用户名: 密码: 验证码:
AED中识别算法的研究和对实施低能量除颤的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心室纤颤是最恶性的心律失常。除颤时间对除颤成功率有着至关重要的影响。而大部分室颤病人的发病地点是在医院外,往往无法及时获得救治。自动体外除颤器(AED)的出现使早期除颤成为可能。
     为了让没有丰富急救经验的公众方便使用AED实施早期除颤,高准确率的可电击复律心律识别算法是关键。美国心脏协会(AHA)建议将心律分成三大类:Shockable Rhythm(ShR),Non-Shockable Rhythm(NShR)和Intermediate Rhythm。AED中可电击复律心律识别算法必须对ShR有高的灵敏度,对NShR有高的特异性。本文着眼于分类性能优越、计算量小的新特征的设计,提出了归一化等电位线时长的多种度量,栅条投影变异度的两种度量和斜率变异度的两种度量。为了合理地评价和比较不同算法的分类性能,本文使用在AED算法研究领域内被广泛认可的MIT Database、CU Database和VF Database作为测试样本集,选择ROC曲线下面积(AUC)作为主要性能评价指标。对已有报道的HILB算法、最大Lyapunov指数算法,和由本文提出的栅条投影变异度类算法(Shadow类算法)、斜率变异度类算法(Slope Variability类算法)、多种归一化等电位线时长的度量进行了测试。结果显示,Shadow类算法和Slope Variability类算法表现出更优的分类性能和更少的计算时间,而且达到AHA所建议的AED决策的性能要求。同时,本文设定测试条件时尽量与领域内已有工作保持一致,从而使研究成果能被其他学者更好地使用。
     电击除颤方法在临床使用中还存在一些缺点,降低除颤能量是克服这些缺点的有效途径。如果在保证除颤成功率的前提下能降低除颤能量,就可以减小电击除颤对人体的伤害、减轻病人的痛苦,对于植入式心律转复除颤器(ICD)还能延长电池的使用寿命。所以,研究低能量的除颤方法具有重要的实际意义。本文基于人体电导体对于中低频电流可视为纯阻性导体的特点,推想在体外除颤、半体内半体外除颤的情况下,除颤阈值与总脉宽之间的关系应该同心肌组织刺激阈值与刺激脉冲持续时间之间的关系一致。由心肌组织的能量阈值与脉冲宽度的关系又可推导出,在时值处会得到最小能量阈值这一结论。据此推想,体外除颤或半体内半体外除颤同样存在对应着最小能量阈值的总脉冲宽度。为了验证以上猜想,本文以双相指数截尾波为基础,进行了7例动物实验。通过对实验数据的分析,得出以下结论:半体内半体外除颤情况下,脉宽-阈值关系仍然比较符合心肌组织的脉宽-刺激阈值关系,而且3ms+1ms+3ms的波形设置与5ms+1ms+5ms的波形设置相比,电量阈值和能量阈值更低,而电压阈值相近。
     最后,本文提出了自动体外除颤器设备的设计方案与研制成果,可用于算法验证和低能量除颤方法研究的动物实验,也是对开发自主知识产权的AED的尝试。
Ventricular Fibrillation(VF) is the most malignant arrhythmia.Most cases of ventricular fibrillation occur out of the hospital.These patients often die because they fail to obtain treatments in time.The emergence of Automatic External Defibrillator(AED) makes it possible to treat these patients in time.
     To make the AEDs easy to use by the public who is not familiar with emergency treatment and ECG analysis,it is critical to have an accurate shockable rhythm recognition algorithm.The American Heart Association (AHA) divides the cardiac rhythms into three categories:Shockable Rhythm (ShR),Non-Shockable Rhythm(NShR) and Intermediate Rhythm.High sensitivity for ShR and high specificity for NShR are required for the shockable rhythm recognition algorithm in AEDs.Focusing on the design of novel feature algorithm with excellent performance of classification and short calculation time,this article proposes several measurements for the Normalized Isoelectric Potential,two measuments for the shadow variability and two measurements for the slope variability.To test and compare the performances among different algorithms fairly,the MIT Database,the CU Database and the VF Database,which are widely accepted in the field of AED algorithms researches,are used as the testing data sets in this article.And the area under the ROC curve(AUC) is selected as the main performance evaluation parameter.The HILB algorithm and the Largest Lyapunov Index algorithm that were reported by other researchers, two algorithms using shadow variability,two algorithms using slope variability and several measurements for the Normalized Isoelectric Potential that are proposed in this article,have all been tested.The results show that the algorithms using shadow variability and the algorithms using slope variability give a better performance and need less calculation time,and they exceed the performance required by the AHA's recommendations.Besides,in order to make the results in this article able to be used better by the other researchers,the test condition is conformed to that condition used by the other works in this research field.
