用户名: 密码: 验证码:
Cf/Al复合材料表面稀土膜的表征及耐蚀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强铝基(Cf/Al)复合材料在航天、空间领域有广阔的应用背景,这一材料应用的关键技术之一是耐蚀性能问题。本文在Cf/6061Al复合材料多相表面制备了两种稀土耐蚀膜层,即稀土转化膜和Ni-P/稀土多层膜,系统研究了两种膜层微观组织和耐蚀性能,探索两种稀土膜层的沉积机制和耐蚀特性。
     Cf/Al复合材料表面形成的稀土Ce转化膜层是由岛状、凸凹不平的纳米级别球形颗粒层层堆积而成,膜层厚度约3μm,球形颗粒大小在4nm~8nm之间,颗粒团聚明显。TEM测得的晶体结构特征表明,稀土膜层由多种Ce的化合物混合而成, Ce转化膜层主要成分是Ce的氧化物和氢氧化物,化合价态为Ce3+和Ce4+,膜层中还含有少量铝的化合物,表明Ce转化膜成膜过程中伴随着铝基体的溶解。Cf/Al复合材料多相表面的稀土转化膜层沉积机理为:在铝合金基体上成膜符合“微阴极成膜机理”;增强体碳纤维表面稀土化合物沉积以化学吸附和物理吸附为主要形式,而且碳纤维表面的“悬挂键”同稀土元素特有的“剩余化学键”的相互作用也会促进稀土膜层在增强体表面的沉积。稀土化合物在石墨材料表面沉积优先发生在其表面缺陷处,并且这一特性可以修复石墨表面的划伤,对石墨材料表面具有“可修复”作用。
     Cf/Al复合材料表面可以镀覆一层均匀的Ni-P合金预镀层,在铝合金表面获得催化活性点,实现了Cf/Al复合材料多相表面化学镀Ni-P合金镀层;增强体碳纤维表面的化学吸附和物理吸附是产生化学镀镍催化活性点的主要原因。Cf/Al复合材料表面预镀的化学镀镍层高的耐蚀性,一方面是镀层含有非晶体成分,腐蚀敏感的晶界少;另一方面,Ni-P镀层减缓了腐蚀介质对Cf/Al复合材料的之间接触,两者协同作用使Cf/Al复合材料耐蚀性大大提高。
     化学镀镍和稀土膜层的复合提高了耐蚀膜层的致密性,Ni-P/稀土多层膜微裂纹很少,膜层均匀;电位-pH图结合XPS测试分析发现,Ni-P/稀土多层膜外层稀土化合物的化合价态以Ce4+为主要形式,Ni-P/稀土多层膜的非晶体特征更加明显,加之稀土化合物在化学镀镍膜层微孔处沉积,形成“封孔效应”,进一步提高了Cf/Al复合材料的耐蚀性。
     全浸泡腐蚀试验可知,Ni-P/稀土多层膜变化较少,腐蚀程度最轻微;稀土膜层浸泡后膜层颜色变浅,膜层有脱落迹象;化学镀镍膜层腐蚀产物粘附较多;无膜层试样碳纤维的裸露严重。极化曲线对比表明,Ni-P/稀土多层膜处理后的试样腐蚀电势Ecorr相对于无膜层试样增大400mV以上,同时Ni-P/稀土多层膜试样的腐蚀电流密度比无膜层试样的腐蚀电流密度减小了1.32μA·cm-2。稀土膜层的极化曲线阴极分支和阳极分支同无膜层极化曲线相比,都向左移,其阳极反应和阴极反应均被抑制。交流阻抗谱解析结果表明,几种膜层的耐蚀性依次为Ni-P/稀土多层膜>化学镀镍膜层>稀土膜层>无膜层试样,Ni-P/稀土多层膜阻抗值最高,极化电阻为23051Ω,比无膜层试样增高8倍多。
     化学镀镍及稀土膜层耐蚀性提高的原因来自膜层晶体结构含有非晶体成分或纳米微晶结构,对腐蚀反应不敏感,膜层阻挡了腐蚀的电化学反应路径。Ni-P/稀土多层膜耐蚀性提高除了化学镀镍膜层的因素外,稀土化合物在化学镀镍膜层微孔处沉积,形成“封孔效应”,并且其表面沉积稀土为Ce4+化合物,抗氧化性更强,从而使Cf/Al复合材料Ni-P/稀土多层膜的耐蚀性高于化学镀镍及单一稀土膜层。
In recent years, carbon fibers reinforced aluminum matrix (Cf/Al) composites are applied in some fields such as aerial material and space technology. It is important to improve corrosion resistance for this composite. For the purpose of improving corrosion resistance of Cf/Al composites, two coatings were prepared by rare earth conversion coating and Ce-rich complex films. The fabrication processes, microstructure and corrosion properties of two coatings were examined, their influencing factors were discussed, the deposition and corrosion resistance mechanics were studied in this paper.
