用户名: 密码: 验证码:
GPS水汽反演及降雨预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洪水被认为是世界范围内最频繁和最具毁灭性的自然灾害之一。要提高洪水预报的精度,就必须借助于短期降雨预报和先进的科技手段,需要从各个角度去探索准确预报的新方法。GPS水汽反演和降雨预报研究是当前气象遥感应用的一个前沿探索领域,本论文依托于中意科技合作项目“洪水风险规划、监测和实时预报的集成系统”,主要成果体现在以下方面:
     (1) 提出了一个合理的GPS水汽监测网设计方案
     根据GPS卫星信号传播原理和水汽垂直分布规律以及流域天气的地方性特征,确定了不同高度截角下一个GPS站所能测定大气水汽含量的有效范围,得出了滨江流域只需要3~4个GPS接收机就足以反映流域水汽变化的结论。在实地考察的基础上,借鉴上海地区GPS综合应用网和意大利Umbria流域GPS网络的建设经验,提出了滨江流域水汽监测网的设计方案。
     (2) 模型订正与比较
     在GPS水汽反演过程中,一般干延迟和大气加权平均温度的计算是采用“普适性”模型,目前应用较多的有Saastamoinen(sA)模型、Hopfield(H)模型和Bevis模型。然而在实际大气中,大气温湿廓线千变万化,在我国GPS水汽反演中如采用这些普适模型不一定能获得最优效果。本研究利用实际探空资料建立了大气干延迟和大气加权平均温度的局地订正模型,并对实际水汽计算模型进行了比较,得到了满意的结果。
     (3) GPS水汽反演优化策略分析
     利用GPS观测数据,使用多种数据处理方案,进行GPS水汽反演优化策略分析,初步解决了进行GPS水汽反演中引入IGS站的最佳个数、单站解算和联合解算的关系、网络布局、截止高度角、天顶延迟参数、时段长度、节点位置等选择问题。
     (4) 建立了基于遗传算法的降雨预报神经网络模型
     利用滨江流域的雨量站和周围探空站的观测资料,首次将遗传算法(GA)应用于流域面降雨量预报研究。采用最优子集回归方法进行预报因子的确定,其次从样本选择、网络结构、转移函数、训练算法选取等方面入手寻找一个优化的BP网络,然后将BP算法和遗传算法结合起来,建立了流域面降雨量预报的神经网络模型。比较结果表明GA-BP网络模型无论在拟合精度还是在预报精度上都高于其它统计方法。因此可以说,GA-BP网络是一种精度较高的降雨预报模型。
     (5) 卫星云图参数化及在降雨预测中的应用
     红外卫星云图参数化估计值,与局地降雨过程的发生、发展具有较为密切的关系。相关较密切的参数有平均亮温、亮温方差、等效云量、亮温面积指数(1级、5级、6级)。在不同分析视场下,云图参数与降雨的相关系数和预测模型方程的系数没有明显的差异。对预测方程检验的结果表明:利用红外资料估算未来6h的降雨量其总体样本的平均正确率为80%以上,但是在分级样本上差别很大,这对小区域短时降雨预报具有很好的参考价值。分月模型在估算结果中的改进并不明显,这可能与样本不足有关。
Flood is regarded as one of the most frequent and the most severe nature disaster over the world wide and short -term rainfall prediction and advanced technology should be applied in order to improve forecast precision and new methods for prediction should be explored in every field. Research on Retrieval of GPS Water Vapor and Method of Rainfall Forecast are keen field which draws all attention from wide world.The dissertation is accomplished on the basis of Sino-Italy Collaborative Project-'The integral system of flood risk programming, monitoring and real time forecasting" and the primary achievements and conclusion reached include:
    (1) A reasonable design has been made for GPS water vapor monitoring network
    According to the theory of GPS satellite signal propagation and vertical distribution of water vapor and local synoptic characteristic of Binjiang basin, the effective area where water vapor can be detected by GPS station has been determined under different cut-off angles. The conclusion has been reached that 3~4 GPS receivers are enough for water vapor monitoring in Binjiang basin. After having carried out the field survey and studied the constructive experience of GPS integrated application network in Shanghai and the Umbria basin GPS network in Italy, the reasonable design has been made for GPS water vapor monitoring network in Binjiang basin.
