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant. Analysis of amicropolarizer array-based simultaneous phase-shifting interferometer [J]. Applied Optics,2005,44(32):6861-6868.
    205. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba.Parallel two-step phase-shifting digital holography [J]. Applied Optics,2008,47(19):D183-D189.
    206. T. Kakue, Y. Moritani, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O.Matoba. Image quality improvement of parallel four-step phase-shifting digital holographyby using the algorithm of parallel two-step phase-shifting digital holography [J]. OpticsExpress,2010,18(9):9555-9560.
    207.左芬,陈磊,徐春生.基于二维光栅分光的同步移相干涉测量技术[J].光学学报,2007,27(4):663-667.
    208. N. I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. Vazquez-Castillo. Phaseshifts in the Fourier spectra of phase gratings and phase grids: an application for one-shotphase-shifting interferometry [J]. Optics Express,2008,16(23):19330-19341.
    209. X. F. Xu, L. Z. Cai, X. F. Meng, G. Y. Dong, and X. X. Shen. Fast blind extraction ofarbitrary unknown phase shifts by an iterative tangent approach in generalized phase-shiftinginterferometry [J]. Optics Letters,2006,31(13):1966-1968.
    210. D. Malacara, Optical Shop Testing John Wiley&Sons, Inc,(2007)
    211. P. Hariharan. Basics of interferometry [M]. Academic Press,2007.
    212. J. E. Millerd, N. J. Brock, J. B. Hayes, and J. C. Wyant. Instantaneous phase-shiftpoint-diffraction interferometer [C]. Optical Data Storage Topical Meeting2004.International Society for Optics and Photonics,2004,5531:422-429.
    213. F. Zernike. Phase contrast, a new method for the microscopic observation of transparentobjects Part II [J]. Physica,1942,9(10):974-986.
    214. J. C. Chanteloup. Multiple-wave lateral shearing interferometry for wave-front sensing [J].Applied Optics,2005,44(9):1559-1571.
    215. L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro. Dynamic DIC bydigital holography microscopy for enhancing phase-contrast visualization [J]. BiomedicalOptics Express,2011,2(2):331-344.
    216. J. H. Burge, C. Zhao, and M. Dubin. Measurement of aspheric mirror segments using Fizeauinterferometry with CGH correction [C]. Proc. of SPIE.2010,7739:773902-1.
    217. W. Linnik, Simple Interferometer to Test Optical Systems [J], Comptes Radnus del’Acade′mie des Sciences d l’U.R.SS.1,208(1933). Abstract in Z. Instrumentenkd.,54,463(1934).
    218. R. N. Smartt and J. Strong, Point-Diffraction Interferometer [J], Journal of the OpticalSociety of America.,62,737(1972).
    219. R. N Smartt and W. H. Steel. Theory and application of point-diffraction interferometers [J].Japanese Journal of Applied Physics Supplement,1975,14:351-356.
    220. H. M. Visser. Point-diffraction interferometer: U.S. Patent Application10/224,401[P].2002-8-21.
    221. J. A. Ferrari, and E. M. Frins. Single-element interferometer [J]. Optics Communications,2007,279(2):235-239.
    222. W. Qu, Y. Yu, C. Chee, and A. Asundi. Digital holographic microscopy with physical phasecompensation [J]. Optics Letters,2009,34(8):1276-1278.
    223.信息光学,苏显渝,李继陶编著,北京,科学出版社,1999
    224. C. Meneses-Fabian, G. Rodriguez-Zurita, M. Encarnacion-Gutierrez, N. I. Toto-Arellano.Phase-shifting interferometry with four interferograms using linear polarization modulationand a Ronchi grating displaced by only a small unknown amount[J]. Optics Communications,2009,282(15):3063-3068.
    225. C. Meneses-Fabian, G. Rodriguez-Zurita, V. Arrizón. Optical tomography of transparentobjects with phase-shifting interferometry and stepwise-shifted Ronchi ruling [J]. Journal ofthe Optical Society of America. A,2006,23(2):298-305.
    226. V. Ronchi. On the phase grating interferometer [J]. Applied Optics,1965,4(8):1041-1042.
    227. G. Vogl, A phase grating interferometer [J]. Applied Optics,1964,3(9):1089-1089.
    228. M. Born and E. Wolf. Principles of optics [J]. Pergamon, New York,1980,19891:747-754.
    229. S. Nakadate, N. Magome, T. Honda and J. Tsujiuch. Hybrid holographic interferometer formeasuring three-dimensional deformations [J]. Optical Engineering,1981,20(2):202246-202246-3.