     It was found that the Ce conversion coating covered the whole surface of Cf/Al composites as oxidized islands, but some micro-cracks for the coating. The Ce conversion coating was island-like, and it was piled up by spherical Ce-riched particles. The size of Ce-riched particles was about 4nm~8nm, the multiple Ce-rich compounds were mixing in Ce-rich particles, and particles clustering. The thickness of Ce conversion coating is about 3μm, Ce oxides and Ce hydroxides are main composition of Ce conversion coating, which containing Ce3+ and Ce4+ compounds. The little Al compounds in this coating, it is indicated that Al dissolved during processes of formation films.
     Uniform Ni-P coating on the surface of Cf/Al composites can be realized by electroless deposition, the catalytic active points for chemical deposition on the Al matrix promoted Ni-P deposition; chemical and physical absorption on the surface of carbon fibers were main reasons for catalytic active points in order to deposit Ni-P alloys. Improvement of corrosion resistance for Ni-P coatings on multi-phases surfaces of Cf/Al composites came from amorphous composition which has insensitive to corrosion reaction in Ni-P coatings, because there were less grain boundary in amorphous films. Moreover, Ni-P coatings can avoid direct touching between corrosion medium and surface of Cf/Al composites. Synergistic effect of them can improve corrosion resistance on Cf/Al composites.
     Mechanism of rare earth conversion coating on multi-phases surface of Cf/Al composites is stated that“Mechanism of micro-cathodic deposition”was main factor on the Al matrix, on the other hand, chemical adsorption or physical adsorption was main formed Ce-rich coatings on surface of carbon fibers, therefore, the interactivity“Dangling bonds”on the surface of carbon fibers and“Surplus chemical bonds”belonged to rare earth elements had effect of depositing Ce-rich coating. The behavior of Ce compounds deposition occurred near defects of carbon surface and this characteristic could heal the scratch on carbon surface; this phenomenon can be named“self-healing”on the carbon surface.
     The Ce-rich complex films are high condensing coatings which could obtain by Ni-P coatings with rare earth compounds sealing. There are few cracks in Ce-rich complex films and conforming layers. Image of potential-pH combined with XPS analysis can be indicated that the Ce4+ species were main components of Ce compounds in Ce-rich complex films. Microstructure characteristic of complex films is obvious a nano-crystal structure, additionally, the Ce compounds deposit on the sites of micro-porous on the Ni-P coatings,“sealing-effects”is main causes for improving corrosion resistance of Cf/Al composites.
     The contrasts of microstructure characterization after immersion testing at the same conditions showed that the corrosion degree of complex films were slightly, the microstructure of coatings changed a little; the Ce conversion coatings had slight loss of color, some evidence supported the existence of coatings exfoliation; the more erosion products adhesive on the electroless plating Ni-P coatings; the carbon fibers had obvious bareness on uncoating samples. The corrosion potential (Ecorr) of complex films has improved more than 400mV as contrast on uncoating samples, the corrosion current density (icorr) of complex films have decreased 1.32μA·cm-2 than uncoating samples. The anodic and cathodic branches of polarization curves of Ce conversion coating were both decreased obviously, the corrosion reaction from anode and cathode were restrained at the same time.