    (2) Model correction and comparison
    In the process of conversion from zenith day delay to GPS water vapor and precision evaluation. Saastamoinen(SA) model and Hopfield(H) for dry delay and Bevis model for atmospheric weighted temperature are adopted. However, the profile of temperature and humidity is variable in real atmosphere so that the optimum result for GPS water vapor may not be achieved by those popular models in our country. The paper have built the local correction models for dry delay and atmospheric weighted temperature and have made a comparison between two models for calculating actual water vapor on the basis of actual upper-air detecting data. AH results show that the conclusion is satisfied.
    (3) The optimized strategy analysis on retrieval of GPS water vapor
    The optimized strategy analysis on retrieval of GPS water vapor has been carried out under different data processing schemes by using GPS observation. The parameters selection problem has been resolved in GPS water vapor retrieval process such as the optimum number of adopted IGS stations, the relation between single station processing and united station processing, network layout, cut-off angle, zenith delay parameter, period, knot position and so on.
    (4 ) Research on ANN model joined with GA for area rainfall forecast
    The method is taken to join the genetic algorithm(GA) and BP algorithm together and supplementing mutually by optimizing the initial weights of ANN with GA, and some application has been made in the Binjiang basin for precipitation forecast. The ANN model by GA has been established which forecast variables are selected by optimized subclass regression technique and the optimized ANN model for basin area precipitation has been obtained. The experiment result of ANN model joined with GA for area rainfall forecast shows that this method can enhance the forecast precision of 6-hours
    
    
    precipitation compared with other statistical methods, and its effectiveness and the reliability of the method has been proved.
    (5) Parameterization of infrared satellite cloud imagery and its application in rainfall predication Obvious correlation exist between the probability of rain and parameterization estimate such as average brightness temperature(tb), brightness temperature variance(f), equivalent cloudage (CN),brightness temperature area index(Al-the first A5-the fifth grade, A6-the sixth grade). The statistical result shows that the average precision of rainfall intensity is over 80% which varies largely with rainfall intensity grades using infrared cloud imagery parameters and the size of analysis field has slight effect on it.The monthly model make less improvement on p
引文
[1]Askne J, Nordius R.. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci., 1987, 99 (1): 979~386
    [2]Coster A.J., Buonsanto M., Gaposchkin E.M., TetenbaumD., Thornton L.E.. Ionospheric and tropospheric path delay obtained from GPS integrated phase. Adv. Space Res., 1990, 10(8): 105~108
    [3]Bevis M., Businger S., Herring T.A., Rochen C., et al. GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res, 1992, 97(15): 787~15, 801
    [4]Rocken C. R., Ware R. H., Van Hove T., et al. Sensing Atmospheric Water Vapor with the Global Positioning System. Geophysical Research Letters, 1993, 23 (20): 2631~2634
    [5]Rocken C., Van Hove, T., Johnson, et al. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology. J.Atmos. and Ocean. Tech., 1995, 12:468~478
    [6]Duan J., Bevis M., Bock P., et al. GPS meteorology: direct estimation of the absolute value of precipitable water. J.Appl. Meteorol, 1996, 35: 830~838