     The defibrillation method using electrical shock has shortcomings in the clinical uses,and decreasing the shock energy will help to overcome these shortcomings.If energy is reduced while defibrillation success rate is insured,there would be less damage to the body,and patients would suffer less.Besides,the service life of the batteries in ICD can be prolonged.Therefore,the research of low energy defibrillate method is of great meaning.Based on the fact that the body can be considered as an impedance conductor to a medium or low frequency current,this article supposes that the relation between defibrillation threshold and total pulse width in the condition of semi-external defibrillation is similar to the relation between the stimulation threshold and stimulation duration in the condition of tissue stimulation.And the result that the minimum energy threshold occurs at the chronaxie can be concluded from the relation between the stimulation threshold and stimulation duration. So this article supposes ulteriorly that there is a proper total pulse width at which the minimum energy threshold for external/ semi-external defibrillation.To prove these supposes,7 animal trials were carried out based on BTE waveform.With the analysis of the data got in the trials, the article concludes that the relation of the pulse duration versus the threshold for the semi-external defibrillation is similar to the relation of the pulse duration versus the threshold for the cardiac muscle tissue, and compared to the 5ms+1ms+5ms waveform,the 3ms+1ms+3ms waveform needs lower threshold of both electric quantity and energy and needs similar threshold of voltage meanwhile.
     Finally,this article proposes design scheme and development results of AED device that can be used in the animal trials to validate algorithms and to research low energy defibrillation method.That's also the attempts to develop AED with independent intellectual property.
引文
[1]胡大一.心脏猝死危险因素的预防[J].中国心脏起博与心电生理杂志,2006,20(5):379-380.
    [2]王文秀.心脏性猝死的诊断与防治[M].天津科学技术出版社,2005:1.
    [3]邬小玫.室颤的电活动规律及除颤方法研究[D].上海:复旦大学,2006:
    [4]蒋文平.欧洲2004心脏病年会有关心律失常研究的概况[J].中国心脏起博与心电生理杂志,2004,15(1):3-4.
    [5]华伟,陈新.加强植入型心律转复除颤器的临床应用是面临的迫切任务[J].中华心律失常学杂志,2005,9(1):5-6.
    [6]Eleftheria P.Tsagalou,et al.Time course of fibrillation and defibrillation thresholds after an intravenous bolus of amiodarone-an experiment study[J].Resuscitation,2004,61:83-89.
    [7]R.Arzbaecher.External defibrillators and emergency external pacemakers[C].Proceedings of the IEEE,1996,84(3):487-499.
    [8]American Heart Association(AHA).Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care:International Consensus on Science[J].Circulation,2000,112:0-1211.
    [9]Copass MK,Hallstrom AP,Blake B,et al.Treatment of out-of-hospital cardiac arrest with rapid defibrillation by emergency medical technicians.[J].The New England Journal of Medicine,2004,320:1379-1383.
    [10]A.Langer,M.S.Heilman,M.M.Mower and M.Mirowski.Considerations in the development of the automatic implantable defibrillator[J].Medical Instrument,1976,10:163-167.
    [11]J.Jenkins,K.H.Noh,A.Guezennec,et al.Diagnosis of atrial fibrillation using electrograms from chronic leads:Evaluation of computer algorithms[J].PACE,1988,11:622-631.
    [12]K.L.Ripley,T.E.Bump and R.C.Arzbaecher.Evaluation of techniques for recognition of ventricular arrhythmias by implanted devices[J].IEEE Transactions on Biomedical Engineering,1989,36:618-624.