     The results of electrochemistry impedance spectra (EIS) indicated that the corrosion resistance of different coatings listed as follows: Complex films > Ni-P coatings > Ce conversion coatings > uncoatings. From EIS simply analysis, the impedance values of polarization resistance for complex films was 23051Ω, which improved 8 times than uncoating samples.
     The main reasons for inhibition corrosion came from contents of amorphous structure in Ni-P coatings and rare earth conversion coatings, which structure is insensitive to corrosion reaction; in addition, the coatings inhibit electrochemical reaction. Ce-rich complex films have the best corrosion resistance because it has formed“sealing effects”. Moreover, Ce4+ species deposit surface of Ni-P coatings, there are better oxidation resistance of Ce4+ species than single Ce-rich coating and Ni-P coating.
引文
1 A. Elhinho, P. D. Sequeira, R. Martins, et al. Evaluation of Al/SiC Wetting Characteristics in functionally graded metal-matrix composites by synchrotron radiation microtomography. Materials Science Forum. 2003, 423-425: 263~268.
    2 J. Rams, A. Ure?a, M. D. Escalera et al. Electroless nickel coated short carbon fibres in aluminium matrix composites. Composites: Part A, 2007, 38: 566~575.
    3 Elisabetta Gariboldi, Antonietta Lo Conte. Damage mechanisms at room and high temperature in notched specimens of Al6061/Al2O3 particulate composites. Composites Science and Technology, 2008, 68(1): 260~267.
    4 W. X. Zhang, L. X. Li, T. J. Wang. Interphase effect on the strengthening behavior of particle-reinforced metal matrix composites. Computational Materials Science, 2007, 41(2): 145~155.
    5 T. A. Khalifa, H. M. Zakaria, E. H. Mansour. Mechanical properties and deformation behavior of aluminum metal matrix composites. Journal of Engineering and Applied Science, 2005, 52(4): 815~828.
    6 K. Mahadevan, K. Raghukandan, B.C. Pai, U.T.S. Pillai. Influence of precipitation hardening parameters on the fatigue strength of AA 6061-SiCp composite. Journal of Materials Processing Technology, 2008, 198(1-3): 241~247.
    7 J. Rams, A. Pardo, A. Ure?a, R. Arrabal, F. Viejo, A.J. López. Surface treatment of aluminum matrix composites using a high power diode laser. Surface and Coatings Technology, 2007, 202(4-7): 1199~1203.
    8 F. Mansfeld, S. L. Jeanjaquet. The evaluation of corrosion protection measures for metal matrix composites. Corrosion Science. 1986, 26(9): 727~734.
    9 H. J. Greene, F. Mansfeld. Corrosion protection of aluminum-matrix composites. Corrosion, 1997, 53(12): 920~927.
    10 Y. Zhou, Z.Q. Li. Structural characterization of a mechanical alloyed Al-C mixture. Journal of Alloys and Compounds, 2006, 414(1-2): 107~112.
    11 I. Gurrappa, Prasad V. V. Bhanu. Corrosion characteristics of aluminum based metal matrix composites. Materials Science and Technology, 2006, 22(1): 115~122.
    12胡文彬,刘磊,仵亚婷.难镀基材的化学镀镍技术.化学工业版社出版. 2003, 8.
    13刘永健,王印培.次亚磷酸钠体系化学镀镍沉积机理探讨.华东理工大学学报,2001, 27(6): 301~306, 315.
    14李丽波,安茂忠,武高辉. SiCp/Al复合材料的化学镀镍.功能材料,2005, 36(7): 1093~1096.
    15 L. Libo, M. Z. An, G. H. Wu. A new electroless nickel deposition technique to metallice SiCp/Al composites. Surface and Coatings Technology, 2006, 200(16-17): 5102~5112.
    16 A. Pardo, M. C. Merino, R.Arrabal, et al. Improvement of corrosion behavior of A3xx.x/SiCp composites in 3.5wt% NaCl solution by Ce surface coatings. Electrochemical Society. 2006, 153(2): B52~B60.
    17 B. R. W. Hinton, D. R. Arnott, N. E. Ryan. The inhibition of aluminum corrosion by cerium coatings. Metals Forum, 1984, 7(4): 211~217.