    [7]Tregoning P., Boers R., O'Brien D.. Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res., 1998, 103 (28), 701~710
    [8]Y.-H. Kuo, X. Zou, Y.-R. Guo. Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part Ⅰ: Mositure retrieval and sensitivity experiments. Mon. Wea. Rev., 1996, 148, 122~147
    [9]Parsons D., Machol J. etal. Preliminary Progress on Improving the Characterization of Water Vapor.National Center for Atmospheric Research, 1999, (5): 89~92
    [10] Y.-R Guo., Y.-H. Kuo, Dudhia J., et al. Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon.Wea. Rev., 2000, 128:619~643
    [11]Smith, T.L., Benjamin, S.G., Schwartz, B.E., Gutman, S.I.. Using GPS-IPW in a 4-D data assimilation system. Earth, Planets and Space , 2001 (51): 101~105
    [12]S.-Y. Ha, Y. -H. Kuo, Y.-R. Guo. Assimilation of ground-based GPS slant-path water vapor measurements and its impact on short-range prediction of pre-frontal squall line: An OSSE Study. Proceedings of Third US-Korea Joint Workshop on Storm Scale and Mesoscale Weather Analysis and Prediction. Boulder, CO, 2002, 2:20~22
    [13]Seko, H.. Variation of GPS retrieved precipitable water vapor(2). KISYOU, 1997, 42: 15463~15467
    [14]Pedro El' osegui, James L. Davis.. Sensing Atmospheric Structure: GPS water vapor tomography to Improve severe weather forecasts. 8th International Symposium on Remote
    
    Sensing. Proc. SPIE, 2001, 4539
    [15]Cucurull L., Sed_O O P., Behrend D.. Integrating NWP products into the analysis of GPS observables. Physics and Chemistry of the Earth, 2002 (27): 377~383
    [16]LEE T H, GEORGAKAOS K P. A two dimensional stochastic dynamical quantitative-precipitation forecasting model. J.Geophys.Res., 1990, 95 (3): 2113~2126
    [17]Gfrith P G, woodley W L, Grube R G, et al. Rain estimate from geosynchronous satellite imagery--in visible and infrared studies. Mon Wea Rev, 1 978, 106 (8) : 1153~1171
    [18]Stout J E, Martin D W, Sikdar D N. Estimating GATE rainfall with geosynchronous satellite images. Mon Wea Rev, 1979, 107(5): 585~598
    [19]Alvin, Xie. The globe precipitation climatology project: first algorithm intercomparison project. Bull. Amer. Meteo. Soc., 1994, 75, 401~419
    [20]Scofield R A. The NESDIS operational convective precipitation technique. Mon. Wea. Rev., 1987, 115: 1773~1792
    [21]Adler R F, Negri A J. A satellite infrared technique to estimate tropical convective and stratiform rainfall. Appl. Meteor, 1988, 27 (1) : 31~51
    [22]中村和信,土屋乔,由日本GMS的空间平均资料推定降水量.天气(日),1985,32(10):505~572
    [23]Robert J K, Barros A P. Experiments in short-term precipitation forecasting using artificial neural networks. Mon Wea Rev, 1998, 126:470~482
    [24]Thayer G.D.. An improved equation for the radio refractive index of air. Radio Science. 1974,9 (10): 803~807
    [25]Saastamoinen J. Contributions to the theory of atmospheric refraction. Bull. Geod., 1973, 107:13~34
    [26]Herring T.A. Modelling atmospheric delays in the analysis of space geodetic data. Symposium on Refraction of Transatmospheric Signals in Geodesy, 1992, 36:157~164
    [27]Braasch M.S. A signal model for GPS. Navigation. Journal of The Institute of Navigation- (U.S.), 1990, 37 (4): 363~377
    [28]Lewandowski W, Petit G., Thomas C.. GPS standardization for the needs of time transfer. Proceedings of the 6th European Frequency and Time Forum, 1992, 243~248
    [29]Gu M., Brunner F. K.. Theory of the two frequency dispersive range correction. Manuscr. Geod., 1990, 15, 357~361
    [30]BraaschM.S.. A signal model for GPS. Navigation, 1990, 37 (4): 363~377
    [31]Lewandowski W., Petit G., Thomas C.. GPS standardization for the needs of time transfer. Proceedings of the 6th European Frequency and Time Forum, 1992: 243~248.
