用户名: 密码: 验证码:
褐牙鲆(Paralichthys olivaceus)和杂交鲆(P.olivaceus♀×P.dentatus♂)幼鱼高温耐受性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度是影响鱼类存活、摄食、生长、发育、繁殖等过程的重要环境因子。鱼类对温度的耐受能力决定了其时空分布范围。随着全球气候变化和极端气象的频发,水生生物的耐热性研究及耐热品种的培育具有非常重要的研究意义和生产价值。然而,有关海水鱼类的耐热性研究还十分有限,耐热性指标也尚无统一的可靠标准。褐牙鲆(Paralichthys olivaceus Temminck&Schlegel,1846)是我国重要的海水养殖鱼类,具有较高的经济价值,养殖区域也不断南移。但受到夏季高温期死亡频发的影响,其养殖产业屡受损失。大西洋牙鲆(Paralichthys dentatusL.,1766)是大西洋海岸的重要渔获种,具有更好的高温耐受性。两者的杂交子一代P. olivaceus×P. dentatus (以下简称杂交鲆)继承了亲本优良的经济性状,同时表现出生长快、耐高温的特性。为了比较高温对褐牙鲆和杂交鲆的影响,阐明杂交鲆优于亲本的耐热性状,同时丰富海水鱼类耐热性研究,充实种间杂交遗传理论,为相关耐热性育种研究提供一定的理论基础,我们从组织水平、生理生化和hsp70基因表达量的水平研究了高温对褐牙鲆各个组织的结构、超氧化物歧化酶(SOD)、还原型谷胱甘肽(GSH)、溶菌酶(LZM)、丙酮酸激酶(PK)的相对活力(相对含量)和hsp70基因表达量的影响。研究了不同升温模式下,褐牙鲆和杂交鲆鳃组织结构的变化,SOD、过氧化氢酶(CAT)、GSH、LZM和PK相对活力的变化,以及hsp70基因表达量的变化差异。同时还克隆、比较了褐牙鲆、大西洋牙鲆、杂交鲆hsp70/hsp90基因的cDNA序列,对29℃下三者的SOD、GSH、LZM和PK相对活力,以及hsp70/hsc70/hsp90基因的相对表达量变化进行了比较。主要研究结果如下:
     1)褐牙鲆不同组织对高温(32℃)的响应程度不同。肝、肾和鳃组织的结构在高温下出现了一系列的变化,如组织水肿、上皮位移或破裂、细胞坏死等。与氧化应激、免疫反应和能量代谢相关的酶活力检测发现,褐牙鲆的肝组织中SOD、GSH和LZM都有相对较高的表达。高温热胁迫下,不同组织的hsp70表达量随着时间的推移都表现出相似的变化趋势:先升高后下降。我们发现hsp70表达量达到峰值的时间大致有两个:2h和6h,并依据这个特点,把研究的组织分为两组,2h组包括脾、肝、鳃和肾,6h组包括肠、胃、肌、心和脑。通过各个组织hsp70表达量差异的横向比较,发现对照组中脑和鳃是hsp70表达较丰富的组织,高温胁迫条件下,肝、鳃和肌是hsp70表达量升高最显著的组织,分别对应1h、2h和6h(及12h)。值得注意的是,在组织学研究中表现出最多症状的组织(肝、肾和鳃)都在2h达到hsp70表达量的峰值,其中的肝和鳃的hsp70表达量变化尤为显著,且肝组织中酶的相对活力变化也较显著。由此我们提出,鳃和肝是研究高温对海水鱼类影响时理想的备选组织,相关的结论也为后续的研究工作提供了理论依据。
     2)慢性升温模式下,褐牙鲆在29℃和32℃时累计存活率显著低于杂交鲆;其鳃组织在高温下破坏严重;与氧化应激、免疫反应及能量代谢相关的酶(SOD、CAT、LZM和PK)的相对活力波动剧烈,在29℃和32℃附近基本都发生下降;hsp70基因表达量也在29℃和32℃时显著升高,且上调幅度显著高于杂交鲆,与这两个温度下的死亡爆发和组织损伤相对应。我们的研究发现,褐牙鲆对29℃和32℃的高温更敏感。相比之下,杂交鲆的累计存活率更高,在高温胁迫下其鳃组织的结构也相对保持得更完整,酶的相对活力变化不显著,hsp70的表达上调得更晚,上调幅度相对低于褐牙鲆,且在29℃后有适应后回落的趋势。这些结果都反应了其对高温可能具有更好的耐受性。至此我们总结并提出,高温不耐受种对高温的敏感性在多个层面都有所表现,如高死亡率、组织结构的严重破坏、酶活力的剧烈变化、hsp70基因的首先响应和大幅上调。与之对应的就是耐高温种在升温过程中于各个层次表现出的相对优势和稳定性。
     3)通过不同温度梯度(26、29和32℃)的急性升温模式实验我们发现:杂交鲆的累计存活率均高于褐牙鲆,在极端高温32℃下其死亡的发生(4h)和死亡的爆发(12h)均晚于褐牙鲆(1.5h,4h);其鳃的结构相对保持得更完整,而褐牙鲆鳃的呼吸表面的破坏更严重;SOD、GSH、LZM和PK相对活力的变化基本反映了褐牙鲆和杂交鲆在极端高温(32℃)下,抗氧化能力和机体的免疫防御能力下降,同时伴随着能量支出的增加;两者的hsp70表达量在热刺激后0.5h就检测到显著升高,相比之下,褐牙鲆hsp70基因的表达量变化比杂交鲆更剧烈和持久,具体表现在更快的hsp70响应速度和更高的响应强度,以及更慢的回落速度。我们发现,急性升温模式和慢性升温模式所得结果具有一致性,反应了杂交鲆更好的耐热性,但两者相比,在慢性升温模式下杂交鲆的耐热性优势更明显。
     4)通过克隆褐牙鲆、大西洋牙鲆和杂交鲆hsp70和hsp90基因cDNA全序列及序列分析发现,三者的hsp70/hsp90基因高度保守,克隆所得的hsp90序列更接近hsp90-β。通过29℃热胁迫条件下,褐牙鲆、大西洋牙鲆和杂交鲆有关氧化应激、免疫反应和能量代谢的酶的相对活力研究和分子水平的研究发现:随着热胁迫时间的增长,SOD、GSH、LZM和PK的相对活力都发生了一系列的变化,且三者的变化趋势大致相同。尤其在SOD、LZM中的变化趋势较明显,变化曲线呈“M”型,类似于慢性升温模式下SOD和LZM的变化趋势。褐牙鲆、大西洋牙鲆和杂交鲆的hsp70/hsc70/hsp90基因表达量随着热胁迫时间的增长都发生了变化,hsp70基因表达量先升高后下降,而hsc70/hsp90基因表达量变化曲线呈“M”型,且hsc70/hsp90基因表达量变化的剧烈程度明显低于hsp70。结合前文慢性升温模式和急性升温模式的研究结论,我们认为hsp70是海水鱼类耐热性研究中较理想的指标。
Temperature is regarded as an important abiotic variable influencing almost theentire life history of fish, including survival, ingestion, growth, development andreproduction. Temperature tolerance of fish limits its distribution, both in time andspace. As global climate change has increased extreme weather events, the study ofthermal tolerance mechanism and heat-tolerance breeding of aquatic organismbecomes a work of great value both in scientific research and aquaculture industry.However, works in thermal tolerance of marine fish are limited, and there lacksevaluation indicators of heat tolerance. Paralichthys olivaceus (Temminck&Schlegel,1846) is an ecologically and economically valuable flatfish species in China, whoseculture is widely distributed along the coast of North China, and is expanded to theSouth China. However, the aquaculture of this species has been suffered from the hotsummer, and is frequently shocked by mass mortality. Paralichthys dentatus (L.,1766)is a high temperature resistant species, which is also an important commercial flatfishalong the Atlantic coast. The hybrids of these two species (P. olivaceus×P.dentatus) inherits the excellent economic characters and performs well both ingrowth and thermal tolerance. We investigated the tissue specific responses in thehistological alteration, enzymic changes (superoxidase dismutase, SOD; catalase,CAT; reduced glutathione, GSH; lysozyme, LZM and pyruvate kinase, PK) and theexpression of hsp70of P. olivaceus to elevated temperature. We compared these twospecies under different heat modes. We also cloned the hsp70/hsp90genes of P.olivaceus, P. dentatus and the hybrids. Furthermore, we investigated the the changesof P. olivaceus, P. dentatus and the hybrids in related enzymes and hsp70/hsc70/hsp90expressions at29℃, with the purpose of clarifying the effect of elevated temperature to these species, which may provide us a better understanding of themechanism of heat tolerance and hybrid vigor in marine fishes. The main results areas follows:
     1) The tissues of P. olivaceus responded differently to the elevated temperature.There were a range of histological changes in liver, kidney and gill, including theedema, epithelial lifting, desquamation and necrosis. The SOD, GSH and LZMshowed relatively higher activity in liver. According to the time point of highestexpression of hsp70, the tissues could be divided into two groups: the2-h groupcomprised the spleen, liver, gill and kidney, while the6-h group comprised thegut, stomach, muscle, heart and brain. When investigated the tissue specificexpression of hsp70at respective time points, we found that the brain and gillwere tissues of rich hsp70expression before heat shock. However, the liver, gilland muscle had much higher hsp70expression under high temperature, with thetop expression at the time point of1h,2h, and6h (and12h).It was worth mentioning that, the tissues with the most significant lesions (gill,liver and kidney) also responded much earlier (2h) in hsp70expression than othertissues, especially the gill and liver, since they have shown the most outstandingmanifestations both in histological, enzymic and mRNA levels, which made themideal candidate tissues in the further thermal study of this important species.