    18 D. R. Arnott. Cationic-film-forming inhibitors for protection of the Al7075 aluminum alloy in chloride solution. Materials Performance. 1987, 26(8): 42~47.
    19 B. R. W. Hinton. Cerium conversion coatings for the corrosion protection of aluminum. Materials Forum. 1986, 9(3): 162~173.
    20 F. Mansfeld. Approaches towards the development of a“Stainless Aluminum”. Materials Science Forum. 1992, 111-112: 191~200.
    21于兴文,曹楚南,林海潮等.铝合金表面转化膜研究进展[J ].中国腐蚀与防护学报, 2000, 20 (5) : 298-307.
    22 Berny F. Rivera, Benedict Y. Johnson, Matthew J. O'Keefe. Deposition and characterization of cerium oxide conversion coatings on aluminum alloy 7075-T6. Surface and Coatings Technology, 2004, 176(3): 349~356.
    23 F. Mansfeld. The Ce-Mo process for the development of a stainless aluminum. Electrochimica Acta, 1992, 37 (12): 2277~2282.
    24 L. P. Tian, X. H. Zhao, J. M. Zhao. Electrochemical behaviors of anodic alumina sealed by Ce-Mo in NaCl solutions. Transactions of NonferrousMetals Society of China, 2006, 16(5): 1178~1183.
    25文建国,周家茵,周世光.恒电量微扰法研究在含Cl-介质Ce3+对航空铝材的缓蚀作用.国防科技大学学报. 1997, 19(6): 118~122.
    26 B. S. Gu, J. H. Liu. Corrosion inhibition mechanism of rare earth metal on LC4 Al alloy with spilt cell technique. Rare Earths, 2006, (24): 89~96.
    27顾宝珊,刘建华,纪晓春.铈盐对铝合金的缓蚀机理研究.中国腐蚀与防护学报.2006, 26(1): 53~58.
    28顾宝珊,刘建华.铝合金在铈盐溶液中成膜过程的电化学阻抗谱研究.中国稀土学报,2007,25(2): 210~216.
    29 B. P. F. Goldie, J. J. Mc Carroll. Inhibiting metal corrosion in aqueous systems. Australian Patent, AU-32947/84, 1984.
    30 B. R. W. Hinton, P. N. Trathen, L. Wilson, et al. The inhibition of mild steel corrosion in tap water by cerous chloride. Proc 28th Aust ralian Corrosion Association Conf, Perth, Australia, November, 1988.
    31 H. S. Isaacs, A. J. Davenport, A. Shipley. The electrochemical response of steel to the presence of dissolved cerium. Electrochemical Society, 1991, 138 (2): 390~393.
    32方景礼,王济奎,刘琴.碳钢表面稀土转化膜的XPS和AES研究.中国稀土学报, 1994, 12 (1): 38~41.
    33 Y. C. Lu, B. IvesM. The improvement of the localized corrosion resistance of stainless steel by cerium. Corrosion Science, 1993, 34 (11): 1773~1785.
    34 Y. C. Lu, M. B. Ives. Chemical treatment with cerium to improve the crevice corrosion resistance of austenitic stainless steels. Corrosion Science, 1995, 37(1): 145~155.
    35 B. R. W. Hinton, L. Wilson. The corrosion inhibition of zinc with cerous chloride. Corrosion Science, 1989, 29 (8): 967~ 985.
    36 S. Virtanen, M. B. Ives, G. I. Sproule, P. Schmuki, M. J. Graham. A surface analytical and electrochemical study on the role of cerium in the chemical surface treatment of stainless steels. Corrosion Science, 1997, 39(10-11): 1897~1913.
    37 Y. K. Song, F. Mansfeld. Corrosion protection of electrogalvanized steel by a cerium-based conversion coating. Corrosion, 2006, 62(12): 1067~1073.
    38 A. L. Rudd, C. B. Breslin, F. Mansfeld. The corrosion protection afforded - 129 -by rare earth conversion coatings applied to magnesium. Corrosion Science, 2000, 42: 275~288.
    39 R. N. Singh. Effects of Ta, La and Nd additions on the corrosion behavior of aluminum bronze in mineral acids. Applied Electrochemistry, 1992, 22 (12):1175~1179.