    [32]Altshuler E.E, Kalaghan P.M.. Tropospheric range error corrections for the NAVSTAR system. AFCRL-TR-74-0198. Air Force Cambridge Research Laboratories, Bedford, Mass, 1974
    [33]Baby H.B, Golé P., Lavergnat J.. A model for the tropospheric excess path length of radio waves from surface meteorological measurements. Radio Science, 1988, 23 (6): 1023~1038
    
    
    [34]Hopfield H S. Tropospheric Effect on Electromagnetically Measured Range. Prediction from surface Weather Data. Radio Science, 1971, 6:357~367
    [35]Callahan P.S. Prediction of tropospheric wetcomponent range error from surface measurements. JPL Technicai Report 32-1526, 1973, ;ⅩⅧ: 41~46
    [36]Chao C.C. A new method to predict wet zenith range correction from surface measurements. JPL Technical Report, 1973, ⅩⅣ: 33~41
    [37]Berman A.L. The prediction of zenith range refraction from surface measurements of-meteorological parameters. JPL Technical Report, 1976:32~1602
    [38]Ifadis I. The atmospheric delay of radio waves: modeling the elevation dependence on a global-scale. Sweden Technical Report, 1986, 38L.
    [39]MENDES V. B., Richard. Optimization Of tropospheric delay mapping function performance for high-precision geodetic-precision. Geodetic Application Proceedings of DORIS Days, 1998: 27~29
    [40]Mendes V. B., Langley R. B.. Tropospheric zenith delay prediction accuracy for airborne GPS high-precision positioning, 2000
    [41]Black H.D, Eisner A.. Correcting satellite Doppler data for tropospheric effects. Journal of Geophysical Research, 1984, 89 (D2): 2616~2626.
    [42]Davis J.L, Herring T.A., Shapiro I.I., et al. Geodesy by radio interferometry: Effects of atmospheric modelling errors on estimates of baseline length. Radio Science, 1985, 20 (6): 1593~1607
    [43]Niell A.E.. Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research, 1996, 11( B2): 3227~3246
    [44]Lanyi. Tropospheric delay effects in radio intefferometry. TDA Progress Report, 1984 (42~78): 152~159
    [45]Yan H., Ping J.. The generator function method of the tropospheric refraction corrections. The Astronomical Journal, 1995, 110 (2): 934~939
    [46]Rocken C. S., Sokolovskiy J., Johnson M., Hunt D.. Improved mapping of tropospheric delays. J. Atmos. Oceanic Technol., 2001, 18:1205~1213
    [47]Foelsche U., Kirchengast G., et al. A new geometric mapping function for the GPS Frequencies. Phys. Chem. Earth (A), 2001, 26 (3): 153~157
    [48]Dodson A.H., Baker H.C.. The accuracy of GPS water vapor estimation. Proceedings of the National Technical Meeting "Navigation 2001", 1998
    [49]Department of Earth. Documentation for the GAMIT GPS analysis software. Atmospheric and Planetary Sciences Maschusetts Institute of Technology, 1997
    [50]Jan Doui'sa. The Impact of Ultra-Rapid Orbits on precipitable water vapor estimation using Ground GPS Network. Research Institute of Geodesy, Topography and Cartography, Geodetic Observatory
    [51]Businger S., Chiswell S.R., Bevis et al. The promise of GPS in atmospheric monitoring. Bull
    
    Am. Meteorol. Soc, 1996, 77:5~18
    [52]Bevis M., Businger S., Chiswell S., et al. GPS meteorology: Mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology, 1994, 33 (3): 379~386
    [53]Hecht, Nielsen R. Theory of the backpropagation neural networks. Proc. of the International Joint Conferrence on Neural Networks. 1989, 1. 593~661
    [54]Baik J J, Wang H S. Tropical cyclone intensity prediction using regress method and neural network. J Meteor Soc Japan, 1998, 76: 711~717.