     2) In chronic heat mode, the cumulative survival rate (CSR) of P. olivaceus wasmuch lower than that of the hybrids, with the gill structure damaged moreseriously. In P. olivaceus, the activity of SOD, CAT, LZM and PK fluctuateddramatically, all of which declined around the temperature of29℃and32℃.Moreover, the hsp70expression in P. olivaceus also increased significantly at29℃and32℃, whose up-regulated ranges were higher than those in the hybrids.All of these corresponded to the changes of CSR, which suggested the P.olivaceus was more sensitive to the temperature of29℃and32℃.However, in the hybrids, the CSR was higher, the gill structure under hightemperature was relatively more complete, the enzymic changes were more stable,and the response of hsp70was later than that in P. olivaceus, with a lower up-regulation and a trend of fall back above29℃. These all implied us the betterthermal tolerance of this species.So far, we could synthesize the characters of heat sensitive species, which mightbe revealed in many levels, such as lower CSR, severe damages in tissuesstructure, tremendous changes in enzymic activity and the earlier and strongerreaction in hsp70expression. In contrast, a thermal tolerance species alwaysshows better CSR and stability in other levels.
     3) In acute heat mode (26℃,29℃and32℃), the CSR in the hybrids was higher,with the lag of death occurrence (4h) and mass mortality (12h) compared to P.olivaceus (1.5h,4h), and the gill structure in the hybrids was more completed.The changes in enzymic activity reflected that, the oxidation resistance andimmune defenses were weakened by the extreme temperature both in P. olivaceusand the hybrids, with the increase of energy expenditure. The hsp70expressionincreased significantly at0.5h both in these two species. However, these reactionsof hsp70in P. olivaceus were more violent and persistent, which expressed infaster and higher response, as well as slower fall after rise. We found the resultsin acute heat mode were largely consistent with those in chronic heat mode,which suggested the hybrids had a better thermal tolerance. However, thisadvantage was more remarkable in the chronic mode.
     4) The full-length cDNA of hsp70and hsp90were cloned from P. olivaceus, P.dentatus and the hybrids. The analysis indicated these two genes were both highlyconserved. The hsp90isolated in our study was more closed to hsp90-β.When been heat shocked at29℃, the changes in enzymic activity (SOD, GSH,LZM and PK) showed relatively similar trends, especially in the SOD and LZM,whose curve turned out to be an “M”. Analogous curve has been found in chronicheat mode. The expression of hsp70got more tremendous and regular changesthan hsc70and hsp90, which made it an ideal candidate gene in the study ofthermal tolerance in marine fish.
引文
Abel PD (1974) Toxicity of synthetic detergents to fish and aquatic invertebrates. J Fish Biol6(3):279-298
    Abel PD (1976) Toxic action of several lethal concentrations of an anionic detergent on the gills of thebrown trout (Salmo trutta L.). J Fish Biol9(5):441-446
    Abel PD, Skidmore JF (1975) Toxic effects of an anionic detergent on the gills of rainbow trout. WaterRes9(8):759-765
    Abele D, Heise K, P rtner H-O, Puntarulo S (2002) Temperature-dependence of mitochondrial functionand production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol205(13):1831-1841
    Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defencesystems in polar and temperate marine invertebrates and fish. Comp Biochem Phys A138(4):405-415
    Adamo SA (2004) How should behavioural ecologists interpret measurements of immunity? AnimBehav68(6):1443-1449
    Adema CM, WPW VdK, T S (1991) Molluscan hemocyte-mediated cytotoxicity: the role of reactiveoxygen intermediates. Rev Aquat Sci4:201-223
    Afonso LOB, Hosoya S, Osborne J, Gamperl AK, Johnson S (2008) Lack of glucose and hsp70responsesin haddock Melanogrammus aeglefinus (L.) subjected to handling and heat shock. J Fish Biol72(1):157-167
    Agersborg HPK (1930) The influence of temperature on fish. Ecology11(1):136-144
    Agius C (1980) Phylogenetic development of melano–macrophage centres in fish. J Zool191(1):11-31
    Agius C, Roberts RJ (2003) Melano‐macrophage centres and their role in fish pathology. J Fish Dis26(9):499-509
    Agradi E, Baga R, Cillo F, Ceradini S, Heltai D (2000) Environmental contaminants and biochemicalresponse in eel exposed to Po river water. Chemosphere41(10):1555-1562
    Ahmad SM, Shah FA, Bhat FA, Bhat JIA, Balkhi MH (2011) Thermal adaptability and disease associationin common carp (Cyprinus carpio communis) acclimated to different (four) temperatures. JTherm Biol36(8):492-497
    Alabaster JS (1963) The effects of heated effluents on fish. Air Wat Poll7:541-563
    Alexander JB, Ingram GA (1992) Noncellular nonspecific defence mechanisms of fish. Annu Rev FishDis2:249-279
    Anonymous The glutathione oxidation reduction (Redox) cycle.http://lpi.oregonstate.edu/infocenter/minerals/selenium/gsh.html.
    Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction.Annu Rev Plant Biol55:373-399
    Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis.Photoinhibition. Elsevier, Amsterdam
    Bagnyukova TV, Lushchak OV, Storey KB, Lushchak VI (2007) Oxidative stress and antioxidant defenseresponses by goldfish tissues to acute change of temperature from3to23℃. J Therm Biol32(4):227-234
    Baker SC, Heidinger RC (1996) Upper lethal temperature tolerance of fingerling black crappie. J FishBiol48(6):1123-1129
    Baudouin-Cornu P, Lagniel G, Kumar C, Huang M-E, Labarre J (2012) Glutathione degradation is a keydeterminant of glutathione homeostasis. J Biol Chem287(7):4552-4561
    Bayne CJ, Gerwick L (2001) The acute phase response and innate immunity of fish. Dev CompImmunol25(8):725-743
    Becker CD, Genoway RG (1979) Evaluation of the critical thermal maximum for determining thermaltolerance of freshwater fish. Environ Biol Fish4(3):245-256
    Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of North American freshwaterfishes exposed to dynamic changes in temperature. Environ Biol Fish58(3):237-275
    Beitinger TL, Thommes MM, Spigarelli SA (1977) Relative roles of conduction and convection in thebody temperature change of gizzard shad, Dorosoma cepedianum. Comp Biochem Physiol A57(2):275-279
    Belding DL (1928) Water temperature and fish life. Trans Amer Fish Soc58(1):98-105
    Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins molecular chaperones in cardiovascularbiology and disease. Circ Res83(2):117-132
    Benville Jr PE, Smith CE, Shanks WE (1968) Some toxic effects of dimethyl sulfoxide in salmon andtrout. Toxicol Appl Pharm12(2):156-178
    Bernal D, Dickson KA, Shadwick RE, Graham JB (2001) Analysis of the evolutionary convergence forhigh performance swimming in lamnid sharks and tunas. Comp Biochem Physiol A129(2):695-726
    Bernal D, Donley JM, Shadwick RE, Syme DA (2005) Mammal-like muscles power swimming in acold-water shark. Nature437(7063):1349-1352
    Bidgood BF (1980) Temperature tolerance of hatchery reared rainbow trout Salmo gairdneri. Fish ResRep Fish Wild Div15:1-10
    Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething M-JH (1993)Affinity panning of a library of peptides displayed on bacteriophages reveals the bindingspecificity of BiP. Cell75(4):717-728
    Boon-Niermeijer EK, Tuyl M, van de Scheur H (1986) Evidence for two states of thermotolerance. Int JHyperthermia2(1):93-105
    Borges JC, Ramos CHI (2005) Protein folding assisted by chaperones. Protein Peptide Lett12(3):257-261
    Bowyer JN, Qin JG, Adams LR, Thomson MJS, Stone DAJ (2012) The response of digestive enzymeactivities and gut histology in yellowtail kingfish (Seriola lalandi) to dietary fish oilsubstitution at different temperatures. Aquaculture368:19-28
    Brett JR (1941) Tempering versus acclimation in the planting of speckled trout. Trans Amer FisheriesSoc70(1):397-403
    Brett JR (1952) Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J Fish Board ofCan9(6):265-323
    Brill RW, Dewar H, Graham JB (1994) Basic concepts relevant to heat transfer in fishes, and their use inmeasuring the physiological thermoregulatory abilities of tunas. Environ Biol Fish40(2):109-124
    Britton SW (1924) The effects of extreme temperature on fishes. Amer J Physiol67:411-421
    Brown BR (2003) Neurophysiology: sensing temperature without ion channels. Nature421(6922):495-495
    Brown BR, Hutchison JC, Hughes ME, Kellogg DR, Murray RW (2002) Electrical characterization of gelcollected from shark electrosensors. Physical Review E65(6):061903
    Caballero MJ, Obach A, Rosenlund G, Montero D, Gisvold M, Izquierdo MS (2002) Impact of differentdietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histologyof rainbow trout, Oncorhynchus mykiss. Aquaculture214(1):253-271
    Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem58:79-110
    Cairns JJ (1968) We're in hot water. Scien Citizen10(8):187-198
    Carey FG, Teal JM (1966) Heat conservation in tuna fish muscle. Proc Natl Acad Sci USA56:1464-1469
    Carey FG, Teal JM (1969) Mako and porbeagle: warm bodied sharks. Comp Biochem Physiol A28:199-204
    Carey FG, Teal JM, Kanwisher JW, Lawson KD, Beckett JS (1971) Warm bodied fish. Am Zool11(1):137-143
    Castro C, Perez-Jimenez A, Guerreiro I, Peres H, Castro-Cunha M, Oliva-Teles A (2012) Effects oftemperature and dietary protein level on hepatic oxidative status of Senegalese sole juveniles(Solea senegalensis). comp Biochem Phys A163(3-4):372-378
    Chen M-S, Featherstone T, Laszlo A (1996) Amplification and altered expression of the hsc70/U14snoRNA gene in a heat resistant Chinese hamster cell line. Cell Stress Chaperon1(1):47
    Chen Q, Luo Z, Zheng J, Li X, Liu C, Zhao Y, Gong Y (2012) Protective effects of calcium on coppertoxicity in Pelteobagrus fulvidraco: Copper accumulation, enzymatic activities, histology.Ecotox Environ Safe76:126-134
    Chiang H-L, Plant CP, Dice JF (1989) A role for a70-kilodalton heat shock protein in lysosomaldegradation of intracellular proteins. Science246(4928):382-385
    Christie RM, Battle HI (1963) Histological effects of3-trifluormethyl-4-nitrophenol (TFM) on larvallamprey and trout. Can J Zool41:51-61
    Clark JR (1969) Thermal pollution and aquatic life. Sci Amer220:19-27
    Clausen RG (1934) Body temperature of freshwater fishes. Ecology15:139-144
    Cnaani A (2006) Genetic perspective on stress response and disease resistance in aquaculture. Isr JAquaculture-Bamidgeh58(4):375-383
    Compagno (2004) Diagram of ampullae of Lorenzini in sharks.http://www.supportoursharks.com/en/Education/Biology/Sensory_Systems/Electroreception.htm.
    Cossins AR, Prosser CL (1982) Variable homeoviscous responses of different brain membranes ofthermally-acclimated goldfish. Biochim Biophys Acta687(2):303-309
    Cowen LE, Lindquist S (2005) Hsp90potentiates the rapid evolution of new traits: drug resistance indiverse fungi. Science309(5744):2185-2189
    Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. BullAm Mus Nat Hist83:265-296
    Cox DK, Gibbons JW, Sharitz RR (1974) Effects of three heating rates on the critical thermal maximumof bluegill. Oak Ridge National Lab., TN; Savannah River Ecology Lab., Aiken, SC (USA),Springfield, VA
    Crockett EL (2008) The cold but not hard fats in ectotherms: consequences of lipid restructuring onsusceptibility of biological membranes to peroxidation, a review. J Comp Physiol B178(7):795-809
    Currie S, Ahmady E, Watters MA, Perry SF, Gilmour KM (2013) Fish in hot water: Hypoxaemia does nottrigger catecholamine mobilization during heat shock in rainbow trout (Oncorhynchus mykiss).Comp Biochem Phys A165(2):281-287
    Dalela RC, Bhatnagar MC, Tyagi AK, Verma SR (1979) Histological damage of gills in Channa gachuaafter acute and subacute exposure to endosulfan and rogor. Mikroskopie35(11-12):301
    Dalvi RS, Pal AK, Tiwari LR, Baruah K (2012) Influence of acclimation temperature on the induction ofheat-shock protein70in the catfish Horabagrus brachysoma (Gunther). Fish Physiol Biochem38(4):919-927
    Das T, Pal AK, Chakraborty SK, Manush SM, Chatterjee N, Mukherjee SC (2004) Thermal tolerance andoxygen consumption of Indian Major Carps acclimated to four temperatures. J Therm Biol29(3):157-163