    [13]J.N.Herbschleb,R.M.Heethaar,I.Van Der Tweel,et al.Signal analysis of ventricular fibrillation[C].Computers in Cardiology Proceedings.,1979:
    [14]Auber A.E.,et al.Fibrillation recognition using autocorrelation analysis[C].Computers in Cardiology Proceedings.,1982:
    [15] Chen N. S. Ventricular fibrillation detection by a regression test on the autocorrelation function[J]. Medical & Biological Engineering & Computing, 1987, 25(3): 241-249.
    [16] N. V. Thakor, Y. S. Zhu, K. Y. Pan. Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(9): 837-843.
    [17] N. V. Thakor, A. Natarajan and G. Tomaselli. Multiway sequential hypothesis testing for tachyarrhythmia discrimination[J]. IEEE Transactions on Biomedical Engineering, 1994, 41: 480-487.
    [18] Szi-Wen Chen, P. M. Clarkson, Q. i. Fan. A robust sequential detection algorithm for cardiac arrhythmia classification[J]. IEEE Transactions on Biomedical Engineering, 1996,43(11): 1120-1124.
    [19] Xu-Sheng Zhang, Yi-Sheng Zhu, N. V. Thakor, et al. Detecting ventricular tachycardia and fibrillation by complexity measure[J]. IEEE Transactions on Biomedical Engineering, 1999, 46(5): 548-555.
    [20] R. D. Throne, J. M. Jenkins, S. A. Winston, et al. A comparison of four new time-domain techniques for discriminating monomophic ventricular tachycardia form sinus rhythm using ventricular waveform morphology[J]. IEEE Transactions on Biomedical Engineering, 1991, 38: 561-570.
    [21] S. Kuo and R. Dillman. Computer detection of ventricular fibrillation[C]. Computers in Cardiology Proceedings., 1978:
    [22] R. H. Clayton, A. Murray, and R. W. F. Campbell. Comparison of four techniques for recognition of ventricular fibrillation from the surface ECG[J]. Medical & Biological Engineering & Computing, 1993, 31: 111-117.
    [23] Meij S. H., et al. A fast real-time algorithm for the detection of ventricular fibrillation[C]. Computers in Cardiology Proceedings., 1987:
    [24] S. Barro, R. Ruiz, D. Cabello, et al. Algorithmic sequential decision-making in the frequency domain for life threatening ventricular arrhythmias and imitative artefacts: a diagnostic system[J]. Journal of Biomedical Engineering, 1989, 11(4): 320-328.
    [25] Nygards M. E. Recognition of ventricular fibrillation from the power spectrum of the ECG[C]. Computers in Cardiology Proceedings., 1977:
    [26] Nolle F. M., et al. Power spectrum analysis of ventricular fibrillation and imitative artifacts[C]. Computers in Cardiology Proceedings., 1980:
    [27] F. K. Forster, et al. Recognition of ventricular fibrillation, other rhythms and noise in patients developing the sudden cardiac death syndrome[C]. Computers in Cardiology Proceedings., 1982:
    [28] Murray A., et al. Characteristics of the ventricular fibrillation waveform[C]. Computers in Cardiology Proceedings., 1985:
    [29] V. X. Afonso, W. J. Tompkins. Detecting ventricular fibrillation: Selecting the appropriate time-frequency analysis tool for the application[J]. Engineering in Medicine and Biology Magazine, IEEE, 1995, 14(2): 152-159.
    [30] L. Khadra, A. S. Al-Fahoum, S. Binajjaj, et al. A quantitative analysis approach for cardiac arrhythmia classification using higher order spectral techniques [J]. IEEE Transactions on Biomedical Engineering, 2005, 52(11): 1840-1845.
    [31] Young Kyoo Jung, W. J. Tompkins. Detecting and classifying life-threatening ECG ventricular arrythmias using wavelet decomposition[C]. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2003, 3: 2390-23933.
    [32] F. E. M. Brekelmans, J. S. Duisterhout, R. A. A. F. And Van Dam. Detection of life threatening arrhythmias by successive peak-through series analysis[C]. Computers in Cardiology Proceedings., 1980:
    [33] Y. S. Zhu, N. V. Thakor. Detection of ventricular fibrillation by sequential testing[J]. Computers in Cardiology Proceedings., 1988: 325-328.