    [55]Rosenblatt F. Principles of Neurodynamics. Spartan Books. 1962
    [56]Rumelhart D.E., Hinton, G.E.&Williams, R.J.. Learning representations by back-propagating errors. Nature, 1986, 323:533~536
    [57]Mougeot M, Azencott R, Angeniol B. Image compression with back-propagating: Improvement of the visual restoration using different cost functions. Neural Network, 1991, 4:467~476
    [58]Lee Z.P. Zhang M.R., Carder K.L., Hall L.O.. A Neural network approach to deriving optical properties and depths of shallow waters. POOXIV Proceedings, 1998
    [59]TANG Xiao-xiao, LI Jie-gu. Determination of the topology and weights of the feedforward ANN by genetic evolution. SPIE[C], 1997:3077
    [60]VAN ROOIJ A J F, JAIN L C, JOHNSON R P. Neural network training using genetic algorithms. Singapore: World Scientific, 1996
    [61]Allen D.M.. Mean square error of prediction as a criterion for selecting variables. Technometrics, 1971, 13:469~475
    [62]Hsu K, Cupta H Vand Sorroshians. Artificial neural net workmodling of the rainfall runoff process. Water Resources Research, 1995, 31 (10): 2517~2530
    [63]Howard Demuth, Mark Beale. Neural Network toolbox user's guide for use with MATLAB. The Mathworks Inc., 1998
    [64]Finbarr osullivan, Carlyle H Wash, Michael Stewart, et al. Rain estimation from infrared and visible geossatellitedata. J. Appl. Meteor., 1999, 29:209~223
    [65]Gilbert A V, Roderick A S, Menzel W P. The operational GOES infrared rainfall estimation technique. Bull. AMS, 1998:1883~1898
    [66]Gagin A., Rosenfeld D., Lopez R E. The relationship between height and precipitation characteristics of summertime convective cells in South Florida. J. Atmos. Sci., 1985, 42: 84~94
    [67]Kou-Lin Hsu, Xiaogang Gao, Sorooshian, Hoshin V. Gupta. Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology,1997, 36:1176~11960
    [68]Lu Naimeng. Satellite rainfall estimation. The 8th Conference on satellite Meteorology and Oceanography, 1997, 527~533
    [69]Martin D.W., Googman B., Schmit T. J.. Estimations of daily rainfall over the Amazon
    
    Basin. J. Geophys.Res., 1990, 95 (D10):17043~17050
    [70]Goodman B., Martin D. W., Menzel W.P.. A non-linear algorithm for estimating 3-hourly rain rates over Amazonia from GOES/VISSR observations. Remote Sens. Rev., 1994, 10: 169~177
    [71]Yuan Ximin, Li Hongyan. Raising flood foresting precision based on improving artificial neural networks algorithm. ⅩⅩⅨ IAHR Congress Proceedings (C), 2001
    [72]Schwefel H P. Evolution and Optimum Seeking. New York: John Wiley&Sons, 1995
    [73]Frankel D S, Draper J S et al. Artificial intelligend needs workshop 4~5 November 1993. Bulletin of the American Meterological Society, 1995, 76 (5): 738~782
    [74]Eberhart B C, Dobbins R W. Neural network pctools. Academic Press, 1990
    [75]Holland J H. Adaptation in natural and artificial systems. MI: University of Michigan Press. 1975 Askne J, Nordius H. Radio Sci., 1987, 22:379
    [76]Ninomiya. K. Objective analysis of heavy rainfall based on radar and gauge measurement. Journal of Meteorological Society of Japan, 1987, 56 (3).
    [77]王小亚,朱文耀,严豪健.地面GPS探测大气的最新进展.地球科学进展,1997,12(6):519~527
    [78]刘焱雄,H B Iz,陈永奇.地基GPS技术遥感香港地区大气水汽含量.武汉测绘科技大学学报,1999,24(3):245~248
    [79]何平,徐宝祥,周秀骥,王红艳.地基GPS反演大气水汽总量的初步试验.应用气象学报,2002,13(2):179~183
    [80]杨红梅,徐宝样,周秀骏.GPS资料在天气分析中的应用.气象科技,2000(4):32~34
    [81]李延兴,徐宝详,胡新康等.用地基GPS观测站遥测大气含水量和可降雨量的理论基础与试验结果.中国科学,2000,30(增刊):107~110
    [82]程晓,徐冠华,周春霞等.应用GPS资料反演南极大气可降水量的试验分析.极地研究,2002,14:136~144
    [83]陈世范.GPS气象观测应用的研究进展与展望.气象学报,1999,57(2):242~252
    [84]党亚民,王权.利用GPS资料反演大气水汽含量的研究.测绘科技动态,1999,000(003):2~5
    [85]李成才,毛节泰.GPS地基遥感大气水汽总量分析.气象学报,1998,9(4):470~477
    [86]薛伟民,张基嘉等,中国的气象事业,中国社会科学出版社,1984
    [87]郭学良,黄美元.层状云的雨滴诺分档数值模拟研究.大气科学,1999,23(4):411~421.