    Dash G, Yonzone P, Chanda M, Paul M (2011) Histopathological changes in Labeo rohita (Hamilton)fingerlings to various acclimation temperatures. Chron Young Sci2(1):29-36
    Dean JM (1976) Temperature of tissues in freshwater fishes. Trans Amer Fish Soc105(6):709-711
    Demas GE (2004) The energetics of immunity: a neuroendocrine link between energy balance andimmune function. Horm Behav45(3):173-180
    Dent L, Lutterschmidt WI (2003) Comparative thermal physiology of two sympatric sunfishes(Centrarchidae: Perciformes) with a discussion of microhabitat utilization. J Therm Biol28(1):67-74
    Devi PU, Ganasoundari A (1999) Modulation of glutathione and antioxidant enzymes by Ocimumsanctum and its role in protection against radiation injury. Indian J Exp Biol37(3):262-268
    DiMichele L, Taylor MH (1978) Histopathological and physiological responses of Fundulus heteroclitusto naphthalene exposure. J Fish Board Can35(8):1060-1066
    Dong C-W, Zhang Y-B, Zhang Q-Y, Gui J-F (2006) Differential expression of three Paralichthys olivaceusHsp40genes in responses to virus infection and heat shock. Fish Shellfish Immun21(2):146-158
    Doudoroff P (1945) The resistance and acclimatization of marine fishes to temperature changes. II.Experiments with Fundulus and Atherinops. Biol Bull88(2):194-206
    Du H, Zhou P, Huang B (2013) Antioxidant enzymatic activities and gene expression associated withheat tolerance in a cool-season perennial grass species. Environ Exp Bot87:159-166
    Dyer SD, Dickson KL, Zimmerman EG, Sanders BM (1991) Tissue-specific patterns of synthesis ofheat-shock proteins and thermal tolerance of the fathead minnow (Pimephales promelas).Can J Zool69(8):2021-2027
    Easton DP, Rutledge PS, Spotila JR (1987) Heat shock protein induction and induced thermal toleranceare independent in adult salamanders. J Exp Zool241(2):263-267
    Eller LL (1975) Gill lesions in freshwater teleosts. The Pathology of fishes. Univ of Wisconsin Press,Madison, Wisconsin
    Elliott JA A comparison of thermal polygons for British freshwater teleosts. In: Freshwater Forum,1995. vol3. pp178-184
    Elliott JM, Elliott JA (1995) The effect of the rate of temperature increase on the critical thermalmaximum for parr of Atlantic salmon and brown trout. J Fish Biol47(5):917-919
    Ellis AE (1980) Antigen‐trapping in the spleen and kidney of the plaice Pleuronectes platessa L. J FishDis3(5):413-426
    Eyl s SJ, Gi rasch LM (2010) Natur’s mol cular spong s: small h at shock prot ins grow into th irchaperone roles. PNAS107(7):2727-2728
    Fanta E, Rios FSA, Rom o S, Vianna ACC, Freiberger S (2003) Histopathology of the fish Corydoraspaleatus contaminated with sublethal levels of organophosphorus in water and food.Ecotoxicol Environ Saf54(2):119-130
    Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology. Annu Rev Physiol61(1):243-282
    Feng LF, Miao W (2008) Comparative analysis of the Hsp70mRNA expression and heat tolerance intwo regional Carchesium polypinum at different latitudes. Acta Zool Sin54(3):525-530
    Fenton WA, Kashi Y, Furtak K, Norwich AL (1994) Residues in chaperonin GroEL required forpolypeptide binding and release. Nature371:614-619
    Ferguson HW (1976) The reticulo-endothelial system of teleost fish with special reference to the plaice(Pleuronectes platessa L.). University of Stirling, Stirling
    Flis J (1968) Anatomicohistopathological changes induced in carp (Cyprinus carpio L.) by ammoniawater. Part II. Effects of subtoxic concentrations. Acta hydrobiol10:225-238
    Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperoneBiP. Nature353(6346):726-730
    Fonds M, Tanaka M, Van der Veer HW (1995) Feeding and growth of juvenile Japanese flounderParalichthys olivaceus in relation to temperature and food supply. Netherl J Sea Res34(1):111-118
    Franzmann TM, Menhorn P, Walter S, Buchner J (2008) Activation of the chaperone Hsp26iscontrolled by the rearrangement of its thermosensor domain. Mol Cell29(2):207-216
    Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol201(8):1203-1209
    Fry FEJ (1947) Effects of the environment on animal activity. Studies in Biology, Series. University ofToronto Press, Toronto
    Fry FEJ (1967) Responses of vertebrate poikilotherms to temperature. Thermobiology. Academic Press,New York
    Fry FEJ, Brett JR, Clawson GH (1942) Lethal limits of temperature for young goldfish. Rev can biol1:50-56
    Fry FEJ, Hart JS, Walker KF (1946) Lethal temperature relations for a sample of young speckled trout(Salvclinus fontinalis). Univ Toronto Studies, Biolo Series54:1-35
    Fulop GMI, McMillan DB (1984) Phagocytosis in the spleen of the sunfish Lepomis spp. J Morphol179(2):175-195
    Gardner GR (1975) Chemically induced lesions in estuarine or marine teleosts. In: W R, G M (eds) Thepathology of fishes. University of Wisconsin Press, Madison, Wis, pp657-694
    Gardner GR, Yevich PP (1970) Histological and hematological responses of an estuarine teleost tocadmium. J Fish Board Can27(12):2185-2196
    Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature355:33-45
    Gingerich WH (1982) Hepatic toxicology of fishes. Aquatic toxicology. Raven Press, New York
    Gunn DL (1942) Body temperature in poikilothermal animals. Biol Rev17(4):293-314
    Haensly WE, Neff JM, Sharp JR, Morris AC, Bedgood MF, Boem PD (1982) Histopathology ofPleuronectes platessa L. from Aber Wrac'h and Aber Benoit, Brittany, France: long-termeffects of the Amoco Cadiz crude oil spill. J Fish Dis5(5):365-391
    Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford university press, NewYork
    Halpin PM, Menge BA, Hofmann GE (2004) Experimental demonstration of plasticity in the heat shockresponse of the intertidal mussel Mytilus californianus. Mar Ecol Prog Ser276:137-145
    Hansen JJ, Bross P, Westergaard M, Nielsen M, Eiberg H, B rglum AD, Mogensen J, Kristiansen K,Bolund L, Gregersen N (2003) Genomic structure of the human mitochondrial chaperoningenes: HSP60and HSP10are localised head to head on chromosome2separated by abidirectional promoter. Hum Genet112(1):71-77
    Hart JS (1947) Lethal temperature relations of certain fish of the Toronto region. Trans Roy Soc Can Sec5(41):57-71
    Hathaway ES (1928) Quantitative study of the changes produced by acclimatization in the tolerance ofhigh temperatures by fishes and amphibians. US Government Printing Office, Bull, U.S.
    Heinrich P, Georg L, Petro EP (2006) Biochemie und Pathobiochemie (Springer-Lehrbuch)(GermanEdition). Springer, Berlin
    Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantificationframework and software for management and automated analysis of real-time quantitativePCR data. Genome Biol8(2):R19
    Henkel SK, Hofmann GE (2008) Differing patterns of hsp70gene expression in invasive and native kelpspecies: evidence for acclimation-induced variation. J App Phycol20(5):915-924
    Hernández M, Bückle F, Guisado C, Barón Bn, Estavillo N (2004) Critical thermal maximum and osmoticpressure of the red sea urchin Strongylocentrotus franciscanus acclimated at differenttemperatures. J Therm Biol29(4):231-236
    Hernández RM, Bückle R LF (2002) Temperature tolerance polygon of Poecilia sphenops Valenciennes(Pisces: Poeciliidae). J Therm Biol27(1):1-5
