用户名: 密码: 验证码:
高温吸收式热泵热力学分析及样机设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴化锂第二类吸收式热泵是利用工质的吸收循环实现热泵功能的一类装置,它可以采用废热作为热源,而不是依靠电能、机械能等其他能源将热量从低温位传送到高温位。吸收式热泵是回收低温位热能的有效装置,具有节约能源、保护环境的双重作用,越来越受到各国学者的广泛关注。
     目前对于吸收式热泵的研究、应用,主要集中在中低温的情况下,而对高温热泵系统的研究却鲜有报道。本文基于系统的质量守恒、能量守恒、动量守恒,结合循环工质溴化锂-水溶液的在高温条件下的物理性质,对系统通过建模、编程,进行了热力学分析,考察了蒸发温度、冷凝温度、溴化锂浓溶液浓度、溴化锂稀溶液浓度以及其浓差对系统系能系数、系统温升和系统热能利用效率的影响。
     针对高温热泵样机的设计要求,以系统性能系数为目标函数,对循环系统进行了有限定范围的优化。通过分析,得到了一组在允许操作范围内的最适宜操作参数:蒸发温度为165℃,冷凝温度为124.9℃,溴化锂浓溶液浓度为52%,溴化锂稀溶液浓度为48%,此时系统的温升为37.09℃,系统性能系数为0.43,系统热能利用效率为0.72。并以此为基础,设计出一套吸收器输出功率为5.2kW的高温溴化锂第二类吸收式热泵的样机。
     在高温热泵工艺流程中,引入了喷射器,并对此喷射-吸收式热泵系统进行了热力学的模拟计算,结果表明此种热泵循环具有较高的温升。当压缩比为1.2时,温升较原循环可提高约22.7%,系统性能系数降低了约2.5%,系统热能利用效率提高了约3.0%。
The Absorption Heat Transformer (AHT) is a kind of device which can use the absorption cycle of the working fluid to transfer the energy from low-temperature to the higher one. This system can not only recover and utilize waste heat, but also decrease the thermal pollution discharged to the environment, and attracts more and more attention in the international community of energy utilization.
     Most of the current investigations focus on the low and moderate temperatures, but for high temperature, the publically available report is very limited. So in this paper, based on the mass conservation, the heat conservation as well as the momentum conservation, and also combine with the thermodynamic properties of lithium bromide-water at high temperature, the effects of evaporation temperature, condensation temperature, the concentration of the aqueous lithium bromide solution and the concentration difference on the gross temperature lift, the coefficient of performance and the thermal effectiveness are analyzed systematically from the viewpoint of thermodynamics.
     To meet the designed target of the AHT experiment, we assign the coefficient of performance as the objective function, and optimize the system cycle in a specified range of operating parameters. Some optimized operating parameters are obtained, including the evaporation temperature of 165℃, the condensation temperature of 124.9℃, the concentration of the strong aqueous lithium bromide solution 52%, and the concentration of the weak aqueous lithium bromide solution 48%. At these conditions, the gross temperature lift, the coefficient of performance and the thermal effectiveness can be achieved as 37.1℃, 0.43 and 0.72, respectively. Furthermore, a prototype AHT is designed for experiments, with the output available energy of 5.2 kW at high temperature above 200℃.
     In addition, an ejector is introduced into the cycle to improve the overall performance of AHT. Thermodynamics analysis of the Ejection-Absorption Heat Transformer (E-AHT) shows that its gross temperature lift is higher than that without ejector, and with the compression ratio is 1.2, the gross temperature lift can increase about 22.7%, the thermal effectiveness increases 3% and the coefficient of performance decreases 2.5%.
引文
[1]耿惠彬,戴永庆,蔡小荣.从第7届国际吸收式热泵会议看吸收式技术的研究与开发[J].制冷与空调,2003,3(4):1-9.
    [2]陈松,杜恺.吸收式热泵初步分析与研究[J].制冷技术,2003,3:12-16.
    [3]Keay D. A. Heat pump research and development in USA [J]. Heat Recovery System, 1983,3(3):165.
    [4]隋军,李淞平,袁一.工业环保与节能的有效手段—吸收式热泵技术[J].化工进展,2001,6:46-49.
    [5]钟理,严益群,谭盈科.水/二甘醇两级升温吸收式热泵的性能模拟[J].能源研究与信息,1997,13(3):30-34.
    [6]罗小明,李华玉.利用油田污水余热热泵供暖系统的热力经济分析[J].节能,2004,2:45-46.
    [7]李巍,梁爱民,周淑芬.吸收式热泵回收凝聚过程废热的中试研究[J].节能技术,2002,1:24-28.
    [8]马学虎,陈嘉宾,沙庆云等.回收合成橡胶凝聚余热的吸收式热变换器[J].太阳能学报,2003,24(3):421-426.
    [9]李荣生.浅析吸收式热泵技术[J].应用能源技术,2007,9(117):40-42.
    [10]陈芝久,阙雄才,丁国良.制冷系统热动力学[M].北京:机械工业出版社,1998.