    40 A. Pardo, M. C. Merino, R. Arrabal, S. Merino, F. Viejo, M. Carboneras. Effect of Ce surface treatments on corrosion resistance of A3xx.x/SiCp composites in salt fog. Surface and Coatings Technology, 2006, 200(9): 2938~2947.
    41 X. W. Yu, C. W. Yan, C. N. Cao. Study on the rare earth sealing procedure of the porous film of anodized Al6061/SiCp. Materials Chemistry and Physics, 2002, 76 (3): 228~235.
    42 J. Hu, X. H. Zhao, S. W. Tang. Corrosion protection of aluminum borate whisker reinforced AA6061 composite by cerium oxide-based conversion coating. Surface and Coatings Technology, 2006, 201(6): 3814~3818.
    43 C. Y. Wang, Q. Zhang,J. Zhou,G. H. Wu. Study on anticorrosive Ce conversion coating of Cf/6061Al composite surface. Rare Earths, 2006, specials, 24: 64~67.
    44 R. B. Bhagat, M. F. Amateau, J. R. Conway, et al. The corrosion protection of Cf/Al in 3.5% sodium chloride. Composite Materials, 1989, 23: 961~ 971.
    45 S. J. Chu, H. W. wang, R. J. Wu. Investigation on the properties of carbon fibre with C-Si functionally graded coating. Surfaces and Coatings Technology. 1996, (88): 38~43.
    46 B. Wielage, A. Dorner. Corrosion studies on aluminum reinforced with uncoated and coated carbon fibers. Composites Science and Technology. 1999, 59: 1239~1245.
    47 J. F. Silvaina, A. Proultb, M. Lahayea, J. Douinc. Microstructure and chemical analysis of C/Cu/Al interfacial zones. Composites: Part A, 2003, (34): 1143~1149.
    48 N. Sobczak, J. Sobczak, S. Seal, J. Morgiel. TEM examination of the effect of the Al/C interface structure. Materials Chemistry and Physics. 2003, (81): 319~322.
    49于志强,武高辉,孙东立.铝基复合材料增强体涂层与界面.材料工程. 2001,(10):13~17.
    50武高辉,于志强,孙东立,姜龙涛.亚微米Al2O3颗粒表面改性及其对6061Al复合材料时效行为的影响.金属学报,2003,39 (8): 870~874.
    51于志强,陈剑锋,武高辉,孙东立.铝基复合材料增强体碳、碳化硅和氧化铝表面涂层研究进展.航空材料学报. 2002, 2(22): 54~61.
    52 Mehmet Gavgali, Burak Dikici, Cagri Tekmen. The effect of SiCp reinforcement on the corrosion behaviour of Al based metal matrix composites. Corrosion Reviews, 2006, 24(1~2): 27~37.
    53 D. M. Aylor, P. J. Moran. Pitting corrosion behavior of 6061 aluminum alloy foils in sea water. Electrochemical Society, 1986, 133(5): 949~951.
    54 M. Shahid. Mechanism of film growth during anodizing of Al8090/SiC metal matrix composites in sulphuric acid electrolyte. Journal of Materials Science, 1997, 32: 3775~3781.
    55 R. L. Twite, G. P. Bierwagen. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Progress in Organic Coatings. 1998, 33: 91~100.
    56 F. Mansfeld, S. Lin, S. Kim, et al. Corrosion protection of Al alloys and Al based metal matrix composites by chemical passivation. Corrosion , 1989 , 45 (8) :615~629.
    57 C. Chen, F. Mansfeld. Corrosion protection of an Al6092/ SiCp metal matrix composites. Corrosion Science, 1997, 39: 1075~1082.
    58于兴文,周育红,周德瑞等.铝金属基复合材料Al6061/SiCP表面稀土转化膜的研究.复合材料学报,2000, 17(2): 30~33.
    59 F. Mansfeld. Surface modifications of Al/15%SiC metal matrix composites in molten salts containing CeCl3. Surface Coating Technology, 1996, 86-87: 449~453.