    Herraez MP, Zapata AG (1986) Structure and function of the melano-macrophage centres of thegoldfish Carassius auratus. Vet Immunol Immunop12(1):117-126
    Hibiya T, Yokote M, Oguri M, Sato H, Takashima F, Aida K (1982) An atlas of fish histology-normal andpathological features. Gustav Fischer Verlag, Tokyo
    Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiologicalevolution, vol480. Oxford University Press on Demand, New York
    Hoff JH, Westman JR (1966) The temperature tolerances of three species of marine fishes. J Mar Res24:131-140
    Hofmann G, Somero G (1995) Evidence for protein damage at environmental temperatures: seasonalchanges in levels of ubiquitin conjugates and hsp70in the intertidal mussel Mytilus trossulus.J Exp Biol198(7):1509-1518
    Hughes GM (1966) The dimensions of fish gills in relation to their function. J Exp Biol45(1):177-195
    Huntsman AG, Sparks MI (1924) Limiting factors for marine animals.3. Relative resistance to hightemperatures. Contrib Can Biol Fish2(1):95-114
    Hutchison VH Factors influencing thermal tolerances of individual organisms. In: Thermal Ecology II,Symposium Series of the National Technical Information Service, Georgia
    1976. pp10-26
    Illg D, Pette D (1979) Turnover Rates of Hexokinase I, Phosphofructokinase, Pyruvate Kinase andCreatine Kinase in Slow‐Twitch Soleus Muscle and Heart of the Rabbit. Eur J Biochem97(1):267-273
    Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and tomammalian alpha-crystallin. PNAS79(7):2360-2364
    Inoue I, Rechsteiner M (1994) On the relationship between the metabolic and thermodynamicstabilities of T4lysozymes. Measurements in eukaryotic cells. J Biol Chem269(46):29247-29251
    Iwata N, Kikuchi K, Honda H, Kiyono M, Kurokura H (1994) Effects of temperature on the growth ofJapanese flounder [Paralichthys olivaceus]. Fisheries Sci
    Jacobs D, Esmond EF, Melisky EL, Hocutt CH (1981) Morphological changes in gill epithelia ofheat-stressed rainbow trout, Salmo gairdneri: Evidence in support of a temperature-inducedsurface area change hypothesis. Can J Fish Aquat Sci38(1):16-22
    Jensen LT, Cockerell FE, Kristensen TN, Rako L, Loeschcke V, McKechnie SW, Hoffmann AA (2010) Adultheat tolerance variation in Drosophila melanogaster is not related to Hsp70expression. JExper Zool A313(1):35-44
    Jian Z, Yong-hua H, Bo-guang S, Zhi-zhong X, Li S (2013) Selection of normalization factors forquantitative real time RT-PCR studies in Japanese flounder (Paralichthys olivaceus) and turbot(Scophthalmus maximus) under conditions of viral infection. Vet Immunol Immunop152:303-316
    Johns DM, Howell WH, Klein-MacPhee G (1981) Yolk utilization and growth to yolk-sac absorption insummer flounder (Paralichthys dentatus) larvae at constant and cyclic temperatures. Mar Biol63(3):301-308
    Kültz D (2003) Evolution of the cellular stress proteome: from monophyletic origin to ubiquitousfunction. J Exp Biol206(18):3119-3124
    Keller M, Sommer AM, P rtner HO, Abele D (2004) Seasonality of energetic functioning andproduction of reactive oxygen species by lugworm (Arenicola marina) mitochondria exposedto acute temperature changes. J Exp Biol207(14):2529-2538
    Kikuchi K, Takeda S (2001) Present status of research and production of Japanese flounder,Paralichthys olivaceus, in Japan. J Appl Aquaculture11(1-2):165-175
    Kondo H, Suda S, Kawana Y, Hirono I, Nagasaka R, Kaneko G, Ushio H, Watabe S (2012) Effects of feedrestriction on the expression profiles of the glucose and fatty acid metabolism-related genesin rainbow trout Oncorhynchus mykiss muscle. Fisheries Science78(6):1205-1211
    Kondo H, Watabe S (2004) Temperature-dependent enhancement of cell proliferation and mRNAexpression for type I collagen and HSP70in primary cultured goldfish cells. Comp BiochemPhys A138(2):221-228
    Krebs RA, Loeschcke V (1994) Effects of exposure to short‐term heat stress on fitness components inDrosophila melanogaster. J Evol Biol7(1):39-49
    Kuhn O, Koecke HU (1956) Histologische und zytologische Ver nderungen der Fischkieme nachEinwirkung im Wasser enthaltener Schadigender Substanzen. Z Zellforsch Mikrosk Anat43:611-643
    Kumar S, Sahu NP, Pal AK, Subramanian S, Priyadarshi H, Kumar V (2011) High dietary protein combatsthe stress of Labeo rohita fingerlings exposed to heat shock. Fish Physiol Biochem37(4):1005-1019
    Kumari J, Sahoo PK, Swain T, Sahoo SK, Sahu AK, Mohanty BR (2006) Seasonal variation in the innateimmune parameters of the Asian catfish Clarias batrachus. Aquaculture252(2):121-127
    Kusuda R, Kitadai N (1992) Effects of water temperature on lysozyme activity of eels. Suisanzoshoku40:453-456
    Kutty MN, Sukumaran N, Kasim HM (1980) Influence of temperature and salinity on survival of thefreshwater mullet, Rhinomugil corsula (Hamilton). Aquaculture20(3):261-274
    Langston AL, Hoare R, Stefansson M, Fitzgerald R, Wergeland H, Mulcahy M (2002) The effect oftemperature on non-specific defence parameters of three strains of juvenile Atlantic halibut(Hippoglossus hippoglossus L.). Fish Shellfish immun12(1):61-76
    Lee JAC, Cossins AR (1990) Temperature adaptation of biological membranes: differentialhomoeoviscous responses in brush-border and basolateral membranes of carp intestinalmucosa. Biochim Biophys Acta1026(2):195-203
    Leggatt RA, Brauner CJ, Schulte PM, Iwama GK (2007) Effects of acclimation and incubationtemperature on the glutathione antioxidant system in killifish and RTH-149cells. CompBiochem Physiol A146(3):317-326
    Lemke AE, Mount DI (1963) Some effects of alkyl benzene sulfonate on the bluegill, Lepomismacrochirus. Trans Amer Fish Soc92(4):372-378
    Lencioni V, Bernabò P, Cesari M, Rebecchi L (2013) Thermal stress induces HSP70proteins synthesis inlarvae of the cold stream non-biting midge Diamesa cinerella Meigen. Arch Insect Biochem83(1):1-14
    Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology.Annu Rev Physiol68:253-278
    Li J, He Q, Sun H, Liu X (2012) Acclimation-dependent expression of heat shock protein70in Pacificabalone (Haliotis discus hannai Ino) and its acute response to thermal exposure. Chin JOceanol Limnol30:146-151
    Lie, Evensen, Sorensen A, Froysadal E (1989) Study on lysozyme activity in some fish species. DisAquat Organ6(1):1-5
    Lindquist S (1986) The heat-shock response. Annu Rev Biochem55(1):1151-1191
    Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet22:631-677
    Liu XJ, Luo Z, Xiong BX, Liu X, Zhao YH, Hu GF, Lv GJ (2010) Effect of waterborne copper exposure ongrowth, hepatic enzymatic activities and histology in Synechogobius hasta. Ecotox EnvironSafe73(6):1286-1291
    Lochmiller RL, Deerenberg C (2000) Trade‐offs in evolutionary immunology: just what is the cost ofimmunity? Oikos88(1):87-98
    Loeb J, Wasteneys H (1912) On the adaptation of fish (Fundulus) to higher temperatures. J ExperZool12(4):543-557
    Lohr SC, Byorth PA, Kaya CM, Dwyer WP (1996) High-temperature tolerances of fluvial Arctic graylingand comparisons with summer river temperatures of the Big Hole River, Montana. Transa AmFish Soc125(6):933-939
    Lou B, Xu D, Xu H, Zhan W, Mao G, Shi H (2011) Effect of high water temperature on growth, survivaland antioxidant enzyme activities in the Japanese flounder Paralichthys olivaceus. Afr J AgrRes6(12):2875-2882