    [11]田宫靖功.吸收式热泵节能技术[J].国外油田工程.1998,6:34-35.
    [12]Ahrens. F. W. Heat Pump modeling, simulation and design [J]. Proc. Nato advanced Study Institute on Heat Pump Fundamentals.1980,1983,12:155-91.
    [13]Hiller, C. C.& Glickman, L. R. Improving Heat-pump Performance Via Compressor Capacity Control-analysis and Test [J]. Volumes Ⅰ and Ⅱ,1976.
    [14]Ellison, R. D.& Rice C. K. ORNL Heat Pump Model Update [D]. Tennessee USA:Oak Ridge National Laboratory,1979.
    [15]Rice, C. K., Fischer, S. K., Ellison, R. D.,&Jackson, W. L. Design optimization of conventional heat pumps:Application to steady-state heating efficiency [J]. ASHRAE Trans.1981,87(1):1037-54.
    [16]De Brujn, M. A., Van der Jagt, M. F. G.& Machielsen, C. H. M. Simulation of A Compression Refrigerator System [C]. Proc.1978 United Kingdom Simulation Council Conf. Computer Simulation Chester UK,1978,4:4-6. IPC Science and Technology Press Guildford UK,1978,35-46.
    [17]Parise, J. A. R. Theoretical and experimental analysis of diesel engine driven heat pump[D]. Manchester:University of Manchester Institute of Science and Technology,1983.
    [18]Mumah, S. N., Adefila, S.S., Arinze, E. A. First law thermodynamic evaluation and simulation of ammonia-water absorption heat pump systems [J]. Energy Conversion and Management,1994,35(8):737-750.
    [19]Gershon Grossman, Abdi Zaltash. ABSIM-modular simulation of advanced absorption systems [J]. International Journal of Refrigeration,2001,24:531-543.
    [20]茅以惠,余国和.吸收式与蒸汽喷射式制冷剂[M].北京:机械工业出版社,1985:25-26.
    [21]高田秋一.吸收式制冷机[M].耿惠彬,戴永庆,郑玉清,译.北京:机械工业出版社,1987.
    [22]徐邦裕,陆亚俊,马最良.热泵[M].北京:中国建筑工业出版社,1988.
    [23]Yong Park, Jin-Soo Kim, Huen Lee. Physical properties of the lithium bromide+1,3-propanediol+water system [J]. International Journal of Refrigeration,1997,20(5):319-325.
    [24]R. J. Romero, W. Rivera, J. Gracia, et al. Theoretical comparison of performance of an absorption heat pump system for cooling and heating operating with an aqueous ternary hydroxide and water lithium bromide [J]. Applied Thermal Engineering,2001,21(11):1137-1147.
    [25]K. Stephan, M. Schmitt, D. Hebecker, et al. Dynamics of a heat transformer working with the mixture NaOH-H2O [J]. International Journal of Refrigeration,1997,20(7):483-495.
    [26]H. Bokelmann, M. Renz. Thermophysikalische Eigenschaften von Trifluorethanol-Stoffsystemen furabsorptionswarmempumpen [J]. Ki Klima Kalte Heizung,1983,11:403-406.
    [27]K. Stephan, R. Hengerer. Heat transformation with the ternary working fluid TFE-H2O-E181 [J]. International Journal of Refrigeration,1993,16(2):120-128.
    [28]Alberto Coronas, Manel Valles, Shrirang K. Chaudhari, et al. Absorption heat pump with the TFE-TEGDME and TFE-H2O-TEGDME systems [J]. Applied Thermal Engineering, 1996,16(4):335-345.
    [29]Xu Shiming, Liu Yanli, Zhang Lisong. Performance research of self regenerated absorption heat transformer cycle using TFE-NMP as working fluids [J]. International Journal of Refrigeration,2001,24(6):510-518.
    [30]Arh S. Multiple-purpose absorption heat transformer [J]. Strojniski Vestnik, 1992,38(1-3):63-68.
    [31]Ahachad M, Charia M. Absorption heat transformer applications to absorption refrigerating machine [C]. Proc of the Int Absorption Heat Pump Conf,1994,101-107.
    [32]Kashiwagi T. Advances in working fluids and cycles modeling and simulation of absorption heat cycless for absorption systems [C]. Proc of the Int Heat Pump Conf, New Orleans, LA, USA,1994,93-105.
    [33]内田孝.产业用热泵[J].日本节能技术译丛,1996,1:33-36.
    [34]Bokelmann H, Alefeld G. Advances in heat transformers [C]. Proc of the Int Absorption Heat Pump Conf, New Orleans, LA, USA,1994,107-116.
    [35]Bokelmann H. Advanced absorption systems in absorption heat pumps. Proc of the Int Workshop on Absorption Heat Pumps, London,1988 [C]. Luxembourg:Commission of the European Communities EUR 11888.
    [36]Scharfe J. The heat pump transformer, new working fluids offer higher performance and new applications [C]. In Absorption Heat Pumps, Proc of a Workshop in London, April,1988 Ed:Zegers P, Miriam J, Commission of the European.