    [88]陈静,陈德辉,颜宏.集合数值预报发展与研究进展.应用气象学报,2002,13(4):497~507
    [89]王越,肖稳安.红外云图的参数化及其与局地降雨的关系探讨.气象科学,1999,19(4):366~374
    [90]师春香,卢乃锰.卫星面降水估计人工神经网络方法.气候与环境研究,2001,6(4):467~472
    
    
    [91]刘文,赵玉金.GMS卫星遥感资料监测暴雨技术.气象,2003,29(3):49~53
    [92]卢乃锰 吴蓉璋 强对流降水云团云图特征分析.应用气象学报,1997,8:269~275
    [93]陈俊勇 走向新世纪的GPS 中国航天,2000,1:3~7
    [94]李延兴.GPS测量大气折射改正.地壳形变与地震,1998(1):21~30
    [95]曹云昌.利用地基GPS资料反演大气参数及其四维变分同化试验研究:[博士学位论文].北京:中国气象科学研究院,2001
    [96]程晓,张艳梅.在PC机上运行GAMIT/GLOBK软件包.测绘通报,2003,1:4~6
    [97]陈洪滨,吕达仁.GPS测量中的大气路径延迟订正.测绘学报,1996,2:127~132
    [98]刘基余,李征行,王跃虎.全球定位系统原理及其应用.北京:测绘出版社,1993
    [99]顾国华等译.人造卫星精密定位系统.北京:地地球出版社,1989
    [100]丁继新,成英燕,王权,党亚民.利用GPS技术遥感大气对流层水汽含量的研究.测绘科学,2002,27(2):16~19
    [101]陈俊勇.地基GPS遥感大气水汽含量的误差分析.测绘学报.1998,27(2):113~118
    [102]艾伦.物理量与天体物理量.上海:上海人民出版社,1976
    [103]梁伟锋.华北GPS网GAMIT计算结果与IGS站选取的关系探讨.测绘工程,2002,11(4):55~58
    [104]王成刚,吴宝俊.BP网络在鲁西南地区西南涡降水量级预报中的应用试验.BP网络在鲁西南地区西南涡降水量级预报中的应用试验.气象科学,1999,19(2):158~165
    [105]陈云浩,史培军.不同热力背景对城市降雨(暴雨)的影响(Ⅲ):基于人工神经网络的集成预报模型.自然灾害学报,2001,10(3):26~31
    [106]金龙,陈宁.基于人工神经网络的集成预报方法研究和比较.气象学报,1999,57(2):198~207
    [107]楼顺天,施阳.基于MATLAB的系统分析与设计—神经网络.西安:西安电子科技大学出版社,1998:9~14
    [108]金龙,罗莹,王业宏,李永华.月降水量的神经网络混合预报模型研究.高原气象,2003,22(6):618~623
    [109]胡江林,涂松柏,冯光柳.基于人工神经网络的暴雨预报方法探讨.热带气象学报.2003,19(4):422~428
    [110]王繁强,徐文金,陈杰伦.BP算法在青海省降水雨区分区分级预报中的应用.高原气象.1997,16:105~112.