    Lushchak VI, Bagnyukova TV (2006) Temperature increase results in oxidative stress in goldfish tissues.2. Antioxidant and associated enzymes. Comp Biochem Phys C143(1):36-41
    Lutterschmidt WI, Hutchison VH (1997) The critical thermal maximum: history and critique. Can J Zool75(10):1561-1574
    MacDonald DK (1962) Thermoelectricity. Wiley, New York
    Mackie AM, Singh HT, Fletcher TC (1975) Studies on the cytolytic effects of seastar (Marthasteriasglacialis) saponins and synthetic surfactants in the plaice Pleuronectes platessa. Mar Biol29(4):307-314
    Madeira D, Narciso L, Cabral HN, Diniz MS, Vinagre C (2012) Thermal tolerance of the crabPachygrapsus marmoratus: intraspecific differences at a physiological (CTMax) and molecularlevel (Hsp70). Cell Stress Chaperon17(6):707-716
    Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immun20(2):137-151
    Magnadóttir B, Jónsdóttir H, Helgason S, Bj rnsson B, J rgensen T, Pilstr m L (1999) Humoralimmune parameters in Atlantic cod (Gadus morhua L.): I. The effects of environmentaltemperature. Comp Biochem Physiol B122(2):173-180
    Magnadottir B, Bambir SH, Gudmundsdóttir BK, Pilstr m L, Helgason S (2002) Atypical Aeromonassalmonicida infection in naturally and experimentally infected cod, Gadus morhua L. J Fish Dis25(10):583-597
    Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review.Can J Fish Aquat Sci42(4):630-648
    Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: Signaling for suicide andsurvival. J Cell Physiol192:1-15
    Martinez-Alvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors.Rev Fish Biol Fisher15(1-2):75-88
    Matthews WJ, Zimmerman EG (1990) Potential effects of global warming on native fishes of thesouthern Great Plains and the Southwest. Fisheries15(6):26-32
    Matthiessen P, Brafield AE (1973) The effects of dissolved zinc on the gills of the sticklebackGasterosteus aculeatus (L.). J Fish Biol5(5):607-613
    McCauley R, Beitinger T (1992) Predicted effects of climate warming on the commercial culture of thechannel catfish, Ictalurus punctatus. Geojournal28(1):61-66
    McCauley RW, Kilgour DM (1990) Effect of air temperature on growth of largemouth bass in NorthAmerica. Trans Amer Fish Soc119(2):276-281
    Meisner JD (1990) Potential loss of thermal habitat for brook trout, due to climatic warming, in twosouthern Ontario streams. Trans Amer Fish Soc119(2):282-291
    Meisner JD, Goodier JL, Regier HA, Shuter BJ, Christie WJ (1987) An assessment of the effects ofclimate warming on Great Lakes basin fishes. J Great Lakes Res13(3):340-352
    Mitchell-Olds T, Knight CA (2002) Chaperones as buffering agents? Sciences296:2348-2349
    Mitchell AJ, Grizzle JM, Plumb JA (1978) Nifurpirinol (Furanace; P-7138) related lesions on channelcatfish Ictalurus punctatus (Rafinesque). J Fish Dis1:115-121
    Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci7(9):405-410
    Mora C, Ospina A (2001) Tolerance to high temperatures and potential impact of sea warming on reeffishes of Gorgona Island (tropical eastern Pacific). Mar Biol139(4):765-769
    Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science259:1409-1409
    Morimoto RI, Tissi r s, G orgopoulos C (1990) Stress proteins in biology and medicine. Cold SpringHarbor Laboratory,
    Nakano K, Iwama GK (2002) The70-kDa heat shock protein response in two intertidal sculpins,Oligocottus maculosus and O. snyderi: relationship of hsp70and thermal tolerance. CompBiochem Physiol A133(1):79-94
    Neill WH, Stevens ED (1974) Thermal inertia versus thermoregulation in "warm" turtles and tunas.Science184:1008-1010
    Newstead JD (1967) Fine structure of the respiratory lamellae of teleostean gills. Zeitschrift fürZellforschung und Mikroskopische Anatomie79(3):396-428
    Nishikawa M, Takemoto S, Takakura Y (2008) Heat shock protein derivatives for delivery of antigens toantigen presenting cells. Int J Pharm354(1):23-27
    Novo E, Parola M (2008) Redox mechanisms in hepatic chronic wound healing and fibrogenesis.Fibrogen Tissue Rep1(5):1-58
    Olojo EAA, Olurin KB, Mbaka G, Oluwemimo AD (2005) Histopathology of the gill and liver tissues ofthe African catfish Clariasgariepinus exposed to lead. Afr J Biotechnol4:117-122
    P r z E, D a z F, Espina S (2003) Th rmor gulatory b havior and critical th rmal limits of th ang lfishPterophyllum scalare (Lichtenstein)(Pisces: Cichlidae). J Therm Biol28(8):531-537
    P rtner H (2001) Climate change and temperature-dependent biogeography: oxygen limitation ofthermal tolerance in animals. Naturwissenschaften88(4):137-146
    Packer DB, Griesbach SJ, Berrien PL, Zetlin CA, Johnson DL, Morse WW (1999) Essential fish habitatsource document: Summer flounder, Paralichthys dentatus, life history and habitatcharacteristics. NOAA Tech Memo NMFS-NE-151.
    Paladino FV, Spotila JR, Schubauer JP, Kowalski KT (1980) The critical thermal maximum: a techniqueused to elucidate physiological stress and adaptation in fishes. Rev Can Biol39(2):115-122
    Palmisano AN, Winton JR, Dickhoff WW (2000) Tissue-specific induction of hsp90mRNA and plasmacortisol response in chinook salmon following heat shock, seawater challenge, and handlingchallenge. Mar Biotechnol2(4):329-338
    Pan F, Zarate JM, Tremblay GC, Bradley TM (2000) Cloning and characterization of salmon hsp90cDNA:upregulation by thermal and hyperosmotic stress. J Exp Zool287(3):199-212
    Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, Rosenfeld J (2007) Species-andtissue-specific relationships between mitochondrial permeability transition and generation ofROS in brain and liver mitochondria of rats and mice. Am J Physiol-Cell Ph292(2):C708-C718
    Parihar MS, Javeri T, Hemnani T, Dubey AK, Prakash P (1997) Responses of superoxide dismutase,glutathione peroxidase and reduced glutathione antioxidant defenses in gills of thefreshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J Therm Biol22(2):151-156
    Pauley GB, Nakatani RE (1967) Histopathology of "gas-bubble" disease in salmon fingerlings. J FishBoard Can24(4):867-871
    Peakall DB (1994) The role of biomarkers in environmental assessment. Ecotoxicology3(3):157-160
    Pearl LH, Prodromou C (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol10(1):46-51
    Picard D (2002) Heat-shock protein90, a chaperone for folding and regulation. Cell Mol Life Sci59(10):1640-1648
    Prodromou C, Pearl LH (2003) Structure and functional relationships of Hsp90. Curr Cancer DrugTargets3(5):301-323
    Rady AA (1993) Effect of change in environmental temperature on antioxidant enzyme activities andlipid peroxidation in red blood cells of carp. Comp Biochem Phys B104(4):695-698
    Rajaguru S (2002) Critical thermal maximum of seven estuarine fishes. J Therm Biol27(2):125-128
    Rajaguru S, Ramachandran S (2001) Temperature tolerance of some estuarine fishes. J Therm Biol26(1):41-45
    Reash RJ, Seegert GL, Goodfellow WL (2000) Experimentally-derived upper thermal tolerances forredhorse suckers: revised316(A) variance conditions at two generating facilities in Ohio.Environ Sci Policy3:191-196
    Reid R, Almeida F, Zetlin C (1999) Essential fish habitat source document: Fishery independent surveys,data sources, and methods. NOAA Tech Mem NMFS-NE122:39