    [34] M. Botsivaly, C. Koutsourakis, B. Spyropoulos. Evaluation of a new technique for the detection of ventricular fibrillation and ventricular tachycardia[C]. Proceedings of the 22nd Annual International Conference of the IEEE, 2000:
    [35] Irena Jekova. Comparison of Five Algorithms for the Detection of Ventricular Fibrillation From the Surface Ecg[J]. Physiological Measurement, 2000, 21(4): 429-439.
    [36] Anton Amann, Robert Tratnig, Karl Unterkofler. Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators[J]. BioMedical Engineering Online, 2005, 4(1): 60.
    [37] DI Robert Tratnig. Reliability of New Fibrillation Detection Algorithms for Automated External Defibrillators[D]. Dornbirn, Austria: Technische Universit¨at Graz, 2005:
    [38] Zhang Hongxuan, Zhu Yisheng. Qualitative chaos analysis for ventricular tachycardia and fibrillation based on symbolic complexity[J]. Medical Engineering & Physics,2001,23(8):523-528.
    [39]张红煊,朱贻盛,王自明.异常心电信号VT和VF的分析与检测[J].中国医疗器械杂志,2001,25(4).
    [40]A.Amann,R.Tratnig,K.Unterkofler.Detecting Ventricular Fibrillation by Time-Delay Methods[J].IEEE Transactions on Biomedical Engineering,2007,54(1):174-177.
    [41]A.Amann,R.Tratnig,K.Unterkofler.A new ventricular fibrillation detection algorithm for automated external defibrillators[J].Computers in Cardiology,2005:559-562.
    [42]Massachusetts Institute of Technology.MIT DB[EB/OL].http://www.physionet.org/physiobank/database/mitdb/
    [43]Massachusetts Institute of Technology.CU database[EB/OL].http://www.physionet.org/physiobank/database/cudb/
    [44]ECRI,American Heart Association.AHA Database[EB/OL].http://www.ecri.org/
    [45]Richard E.Kerber,Chair MD,Lance B.Becker,et al.Automatic External Defibrillators for Public Access Defibrillation:Recommendations for Specifying and Reporting Arrhythmia Analysis Algorithm Performance,Incorporating New Waveforms,and Enhancing Safety[J].Circulation,1997,95(6):1677-1682.
    [46]Massachusetts Institute of Technology.Physionet[EB/OL].http://www.physionet.org/
    [47]Massachusetts Institute of Technology.VF Database[EB/OL].http://www.physionet.org/physiobank/database/vfdb/
    [48]黄润生,黄浩.混沌及其应用(第二版)[M].武汉武汉大学出版社,2005,273.
    [49]黄润生,黄浩.混沌及其应用(第二版)[M].武汉大学出版社,2005,275.
    [50]黄涧生,黄浩.混沌及其应用(第二版)[M].武汉大学出版社,2005,293-312.
    [51]张红煊,朱贻盛.异常心电节律VT/VF与非线性动力学定性定量分析现状[J].北京生物医学工程,2001,20(3):229-232.
    [52]吕金虎.混沌时间序列分析及其应用[M].武汉大学出版社,2002:73.
    [53]王海燕,卢山.非线性时间序列分析及其应用[M].科学出版社,2006:25-27.
    [54]A.R.Fernandez,J.Folgueras,O.Colorado.Validation of a set of algorithms for ventricular fibrillation detection:experimental results[C].Engineering in Medicine and Biology Society,2003.Proceedings of the 25th Annual International Conference of the IEEE,2003,3:2885-2883.
    [55]JP Marques著,吴逸飞译.模式识别—原理、方法及应用[M].清华大学出版社,2002:113-115.
    [56]宇传华,徐勇勇.非参数法估计ROC曲线下面积[J].中国卫生统计,1999,16(4):241-244.
    [57]John Carpenter,Thomas D.Rea,John A.Murray,et al.Defibrillation waveform and post-shock rhythm in out-of-hospital ventricular fibrillation cardiac arrest[J].Resuscitation,2003,59(2):189-196.
    [58]Tej K.Kaul,et al.Ventricular arrhythmia following successful myocardial revascularization:incidence,predictors and prevention[J].European Journal of Cardio-thoracic Surgery,1998,13:629-636.