    230. D. Malacara, M. Servin, and Z. Malacara. Interferogram analysis for optical testing [M].CRC Press,1998.
    231.金观昌.计算机辅助光学测量[M].清华大学出版社,1997.
    232. D. G. Abdelsalam and D. Kim. Two-wavelength in-line phase-shifting interferometry basedon polarizing separation for accurate surface profiling [J]. Applied Optics,2011,50(33):6153-6161.
    233. Y. J. Cho, and D. Kim.3-D surface profile measurement using an acousto-optic tunable filterbased spectral phase shifting technique [J]. Journal of the Optical Society of Korea,2008,12(4):281-287.
    234. M. Born and E. Wolf, Principles of Optics [M], Cambridge University,(1980)
    235. M. K. Kim,Digital Holographic Microscopy: Principle, Techniques, and Applications [M],Springer,2011
    236. K. Itoh. Analysis of the phase unwrapping algorithm [J]. Applied Optics,1982,21(14):2470-2470.
    237. R M. Goldstein, H, A, Zebker, and C. Werner. Satellite radar interferometry:Two-dimensional phase unwrapping [J]. Radio Science,1988,23(4):713-720.
    238. E. Trouve, J M Nicolas, and H. Maitre. Improving phase unwrapping techniques by the use oflocal frequency estimates [J]. Geoscience and Remote Sensing, IEEE Transactions on,1998,36(6):1963-1972.
    239. W. Xu, and I. Cumming. A region-growing algorithm for InSAR phase unwrapping [J].Geoscience and Remote Sensing, IEEE Transactions on,1999,37(1):124-134.
    240. D. J. Bone. Fourier fringe analysis: the two-dimensional phase unwrapping problem [J].Applied Optics,1991,30(25):3627-3632.
    241. J. A. Quiroga, A. Gonzalez-Cano and E. Bernabeu. Phase-unwrapping algorithm based on anadaptive criterion [J]. Applied optics,1995,34(14):2560-2563.
    242. A. Baldi. Two-dimensional phase unwrapping by quad-tree decomposition [J]. AppliedOptics,2001,40(8):1187-1194.
    243. L. Aiello, D. Riccio, P. Ferraro, S. Grilli, L. Sansone, G. Coppola, S. Nicola, and A.Finizio.Green's formulation for robust phase unwrapping in digital holography [J]. Optics and lasersin engineering,2007,45(6):750-755.
    244. H. S. Abdul-Rahman, M. A. Gdeisat, D. R. Burton, M. J. Lalor, F. Lilley, and C. J. Moore.Fast and robust three-dimensional best path phase unwrapping algorithm [J]. Applied Optics,2007,46(26):6623-6635.
    245. P. Gáez, and M. Strojnik. Fringe analysis and phase reconstruction from modulated intensitypatterns [J]. Optics Letters,1997,22(22):1669-1671.
    246. M. D. Pritt, and J. S. Shipman. Least-squares two-dimensional phase unwrapping using FFT's[J]. Geoscience and Remote Sensing, IEEE Transactions on,1994,32(3):706-708.
    247. D. C. Ghiglia and L. A. Romero. Robust two-dimensional weighted and unweighted phaseunwrapping that uses fast transforms and iterative methods [J]. Journal of the Optical Societyof America. A,1994,11(1):107-117.
    248. M. D. Pritt. Phase unwrapping by means of multigrid techniques for interferometric SAR [J].Geoscience and Remote Sensing, IEEE Transactions on,1996,34(3):728-738.
    249. D. Kerr, G. H. Kaufmann, and G. E. Galizzi. Unwrapping of interferometric phase-fringemaps by the discrete cosine transform [J]. Applied Optics,1996,35(5):810-816.
    250.惠梅,王东生,李庆祥,邓年茂,徐毓娴.基于离散泊松方程解的相位展开方法[J].光学学报,2003,23(10):1245-1249.
    251.钱克矛,伍小平.基于调制度分析的加权最小二乘相位展开方法[J].光子学报,2001,30(5):585-588.
    252.钱晓凡,张永安,李新宇,马惠.基于掩膜和最小二乘迭代的相位解包裹方法[J].光学学报,2010(2):440-444.