    [111]刘还珠,汤桂生.暴雨落区预报实用方法.北京:气象出版社,2000,30~37
    [112]胡江林.神经网络模型用于湖北省月降水量预报的探讨.暴雨灾害,1999(1):36~40
    [113]王巧霞,王洪俊.人工神经元网络中期分级降水预报系统.山西师大学报:自然科学版,1999,13(1):64~68
    [114]王向东,葛文忠.基于神经网络方法的华东地区强对流天气短时预报.模式识别与人工智能,1998,11(3):323~327
    [115]洪露,马长山,谢宗安.基于遗传算法的神经网络权值优化.贵州工业大学学报:自然科学版,2003,32(6):48~51
    
    
    [116]刘国东,丁晶.神经网络用于水文预测的几个问题探讨.水利学报,1999,1:65~70
    [117]张敏,赵金城.全局优化神经网络拓扑结构及权值的遗传算法.大连大学学报,1999,20(6):9~13
    [118]舒云星.基于遗传算法的BP网络优化研究.山东建材学院学报,2000,14(1):22~24
    [119]李敏强,徐博艺.遗传算法与神经网络的结合.系统工程理论与实践,1999,19(2):16~20
    [120]翟宜峰,李鸿雁.用遗传算法优化神经网络初始权重的方法.吉林大学学报:工学版,2003,33(2):45~50
    [121]李哲,张军涛.基于遗传算法与人工神经网络相结合的玉米估产研究.自然资源学报,2000,15(3):270~274
    [122]苑希民,李鸿雁.人工神经网络与遗传算法在洪水预报中的应用.北京:中国水利水电出版社,2002
    [123]李鸿雁.人工神经网络与遗传算法在洪水预报中的应用.长春:吉林大学交通学院,2002,111
    [124]李鸿雁.提高人工神经网络洪水峰值预报精度的研究.自然灾害学报,2002,11(1):57~61
    [125]盂遂珍,彭治斑.流域平均降水量的一种算法.新代气象跟务体系研究文集(二),1999:112~118
    [126]董官臣,冶林茂.面雨量在天气预报中的应用.气象,2000,26(1):9~13
    [127]兰红平,张儒林.用红外云图估测小区域雨强及其在短时预报中的应用.热带气象学报,2000,016(004):366~373
    [128]齐卫忠,郑雄波.气象卫星云图降水预报系统的应用.华中电力,2003,14(3):57~59&75
    [129]陈闯买,郭英琼.气象常用参数和物理量.北京:气象出版社,1983
    [130]张诚忠.不同因子处理方法对广西MOS方程降水预报准确率影响的试验.广西气象,2001,22(3):24~25,28
    [131]孙永刚,刘增良.天气动力学组合因子在MOS降水预报中的应用.气象,1998,24(2):27~30
    [132]Carr.,MB,周一鹤.线性预报方程中最优预报因子数的确定.山西气象,1989,2:34~42
    [133]Carr.,MB,周一鹤.线性预报方程中最优预报因子数的确定(续).山西气象,1989,3,52~59
    [134]施能,曹鸿兴.基于所有可能回归的最优气候预测模型.南京气象学院学报,1992,15(4):459~466
    [135]黄嘉佑编著.气象统计分析与预报方法.北京:气象出版社,2000
    [136]俞善贤,汪锋.试用最优子集与岭迹分析相结合的方法确定回归方程.大气科学,1998,12:382~388
    [137]陈希孺,王松佳.近代实用回归分析.南宁:广西人民出版杜,1984
    
    
    [138]陈希孺,王松佳.近代回归分析.合肥:安徽教育出版杜,1987
    [139]毛宗秀.数学的实践与认识.1987,4:20~25
    [140]魏凤英,曹鸿兴.长期预测的数学模型及其应用.北京:气象出版社,1990,9~90
    [141]李才媛,王仁乔.长江上游流域短期强降水面雨量预报系统气象.2003,29(3):34~37
    [142]张利平,夏军.短期定量降水预报研究进展.武汉水利电力大学学报,2000,33(1):63~67
    [143]杨志强.GPS监测青藏板块运动数据的CAMIT/GLOBK处理方法及有关问题.西安工程学院学报,1999,21(3):49~52
    [144]Arman Danesh.Linux从入门到精通.北京:电子工业出版社,1993
    [145]张守信.GPS卫星测量定位理论与应用.合肥:国防科技大学出版社,1996
    [146]焦李成.神经网络的应用与实现.西安:西安电子科技大学出版社,1993:87~125
    [147]柳松青.MATLAB神经网络BP网络研究与应用.计算机工程与设计.2003,24(11):81~83
    [148]苏金明,黄国明,刘波.MATLAB与外部程序接口.北京:电子工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700