    Rigaut JP, Chalumeau MT (1984) Pyruvate kinase isozyme patterns of fish. Comp Biochem Physiol B77(3):451-458
    Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila.Experientia18(12):571-573
    Roberts RJ (1975) Melanin-containing cells of teleost fish and their relation to disease. The pathologyof fishes. University of Wisconsin Press, Madison
    Rojas LM, Mata C, Oliveros A, Salazar-Lugo R (2013) Histology of gill, liver and kidney in juvenile fishColossoma macropomum exposed to three temperatures. Rev Biol Trop61(2):797-806
    Rombough PJ, Garside ET (1977) Hypoxial death inferred from thermally induced injuries at upperlethal temperatures, in the banded killifish, Fundulus diaphanus (LeSueur). Can J Zool55(10):1705-1719
    Rossi MR, Somji S, Garrett SH, Sens MA, Nath J, Sens DA (2002) Expression of hsp27, hsp60, hsc70,and hsp70stress response genes in cultured human urothelial cells (UROtsa) exposed tolethal and sublethal concentrations of sodium arsenite. Environ Health Perspect110(12):1225-1232
    Rutherford SL, Lindquist S (1998) Hsp90as a capacitor for morphological evolution. Nature396(6709):336-342
    Sakamoto K, Nakajima M, Taniguchi N (2005) Thermal tolerance traits of juveniles of the ayuPlecoglossus altivelis and Japanese flounder Paralichthys olivaceus evaluated by theircaudal fin cells. Aquaculture246(1):93-99
    Salazar-Lugo R, Mata C, Oliveros A, Rojas LM, Lemus M, Rojas-Villarroel E (2011) Histopathologicalchanges in gill, liver and kidney of neotropical fish Colossoma macropomum exposed toparaquat at different temperatures. Environ Toxicol Phar31(3):490-495
    Sand A (1938) The function of the ampullae of Lorenzini, with some observations on the effect oftemperature on sensory rhythms. Proc R Soc London B125(841):524-553
    Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharm59(1):55-63
    Saurabh S, Sahoo PK (2008) Lysozyme: an important defence molecule of fish innate immune system.Aquac Res39(3):223-239
    Schlesinger MJ (1990) Heat shock proteins. J Biol Chem265(21):12111-12114
    Schreck R, Baeuerle PA (1991) A role for oxygen radicals as second messengers. Trends Cell Biol1(2):39-42
    Scott AL, Rogers WA (1980) Histological effects of prolonged sublethal hypoxia on channel catfishIctalurus punctatus (Rafinesque). J Fish Dis3(4):305-316
    Selong JH, McMahon TE, Zale AV, Barrows FT (2001) Effect of temperature on growth and survival ofbull trout, with application of an improved method for determining thermal tolerance infishes. Trans Am Fish Soc130(6):1026-1037
    Selvakumar S, Geraldine P (2005) Heat shock protein induction in the freshwater prawnMacrobrachium malcolmsonii: Acclimation-influenced variations in the inductiontemperatures for Hsp70. Comp Biochem Physiol A140(2):209-215
    Sheng L, Xu J, Wang Y, Liu X, Yu W, Li W (2005) Effects of heat shock on the GPT, CAT and ultrastructureof common carp. J Toxicol19(A03):302-303
    Sinensky M (1974) Homeoviscous adaptation-a homeostatic process that regulates the viscosity ofmembrane lipids in Escherichia coli. Proc Natl Acad Sci71(2):522-525
    Skidmore JF, Tovell PWA (1972) Toxic effects of zinc sulphate on the gills of rainbow trout. Water Res6(3):217-230
    Smart G (1976) The effect of ammonia exposure on gill structure of the rainbow trout (Salmogairdneri). J Fish Biol8(6):471-475
    Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation.New Phytol125:27-58
    Smith CE, Piper RG (1972) Pathological effects in formalin-treated rainbow trout (Salmo gairdneri). JFish Board Can29(3):328-329
    Smith LS (1989) Digestive functions in teleost fishes. In: Halver JE (ed) Fish Nutrition, vol2. AcademicPress, New York, NY, USA, pp331-421
    Smith RL, Rhodes D (1983) Body temperature of the salmon shark, Lamna ditropis. J Mar Biol Assoc UK63:243-244
    Smith WG (1973) The distribution of summer flounder, Paralichthys dentatus, eggs and larvae on thecontinental shelf between Cape Cod and Cape Lookout,1965–66. Fish Bull71(2):527-548
    Sollid J, Nilsson GE (2006) Plasticity of respiratory structures-adaptive remodeling of fish gills inducedby ambient oxygen and temperature. Respir Physiol Neurobiol154(1):241-251
    Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits, andcosts of living. Integr Comp Biol42(4):780-789
    Sorte CJB, Hofmann GE (2005) Thermotolerance and heat-shock protein expression in NortheasternPacific Nucella species with different biogeographical ranges. Mar Biol146(5):985-993
    Sprague JB (1971) Measurement of pollutant toxicity to fish-III: Subl thal ff cts and “saf”concentrations. Water Res5(6):245-266
    Stevens ED, Fry FEJ (1970) The rate of thermal exchange in a teleost, Tilapia mossambica. Can J Zool48(2):221-226
    Stevens ED, Fry FEJ (1974) Heat transfer and body temperatures in non-thermoregulatory teleosts.Can J Zool52(9):1137-1143
    Stevens ED, Sutterlin AM (1976) Heat transfer between fish and ambient water. J Exper Biol65:131-145
    Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res29:1715-1733
    Strange KT, Vokoun JC, Noltie DB (2002) Thermal tolerance and growth differences in orangethroatdarter (Etheostoma spectabile) from thermally contrasting adjoining streams. Am Midl Nat148(1):120-128
    Sumner FB, Doudoroff P (1938) Some experiments upon temperature acclimatization and respiratorymetabolism in fishes. Biol Bull74(3):403-429
    Takahashi Y, Itami T, Konegawa K (1986) Enzymatic properties of partially purified lysozyme from theskin mucus of carp. Nippon Suisan Gakk52:1209-1214
    Takemura A, Takano K (1995) Lysozyme in the ovary of tilapia (Oreochromis mossambicus): itspurification and some biological properties. Fish Physiol Biochem14(5):415-421
    Takle H, Baeverfjord G, Lunde M, Kolstad K, Andersen (2005) The effect of heat and cold exposureon HSP70expression and development of deformities during embryogenesis of Atlanticsalmon (Salmo salar). Aquaculture249(1):515-524
    Temmink JHM, Bouwmeister PJ, De Jong P, Van Den Berg JHJ (1983) An ultrastructural study ofchromate-induced hyperplasia in the gill of rainbow trout (Salmo gairdneri). Aquat Toxicol4(2):165-179
    Thomas H (2012) Sketch of the lateral line sensory organ. Wikipedia.http://en.wikipedia.org/wiki/File:LateralLine_Organ.jpg.
    Thyrel M, Berglund I, Larsson S, N slund I (1999) Upper thermal limits for feeding and growth ofArctic charr. J Fish Biol55(1):199-210
    Tissiéres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophilamelanogaster: Relation to chromosome puffs. J Mol Biol84(3):389-398
    Tomanek L (2010) The role of oxidative stress in setting thermal tolerance limits in Mytilus. CompBiochem Phys A157(1):S43-S43
    Tomanek L, Sanford E (2003) Heat-shock protein70(Hsp70) as a biochemical stress indicator: anexperimental field test in two congeneric intertidal gastropods (Genus: Tegula). Biol Bull205(3):276-284
    Tomanek L, Somero GN (2000) Time course and magnitude of synthesis of heat‐shock proteins incongeneric marine snails (genus Tegula) from different tidal heights. Physiol Biochem Zool73(2):249-256
    Tomanek L, Zuzow MJ (2010) The proteomic response of the mussel congeners Mytilusgalloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerancelimits and metabolic costs of thermal stress. J Exp Biol213(20):3559-3574
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol552(2):335-344