    60于兴文,严川伟,张鉴清,曹楚南.稀土盐封孔Al 6061/SiCp复合材料阳极氧化膜性能研究.中国表面工程,2000, 4: 29~32.
    61 William G. Fahrenholtz, Matthew J. O'Keefe, Haifeng Zhou, J. T. Grant. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Surface and Coatings Technology, 2002, 155(2-3): 208~213.
    62 Luis E.M. Palomino, Idalina V. Aoki, Hercílio G. de Melo. Microstructural and electrochemical characterization of Ce conversion layers formed on Al alloy 2024-T3 covered with Cu-rich smut. Electrochimica Acta, 2006, 51(26): 5943~5953.
    63 X. W. Yu, C. W. Yan, C. N. Cao. Study on the rare earth sealing procedure of the porous film of anodized Al6061/SiCp. Materials Chemistry and Physics, 2002, 76: 228~235.
    64曾竟成,罗青唐,羽章等.复合材料理化性能,国防科技大学出版社. 1998, 9.
    65 Y. X. Wu, H.C. Man. Laser surface treatment of aluminium 6013/SiCp composite for corrosion resistance enhancement. Surface and Coatings Technology, 1999(114): 13–18.
    66 Annett Dornera, Bernhard Wielagea, Christian Schuèrer. Improvement of the corrosion resistance of C/Al-composites by diamond-like carbon coatings. Thin Solid Films. 1999, 355-356: 214~218.
    67 L. C. Dash. The Mechanism of Corrosion and Corrosion Control of Aluminum/Graphite Metal Matrix Composites. P. H. D. diss, Ohio State University, 1988.
    68 J. X. Wu, W. Liu, P. X. Li, R. J. Wu. Effect of matrix alloying elements on the corrosion resistance of C/Al composite materials. Journal of Materials Science Letters, 1993, 12: 1500~1501.
    69 D. M. Aylor, P. J. Moran. Effects of reinforcement on the pitting behavior of aluminum-based metal matrix composites. Electrochemical Society. 1985, 132(6): 1277~1280.
    70 Yoshiaki Shimizu, Toshiysu Nishimura, Iwao Matsushima. Corrosion resistance of Al-based metal matrix composites. Materials Science and Engineering, 1995, A198: 113~118.
    71 L. H. Hihara, R. M. Latanision. Galvanic corrosion of aluminum-matrix composites. Corrosion. 1992, 7(48): 546~552.
    72 R. L. Twite, G. P. Bierwagen. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Progress in Organic Coatings. 1998, 33: 91~100.
    73 F Mansfeld. Treatment of Aluminum-Copper alloy surface by copperetching and electrochemical passivation. US patent US5582654, Dec. 10th, 1996.
    74 R. G. Wendt, W. C. Moshier, B. Shaw, et al. Corrosion-Resisitant aluminum matrix for Graphite-aluminum composites. Corrosion. 1994, 11(50): 819~826.
    75郭树启,隋全武,唐风军,刘钢.影响碳-铝复合材料耐蚀性的因素.复合材料学报. 1991, 3(8): 9~15.
    76 Yasakau, Mikhail L, Zheludkevich. Mechanism of corrosion inhibition of AA2024 by rare earth compounds. Physics Chemical. 2006, 2(110): 5515~5528.
    77 Kiryl A. Yasakau, Mikhail L. Zheeludkevich, Sviatlana V. Lamaka, et al. Mechanism of corrosion inhibition of AA2024 by Rare earth compounds. Physical Chemistry B, 2006, 2(11): 110~130.
    78黄小卫,庄卫东,李红卫,余成洲,薛向欣,张国成.稀土功能材料研究开发现状和发展趋势.稀有金属,2004,28(4): 711~715.
    79 Q. X. Lv, X. F. Zhang, Y. M. Tang, J. M. Zhao, Y. Zuo. Influence of pretreatment on cerium conversion coatings of aluminum alloys. Advanced Materials Research, 2006, AICAM 2005-Proceedings of the Asian International Conference on Advanced Materials 11-12: 421~424
    80 B. R. W. Hinton. Corrosion inhibitions with rare earth metal salts. Alloys and Compounds,1992,180:15~25.
    81于兴文.哈尔滨工业大学博士学位论文, 1999.