    [37]Nomura T, Nishiwagi T, Nakanishi S. Feasibility study of a solar superheated steam drying system using an absorption heat transformer [J]. Solar Energy,1992:915-920.
    [38]Bokelmann H. Industrial heat recovery with heat transformer-practical applications and development of advanced systems, In Heat Pumps:Technology and Marketing [C]. Proc of IEA Heat Pump Conf,1987,287-299.
    [39]Currie J S, Pritchard C J. Open cycle absorption heat transformer for recovery of waste heat from dryers [C]. ECOS Int Symposium,1992,599-606.
    [40]Adnan Sozen, H. Serdar Yucesu. Performance improvement of absorption heat transformer [J]. Renewable Energy,2007,32:267-284.
    [41]Adnan Sozen, Erol Arcaklioglub, Mehmet ozalp, Serdar Yiicesu. Performance parameters of an ejector-absorption heat transformer [J]. Applied Energy,2005,80:273-289.
    [42]Lin Shi, Juan Yin, Xin Wang, Ming-Shan Zhu. Study on a new ejection-absorption heat transformer [J]. Applied Energy,2001,68:161-171.
    [43]G. A. Florides, S. A. Kalogirou, S. A. Tassou, et al. Design and construction of a LiBr-water absorption machine [J]. Energy Conversion and Management,2003,44(15):2483-2508.
    [44]P. J. Martinez, J. M. Pinazo. A method for design analysis of absorption machines [J]. International Journal of Refrigeration,2002,25(5):634-639.
    [45]王林,陈光明,王勤.填料型绝热吸收器影响因素试验研究[J].工程热物理学报,2007,28(2):202-204.
    [46]徐士鸣,袁一.垂直管内降膜吸收过程热-质传递数值计算问题的研究[J].大连理工大学学报,1997,37(4):414-419.
    [47]Kyonglnin Kwon, Siyoung J. Effect of vapor flow on the falling film heat and mass transfer of the ammonia/water absorber [J]. International Journal of Refrigeration, 2004,27(8):955-964.
    [48]Nngny S, Meyer M, Prevost M. Study of a laminar falling film flowing over a wavy wall column:PartⅡ. Experimental validation of hydrodynamic model [J]. International Journal of Heat and Mass Transfer.2001,44(11):2147-2154.
    [49]Isamu Fujita, Eiji Hihara. Heat and mass transfer coefficients of falling-film absorption process [J]. International Journal of Heat and Mass Transfer.2005,48(13):2779-2786.
    [50]蒋桂忠,郭韵,蔡祖恢,李美玲.溴化锂水溶液降膜吸收强化技术的实验研究[J].上海理工大学学报,2002,24(1):1-7.
    [51]Brauner N, Moalem Maron D and Sideman S. Heat and mass transfer in direct contact hygroscopic condensation [J]. Heat and Mass transfer.1987,21(4):233-245.
    [52]Morioka I, Kiyota M. Absorption of Water Vapor into a Wavy Film of an Aqueous Solution of LiBr [J]. JSME Int J,1991,34(2):183-188.
    [53]Islam M R, Wijeysundera N E, Ho J C. Simplified models for coupled heat and mass transfer in falling-film absorbers [J]. International Journal of Heat and Mass Transfer,2004,47(2):395-406.
    [54]J. I. Yoon, E. Kim, K. H. Choi, et al. Heat transfer enhancement with a surfactant on horizontal bundle tubes of an absorber [J]. International Journal of Heat and Mass Transfer,2002,45 (4):735-741.
    [55]Igual Munoz, J. GarcVa Anton, S. Lopez Nuevalos, et al. Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures [J]. Corrosion Science,2004,46(12):2955-2974.
    [56]A. Igual Mu. noz, J. Garc. na Anton, J. L. Gui. non, et al. Comparison of inorganic inhibitors of copper, nickel and copper-nickels in aqueous lithium bromide solution [J]. Electrochemical Act,2004,50(4):957-966.
    [57]陈宏霞,马学虎,等.高温高压LiBr吸收式热泵的腐蚀特性研究[J].石油化工腐蚀与防护,2007,24(1):1-4.
    [58]Chua A. Improvement of high-temperature applicability and compactness of a unit of an absorption heat pump [J]. Heat Recovery Systems & CHP,2000,14(3):305-314.
    [59]Kaita. A simplified model for absorption of vapors into liquid films flowing over cooled horizontal tubes [J]. Transactions of ASHRAE.2001,93(2):2454-2466.
    [60]W Yao et al. Surface tension of lithium bromide with heat transfer additives [J]. J Chem Eng Data,1991,36(1):96-98.
    [61]Kim Ket al. Absorption of water vapor into falling film of aqueous lithium bromide [J]. Int J Refrigeration,1995,18(7):486-494.
    [62]Hihara E et al. Effect of surfactant on falling absorption [J]. Int. J Refrigeration, 1993,16(5):339-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700