    [59]Hitoshi Yamaguchi,et al.Myocardial dysfunction after electrical defibrillation[J].Resuscitation,2002,54:289-296.
    [60]Gregory P.Walcott,et al.Do clinically relevant transthoracic defibrillation energies cause myocardial damage and dysfunction?[J].Resuscitation,2003,59:59-70.
    [61]宋二梅.体外自动除颤器与降低除颤能量的研究[D].上海:复旦大学,2006.
    [62]Qi Shu-shan,et al.Modulatory effects of cognitive behavior therapy on depression and anxiety in patients with implantable cardioverter defibrillator[J].Chinese Journal of Clinical Rehabilitation,2005,9(8):220-222.
    [63]Simon J.Walsh,et al.Efficacy of distinct energy delivery protocols comparing two biphasic defibrillators for cardiac arrest[J].The American Journal of Cardiology,2004,94:378-380.
    [64]Matthew J.Reed,et al.Analysis the ventricular fibrillation waveform[J].Resuscitation,2003,57:11-20.
    [65]Paul A.Calle,et al.Equivalence of the standard monophasic waveform shocks delivered by automated external defibrillators?[J].Resuscitation,2002,53:41-46.
    [66]Patrick R.Martens,et al.Optimal response to cardiac arrest study:defibrillation waveform effects[J].Resuscitation,2001,49:233-243.
    [67]Ulrich Achleitner,et al.Waveform analysis of biphasic external defibrillators[J].Resuscitation,2001,50:61-70.
    [68]Ulrich Achleitner,et al.Waveforms of external defibrillators:analysis and energy contribution[J].Resuscitation,1999,41:193-200.
    [69]James T.Niemann,et al.Transthoracic monophasic and biphasic defibrillation in a swine model: a comparison of efficacy, ST segment changes, and postshock hemodynamics[J]. Resuscitation, 2000, 47(1): 51-58.
    [70] Lawrence A. Garcia, et al. Interactions between CPR and defibrillation waveforms: effect on resumption of a perfusing rhythm after defibrillation[J]. Resuscitation, 2000,47: 301-305.
    [71] Stephen R. Shorofsky, et al. Effects of waveform and polarity on defibrillation thresholds in humans using a transvenous lead system[J]. The American Journal of Cardiology, 1996, 78: 313-316.
    [72] H. Leon Greene, et al. Comparison of monophasic and biphasic defibrillating pulse waveforms for transthoracic cardioversion[J]. The American Journal of Cardiology, 1995, 75: 1135-1139.
    [73] Matthew G. Fishier, et al. Theoretical predictions of the optimal monophasic and biphasic defibrillation waveshapes [J]. IEEE Transactions on Biomedical, 2000, 47: 58-68.
    [74] Stephen R. Shorofsky, et al. Improved defibrillation efficacy with an ascending ramp waveform in humans[J]. Heart Rhythm, 2005, 2: 388-394.
    [75] Michael C. Kontos, et al. Factors associated with elevated impedance with a nonthoracotomy defibrillation lead system[J]. The American Journal of Cardiology, 1997, 79: 48-52.
    [76] James T. Niemann, et al. Transthoracic impedance does not decrease with rapidly repeated countershocks in a swine cardiac arrest model[J]. Resuscitation, 2003, 56:91-95.
    [77] Gudjon Karlsson, et al. Does electrode polarity alter the energy requirements for transthoracic biphasic waveform defibrillation? Experimental studies[J]. Resuscitation, 2001, 51: 77-81.
    [78] Richard M. Heames, et al. Do doctors position defibrillation paddles correctly? Observational study[J]. British Medical Journal, 2001, 322: 1393-1394.
    [79] AE Aubert, et al. Defibrillation threshold using different electrode configurations[J]. Computers in Cardiology, 1995: 805-808.
    [80] Charles D. Deakin, et al. How often should defibrillation pads be changed?:the effect of evaporative drying[J]. Resuscitation, 2001, 48: 157-163.
    [81] Michael R. Gold, et al. Lead system optimization for transvenous defibrillation[J]. The American Journal of Cardiology, 1997, 80: 1163-1167.
    [82] Richard S. Yoon, et al. Measurement of thoracic current flow in pigs for the study of Defibrillation and Cardioversion[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(10): 1167-1173.