    82朱元保,沈子琛,张传福等.电化学数据手册.湖南科学技术出版社. 1985.
    83许越,陈湘,吕祖舜. AZ91镁合金表面稀土转化膜的制备及耐蚀性能研究.中国稀土学报. 2005,23(1): 40~43.
    84尚久方,操时杰,辛无名等译.兰氏化学手册第十三版.科学出版社,1991.
    85武汉大学化学系.稀土元素分析化学.北京:科学出版社, 1981
    86宋廷耀.配位化学.成都:成都科技大学出版社, 1990
    87沈曾民.新型碳材料.北京:化学工业出版社,2003.
    88 D. S. Zhang, L. Y. Shi, H. X. Fu, J. H. Fang. Ultrasonic-assisted preparation of carbon nanotube/cerium oxide composites. Carbon, 2006, 44: 2853~2855.
    89 C. G. Hu, S. Yuan, S. S. Hu. Studies on electrochemical properties of MWNTs-Nafion composite films based on the redox behavior of incorporated Eu3+ by voltammetry and electrochemical impedance spectroscopy. Electrochimica Acta, 2006, 51: 3013~3021.
    90 J. Q. Wei, J. Ding, X. F. Zhang et al. Coated double-walled carbon nanotubes with ceria nanoparticles. Materials Letters, 2005, 59: 322 ~ 325.
    91 D. S. Zhang, L. Y. Shi, J. H. Fang et al. Preparation and modification of carbon nanotubes. Materials Letters, 2005, 59: 4044~4047.
    92丁俊,李延辉,徐才录,吴德海.碳纳米管上沉积二氧化铈颗粒.中国稀土学报,2003,21(4): 441~444.
    93俞宏英,孙冬柏,黄锦滨,杨德钧.化学镀镍磷合金镀层封孔处理工艺及性能.功能材料,2001, 32(3): 262~263, 268.
    94 J. N. Balaraju, T. S. N.Sankara Narayanan, S. K. Seshadri. Structure and phase transformation behavior of electroless Ni-P composite coatings. Materials Research Bulletin, 2006, 41(4): 847~860.
    95 Makoto Hino, Koji Murakami, Minoru Hiramatsu, Keiko Chen, Atsushi Saijo, Teruto Kanadani. Effect of zincate treatment on adhesion of electroless Ni-P plated film for 2017 aluminum alloy. Materials Transactions, 2005, 46(10): 2169~2175.
    96 Y. J. Hu, X. Ling, J. L. Meng. Electron microscopic study on interfacial characterization of electroless Ni-W-P plating on aluminium alloy. Applied Surface Science, 2007, 253(11): 5029~5034.
    97 E. S. Puchi-Cabrera, C. Villalobos-Gutierrez, I. Irausquin, et al. Fatigue behavior of a 7075-T6 aluminum alloy coated with an electroless Ni-P deposit. International Journal of Fatigue, 2006, 28(12): 1854~1866.
    98 I. Baskaran, T. S. N. Sankara Narayanan, A. Stephen. Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni-P deposits. Materials Chemistry and Physics, 2006, 99(1): 117~126.
    99 R. Taheri, I. N. A. Oguocha, S. Yannacopoulos. Effect of coating parameters and heat treatment on the adhesive properties of electroless Ni-P coatings. Canadian Metallurgical Quarterly, 2004, 43(3): 363~370.
    100 K. Hari Krishnan, S. John, K. N. Srinivasan, J. Praveen, M. Ganesan, P. M. Kavimani. An overall aspect of electroless Ni-P depositions-A review article.Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37(6): 1917~1926.
    101李宁,袁国伟,黎德育编著.化学镀镍基合金理论和技术.哈尔滨:哈尔滨工业大学出版杜,2005, 5.
    102 L. B. Li, M. Z. An, G. H. Wu. Electroless deposition of nickel on the surface of silicon carbide/aluminum composites in alkaline bath. Materials Chemistry and Physics, 2005, 94(1): 159~164.