    Ulmasov KA, Shammakov S, Karaev K, Evgen'ev MB (1992) Heat shock proteins and thermoresistancein lizards. PNAS89(5):1666-1670
    Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmentalrisk assessment: a review. Environ Toxicol Phar13(2):57-149
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accuratenormalization of real-time quantitative RT-PCR data by geometric averaging of multipleinternal control genes. Genome Biol3(7):research0034
    Vargas-Parada L, Solis CF, Laclette JP (2001) Heat shock and stress response of Taenia solium and T.crassiceps (Cestoda). Parasitology122(05):583-588
    Verlecar XN, Jena KB, Chainy GBN (2007) Biochemical markers of oxidative stress in Perna viridisexposed to mercury and temperature. Chem-Biol Interact167(3):219-226
    Walter S, Buchner J (2002) Molecular chaperones-cellular machines for protein folding. Angew ChemInt Edit41(7):1098-1113
    Wang H (2005) Effects of thermal shock on the activities of four kinds of enzyme in Carasslus auratus.Northeast Normal University, Changchun, Jilin
    Wang X, Wang L, Zhang H, Ji Q, Song L, Qiu L, Zhou Z, Wang M, Wang L (2012) Immune response andenergy metabolism of Chlamys farreri under Vibrio anguillarum challenge and hightemperature exposure. Fish Shellfish Immun33(4):1016-1026
    Wang X, Wu D (1994) Study on the criteria of water temperature for major culture freshwater fishes. JFish China18(2):93-100
    Wang Y, Xu J, Sheng L, Zheng Y (2007) Field and laboratory investigations of the thermal influence ontissue-specific Hsp70levels in common carp (Cyprinus carpio). Comp Biochem Phys A148(4):821-827
    Wang Z, Pote J, Huang B (2003) Responses of cytokinins, antioxidant enzymes, and lipid peroxidationin shoots of creeping bentgrass to high root-zone temperatures. J Am Soc Hortic Sci128(5):648-655
    Watts M, Munday BL, Burke CM (2002) Investigation of humoral immune factors from selected groupsof southern bluefin tuna, Thunnus maccoyii (Castelnau): implications for aquaculture. J FishDis25(4):191-200
    Wedemeyer GA, Nelson NC, Yasutake WT (1979) Physiological and biochemical aspects of ozonetoxicity to rainbow trout (Salmo gairdneri). J Fish Board Can36(6):605-614
    Werner I, Viant M, Rosenblum E, Gantner A, Tjeerdema R, Johnson M (2006) Cellular responses totemperature stress in steelhead trout (Onchorynchus mykiss) parr with different rearinghistories. Fish Physiol Biochem32(3):261-273
    Wissing H, Braun HA, Schafer K (1988) Dynamic response characteristics of the ampullae of Lorenzinito thermal and electrical stimuli. Prog Brain Res74:99-107
    Wobeser G (1975) Acute toxicity of methyl mercury chloride and mercuric chloride for rainbow trout(Salmo gairdneri) fry and fingerlings. J Fish Board Can32(11):2005-2013
    Wong SS, Wu SW, Yeung DC (1988) Regulation of pyruvate kinase in Reuber H35hepatoma cells byinsulin and fructose. Int J Biochem20(2):167-174
    Wood EM (1960) Definitive diagnosis of fish mortalities. J Water Pollut Control Fed32(9):994-999
    Wood LA, Brown IR, Youson JH (1999) Tissue and developmental variations in the heat shock responseof sea lampreys (Petromyzon marinus): effects of an increase in acclimation temperature.Comp Biochem Physiol A123(1):35-42
    Xu D, You F, Wu Z, Li J, Ni J, Xiao Z, Zhang P, Xu Y (2009) Genetic characterization of asymmetricreciprocal hybridization between the flatfishes Paralichthys olivaceus and Paralichthysdentatus. Genetica137(2):151-158
    Yakovleva I, Bhagooli R, Takemura A, Hidaka M (2004) Differential susceptibility to oxidative stress oftwo scleractinian corals: antioxidant functioning of mycosporine-glycine. Comp BiochemPhysiol B139(4):721-730
    Yao C, Somero GN (2013) Thermal stress and cellular signaling processes in hemocytes of native(Mytilus californianus) and invasive (M. galloprovincialis) mussels: Cell cycle regulation andDNA repair. Comp Biochem Physiol A165(2):159-168
    Yenari MA, Giffard RG, Sapolsky RM, Steinberg GK (1999) The neuroprotective potential of heat shockprotein70(HSP70). Mol Med Today5(12):525-531
    Yu D, Xiao Z, Liu Q, Xu S, Ma D, Li J, Kenneth AW (2010) Ontogeny of gastrointestinal tract in hybridflounder Jasum, Paralichthys olivaceus×P. dentatus. J World Aquacult Soc41(3):344-357
    Zakeri ZF, Wolgemuth DJ (1987) Developmental-stage-specific expression of the hsp70gene familyduring differentiation of the mammalian male germ line. Mol Cell Biol7(5):1791-1796
    Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H (2012a) The oyster genomereveals stress adaptation and complexity of shell formation. Nature490(7418):49-54
    Zhang M, Hou W, Sha S (1998) Study on the temperature of thermal tolerance of the mullet larva (Lizahaematocheila). Chin J Ecol18(2):60-62
    Zhang Z, Jia G, Zuo J, Zhang Y, Lei J, Ren L, Feng D (2012b) Effects of constant and cyclic heat stress onmuscle metabolism and meat quality of broiler breast fillet and thigh meat. Poultry Sci91(11):2931-2937
    Zheng W-j, Sun L (2011) Evaluation of housekeeping genes as references for quantitative real timeRT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). FishShellfish Immun30(2):638-645
    程丽娜,徐冬冬,李三磊,耿智,楼宝,毛国民,詹炜(2011)高温胁迫对不同规格褐牙鲆生长性能的影响.上海海洋大学学报20(3):368-373
    房沙沙(2013)中国南海养殖区分离的两株弧菌对皱纹盘鲍致病性的研究.中国科学院研究生院(海洋研究所),
    冯昭信(2005)鱼类学.中国农业出版社,北京
    关健,柳学周,兰春燕,蔡文超,徐永江,马甡(2007)盐度对褐牙鲆()犬齿牙鲆()杂交子一代胚胎发育和仔鱼存活的影响.海洋水产研究28(3):31-37
    郭彪,王芳,侯纯强,董双林,孙皓(2008)温度突变对凡纳滨对虾己糖激酶和丙酮酸激酶活力以及热休克蛋白表达的影响.中国水产科学15(5):885-889
    何大仁,蔡厚才(1998)鱼类行为学.厦门大学出版社,厦门
    胡晓丽(2005)高温胁迫和鳗弧菌感染对栉孔扇贝基因表达影响的分析及相关基因的克隆与表达.青岛:中国海洋大学,
    姜礼燔(1984)热(核)电站与渔业资源.淡水渔业译丛5:1-5
    姜礼燔(2000)热冲击对鱼类影响的研究.中国水产科学7(2):77-81
    姜礼燔,曹萃禾(1985)热污染对鱼类呼吸及心搏率的影响.环境科学3:15-19
    金琼贝,盛连喜,张然(1989)电厂温排水对浮游动物的影响.环境科学学报9(2):208-217
    金琼贝,张然,王敬恒(1988)热排水对原生动物群落的影响.环境科学学报8(3):316-323
    李加琦(2011)皱纹盘鲍配套杂交体系的建立、评价及应用.中国科学院研究生院(海洋研究所),青岛
    李三磊,徐冬冬,楼宝,辛俭,耿智,程国宝(2012)褐牙鲆耐热相关分子标记筛选及遗传多样性分析.上海海洋大学学报21(4)
    廖一波,陈全震,曾江宁,高爱根,刘晶晶(2007)我国4种重要海水经济鱼类热忍受研究.海洋环境科学26(5):458-460
    刘旭东(2011)牙鲆HSP70与HSC70基因的克隆、表达及其SNPs与耐热性状的相关性分析.中国海洋大学,
    卢钟磊,池信才,王义权,沈月毛,郑忠辉,宋思扬(2007)褐牙鲆耐热性状相关的微卫星分子标记筛选.厦门大学学报:自然科学版46(3):396-402
    马爱军,黄智慧,王新安,郭黎,雷霁霖,杨志,曲江波(2012)大菱鲆(Scophthalmus maximus)耐高温品系选育.海洋与湖沼43(4)
    马爱军,许可,黄智慧,王新安(2011)大菱鲆与耐高温性状相关的微卫星标记筛选.海洋科学进展29(3):370-378
    阮洪超,吴光宗,黄瑞东(1995)牙鲆网箱养殖试验.海洋科学6:3-5
    隋娟(2011)褐牙鲆与夏鲆杂交及回交子代的早期发育及细胞遗传学研究.中国科学院研究生院(海洋研究所),
    田相利,王国栋,董双林,房景辉(2010)盐度和温度对半滑舌鳎生长,渗透生理及能量收支的影响.中国水产科学17(4):771-782
    田永胜,陈松林,刘本伟(2006)大西洋牙鲆冷冻精子褐牙鲆卵杂交胚胎的发育及胚后发育.水产学报30(4):433-443
    王波,张朝晖,左言明,朱明远,张杰东,荆世锡,毛兴华(2004)牙鲆属主要经济鱼类的生物学及养殖研究概况.海洋水产研究5:86-92
    王镜岩,朱圣庚,徐长法(2002)生物化学(面向21世纪课程教材,第三版).高等教育出版社,北京
    王青林(2012)温度驯化对刺参(Apostichopus japonicus)生长及耐热性的影响及生理生态学机制.中国海洋大学,
    王云彪(2008)热影响下鲤鱼Hsp70组织特异性表达和应激反应.东北师范大学,
    王云松,曹振东,付世建,王宇翔(2008)南方鲇幼鱼的热耐受特征.生态学杂志27(12):2136-2140
    徐冬冬,楼宝,詹炜,史会来,毛国民,骆季安,程丽娜(2010)高温胁迫对褐牙鲆生长及肝脏抗氧化酶活性的影响.水产学报123(031):420
    杨传燕(2012)扇贝耐热性状候选基因的多态性及其作用机制研究.中国科学院研究生院(海洋研究所),
    于道德,肖志忠,徐世宏,马道远,李军(2007)杂交鲆(牙鲆夏鲆)胚胎发育的初步观察.海洋科学31(2):55-60
    张锦辉(1995)动物的红外感受器.生物学通报30(10):10-11
    张蕾(2009)栉孔扇贝,海湾扇贝热休克蛋白22基因的克隆和表达及其与栉孔扇贝抗热性状相关SNP位点的筛查.中国海洋大学,
    张其中,邱马银,吴信忠(2005)热休克诱导近江牡蛎对高温的耐受性.生态科学24(1):35-37
    赵欢(2011)刺参Apostichopus japonicus (Selenka)对温度胁迫响应分子机理的基础研究.中国科学院研究生院(海洋研究所),

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700