    [83] O. Carlton Deals, et al. Simplified calibration of single-plunge bipolar electrode array for field measurement during defibrillation[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(10): 1211-1214.
    [84] Dawn Blilie Jorgenson, et al. Computational studies of the transthoracic and transvenous defibrillation in a detailed 3-D human thorax model[J]. IEEE Transactions on Biomedical Engineering, 1993, 42(2): 172-184.
    [85] James H. Truong, et al. Current concepts in electrical defibrillation[J]. The Journal of Emergency Medicine, 1997, 15(3): 331-338.
    [86] Xiaoyi Min, et al. Finite element analysis of defibrillation fields in a human torso model for ventricular defibrillation[J]. Progress in Biophysics & Molecular Biology, 1998,69:353-386.
    [87] A. L. Muzikant, et al. Validation of three-dimensional conduction models using experimental mapping: are we getting closer?[J]. Progress in Biophysics & Molecular Biology, 1998, 69: 205-223.
    [88] Anthony S. L., et al. Measurement of defibrillation shock potential distributions and activation sequences of the heart in three dimensions[J]. Proceedings of the IEEE, 1988,76(9): 1176-1187.
    [89] Graig B. Clark, et al. Transthoracic biphasic waveform defibrillation at very high and very low energy: a comparison with monophasic waveforms in an animal model of ventricular fibrillation[J]. Resuscitation, 2002, 54: 183-186.
    [90] Reddy RK, Gleva MJ, Gliner BE, et al. Biphasic transthoracic defibrillation causes fewer ECG ST-segment changes after shock[J]. Annals of Emergency Medicine, 1997, 30: 127-134.
    [91] Tang W, Weil MH, Sun S, et al. The effect of biphasic and conventional monophasic defibrillation on post resuscitation myocardial function[J]. The American Journal of Cardiology, 1999, 34: 815-822.
    [92] American Heart Association (AHA). Guidelines 2005 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: International Consensus on Science[J]. Circulation, 2005, 112: 0-1211.
    [93] Parwis C. Fotuhi, et al. Energy levels for defibrillation: what is of real clinical importance[J]. The American Journal of Cardiology, 1999, 83: 24-33.
    [94] JoseJalife. Ventricular Fibrillation: Mechanisms of Initiation and Maintenance[J]. Annual Reviews in Physiology,2000,62:25-50.
    [95]Janice L.Jones,et al.The mechanism of defibrillation and cardioversion[J].Proceedings of the IEEE,1996,84(3):392-403.
    [96]Zipes DP,et al.Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium[J].The American Journal of Cardiology,1975,36:37-44.
    [97]L.A.Geddes.The small heart and the critical mass for ventricular fibrillation[J].IEEE Engineering In Medicine and Biology,2004:196-197.
    [98]W.A.Tacker,L.A.Geddes,W.A.Tacker.The laws of electrical stimulation of cardiac tissue The laws of electrical stimulation of cardiac tissue[J].Proceedings of the IEEE,1996,84(3):355-365.
    [99]L.A.Geddes,J.D.Bourland,L.A.Geddes.The Strength-Duration Curve The Strength-Duration Curve[J].IEEE Transactions on Biomedical Engineering,1985,32(6):458-459.
    [100]J.A.PEARCE,J.D.BOURLAND,W.NEILSEN,et al.Myocardial Stimulation with Ultrashort Duration Current Pulses[J].Pacing and Clinical Electrophysiology,1982,5(1):52-58.
    [101]Malmivuo J,Plonsey R.Bioelectromagnetism:principles and applications of bioelectric and biomagnetic fields[M].Oxford:Oxford University Press,1995.
    [102]Plonsey R,Heppner DB.Considerations of quasistationalrity in electrophysiological systems[J].Bulletin of Mathematical Biophysics,1967,29(4):657-664.
    [103]Ulrich Achleitner,Anton Amann,Martin Stoffaneller and Michael Baubin.Waveforms of external defibrillators:analysis and energy contribution[J].Resuscitation,1999,41(2):193-200.
    [104]方积乾.医学统计学与电脑实验(第二版)[M].上海科学技术出版社,2001,132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700