    253. P. Gao, B. L. Yao, J. H. Han, L. J. Chen, Y. L. Wang, M. L. Phase reconstruction from threeinterferograms based on integral of phase gradient [J]. Journal of Modern Optics,2008,55(14):2233-2242.
    254. J. Gass, A. Dakoff, and M. K. Kim. Phase imaging without2π ambiguity by multiwavelengthdigital holography [J]. Optics Letters,2003,28(13):1141-1143.
    255. D. Parshall and M. K. Kim. Digital holographic microscopy with dual-wavelength phaseunwrapping [J]. Applied Optics,2006,45(3):451-459.
    256.王超,张红,刘智.星载干涉合成孔径雷达干涉测量EM[J].科学出版社,2002.
    257. D. C. Ghighlia and M. D. Pritt. Two-dimensional phase unwrapping: theory, algorithms, andsoftware [M]. New York: Wiley,1998.
    258. P. Gao, B. L. Yao, J. W. Min, R. L. Guo, J. J. Zheng, T. Ye, I. Harder, V. Nercissian, and K.Mantel. Parallel two-step phase-shifting point-diffraction interferometry for microscopybased on a pair of cube beamsplitters [J]. Optics Express,2011,19(3):1930-1935.
    259. P. Almoro, M. Cadatal, W. Garcia, and C. Saloma. Pulsed full-color digital holography with ahydrogen Raman shifter [J]. Applied Optics,2004,43(11):2267-2271.
    260. S. Nicola, A. Finizio, G. Pierattini, D. Alferi, S. Grilli, L. Sansone, and P. Ferraro.Recovering correct phase information in multiwavelength digital holographic microscopy bycompensation for chromatic aberrations [J]. Optics Letters,2005,30(20):2706-2708.
    261. F. C. Groen, I. T. Young, and G. Ligthart. A comparison of different focus functions for use inautofocus algorithms [J]. Cytometry,2005,6(2):81-91.
    262.冯忠耀,贾昉,周景会,忽满利.数字全息中利用图像拼接测量大物体的三维形貌[J].中国激光,2009,35(12):2017-2021.
    263.朱铮涛,黎绍发,陈华平.基于图像熵的自动聚焦函数研究[J].光学精密工程,2004,12(5):537-542.
    264.王义文,刘献礼,谢晖.基于小波变换的显微图像清晰度评价函数及自动调焦技术[J].光学精密工程,2006,14(6),1063-1069.
    265. L. Ma, H. Wang, Y. Li and H. Jin. Numerical reconstruction of digital holograms forthree-dimensional shape measurement [J]. Journal of Optics A: pure and applied optics,2004,6(4):396.
    266. L. Yu and L. Cai. Iterative algorithm with a constraint condition for numerical reconstructionof a three-dimensional object from its hologram [J]. Journal of the Optical Society ofAmerica. A,2001,18(5):1033-1045.
    267. M. Antkowiak, N. Callens N, C. Yourassowsky and F. Dubois. Extended focused imaging ofa microparticle field with digital holographic microscopy [J]. Optics Letters,2008,33(14):1626-1628.
    268.刘长庚,王大勇,张亦卓,赵洁,万玉红,江竹青.数字全息成像中基于导数的自动对焦算法[J].中国激光,2009(11):2989-2996.
    269. S. C Park, M. K Park, M. G Kang. Super-resolution image reconstruction: a technicaloverview [J]. Signal Processing Magazine, IEEE,2003,20(3):21-36.
    270. V. Mico, Z. Zalevsky, P. García-Martínez and J. García. Synthetic aperture superresolutionwith multiple off-axis holograms [J]. Journal of the Optical Society of America. A,2006,23(12):3162-3170.
    271. M. Kanka, R. Riesenberg, and H. J. Kreuzer. Reconstruction of high-resolution holographicmicroscopic images [J]. Optics Letters,2009,34(8):1162-1164.
    272. T. Kubot. Recording of high quality color holograms [J]. Applied Optics,1986,25(22):4141-4145.
    273. T. H. Jeong, H. L. Bjelkangen, and L. M. Spoto. Holographic interferometry with multiplewavelengths [J]. Applied Optics,1997,36(16):3686-3688.
    274. D. A. Forsyth, and J. Poncez著,林学誾译,计算机视觉:一种现代方法[M].北京,电子工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700