    103 R. Tarozait??, O. Gylien??, G. Stalnionis. Adipate adsorption and its incorporation into Ni-P coatings from citrate electroless nickel plating solutions. Surface and Coatings Technology, 2005, 200(7): 2208~2213.
    104 G. Salvago, G. Fumagalli, F. Brunella. Corrosion behaviour of electroless Ni-P coatings in chloride-containing environments. Surface and Coatings Technology, 1989, 37(4): 449~460.
    105李丽波,安茂忠,武高辉,杨敏. SiCp/Al复合材料化学镀镍工艺的研究.电镀与环保,2005, 25 (1): 21~23.
    106 A. Pardo, M.C. Merino, R. Arrabal, S. Feliu′Jr., F. Viejo. Oxidation behavior of cast aluminum matrix composites with Ce surface coatings. Corrosion Science, 2007, 49: 3118~3133.
    107 F. H. Scholes, C. Soste, A. E. Hughes, S. G. Hardin, P. R. Curtis. The role of hydrogen peroxide in the deposition of cerium-based conversion coatings. Applied Surface Science, 2006, 253: 1770~1780.
    108 Manuele Dabalaá, Lidia Armelaob, Alberto Buchbergera, Irene Calliari. Cerium-based conversion layers on aluminum alloys. Applied Surface Science, 2001, 172: 312~322.
    109杨熙珍,杨武编著.金属腐蚀电化学热力学-电位-pH图及其应用.化学工业出版社,1991.
    110 M. Pourbaix. Atlas of Electrochemical equilibria in aqueous solutions. NACE, 1974: 194~208.
    111汪继红,费锡明,龙光斗等.稀土在镀Ni-P合金中的应用,材料保护,2003,36 (1): 31-33
    112周永军,张国英.镍基高温合金晶界区稀土元素与杂质交互作用的电子理论研究.稀有金属材料与工程,2007,36 (12):2160-2162.
    113税毅. Ni-P镀层研究现状及发展趋势,表面技术,2002, 31(1): 1-4, 11
    114吴文远.稀土冶金学,北京:化学工业出版社,2005.
    115 Katya Brunelli, Manuele Dabalà, Irene Calliari, Maurizio Magrini. Effect of HCl pretreatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys. Corrosion Science, 2005, 47: 989~1000.
    116 KeunWoo Cho, V. Shankar Rao, HyukSang Kwon. Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc. Electrochemica Acta, 2007, 52: 4449~ 4456.
    117邵敏华,黄若双,付燕,胡融刚,林昌健. Al合金表面Ce转化膜成膜机理研究.物理化学学报,2002, 18(9): 791~795.
    118 X. W. Yu, C. N. Cao, Z. M. Yao, et al. Corrosion behavior of rare earth metal (REM) conversion coatings on aluminum alloy LY12. Materials Science and Engineering, 2000, A284: 56~63.
    119 C. S. Lin, S. K. Fang. Formation of cerium conversion coatings on AZ31 magnesium alloys. Electrochemical Society, 2005, 152(2): B54~B59.
    120曹楚南,张鉴清.电化学阻抗谱导论.科学出版社,2004.
    121王晓伟.硬铝合金化学镀镍耐蚀机理.电镀与精饰,2002, 24(2): 14~17.
    122 Berny F. Rivera, Benedict Y. Johnson, Matthew J. O’Keefe, William G. Fahrenholtz. Deposition and characterization of cerium oxide conversion coatings on aluminum alloy 7075-T6. Surface and Coatings Technology, 2004, 176: 349~356.
    123 A. Pardo, M. C. Merino, R. Arrabal, F. Viejo, J.A. Mu?oz. Ce conversion and electrolysis surface treatments applied to A3xx.x alloys and A3xx.x/SiCp composites. Applied Surface Science, 2007, 253(6): 3334~3344.
    124 D. Li, G. Q. Li, B. L. Guo et al. A new type of Ce-Mo based conversion coatings for aluminum alloys. Materials Science Forum, 2002, 396-402(3): 1715~1720.
    125杜挺,韩其勇,王常珍编著.稀土碱土等元素的物理化学及在材料中的应用.科学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700