用户名: 密码: 验证码:
基于Schiff碱及其配合物为载体的离子选择性电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子选择性电极是近代发展起来的一类新型的化学传感器。它因其线性范围宽、响应迅速、所需样品少、所需仪器简单、操作方便等优点被广泛用于水质分析、生物医学和临床化验、化工及矿冶地质部门。无论是从缬氨霉素到杯芳烃超分子化学,还是从季铵盐到仿生阴离子载体,离子选择性电极的发展总是以离子载体类型的不断拓宽,电极响应性能的不断优化为发展方向。近年来,一些Schiff碱及其金属配合物由于具有特殊的平面结构及适宜的路易斯酸度而被用作离子选择性电极的电活性物质,促进了离子选择性电极的发展。本文简要介绍了离子选择性电极的发展过程,并着重于设计、合成新型的Schiff碱及其配合物,将其作为离子载体用于PVC聚合膜离子选择性电极的研究中。
     1.双安息香Schiff碱双核铜配合物为中性载体的硫氰酸根离子选择性电极的研究
     设计合成了N,N'-双[安息香缩(2-氨乙基)]乙二酰胺双核铜化合物[Cu(Ⅱ)-BBAE]和(2-氨乙基)乙二酰胺双核铜化合物[Cu(Ⅱ)-AEED]两种金属配合物,并分别作为中性载体,制得PVC膜离子选择性电极。由于膜的组成直接影响电极的响应性能,因此采用正交实验法对膜的组成进行了一系列的优化。5.0 wt.%[Cu(Ⅱ)-BBAE],65.0wt.%增塑剂ο-NPOE,和30.0wt.%PVC,显示出了最佳的电势响应性能。该离子选择性电极对硫氰酸根反Hofmeister选择性序列:SCN~->ClO_4~->Sal~->I~->NO_3~->Br~->Cl~->NO_2~->SO_3~(2-)>F~->H_2PO_4~->SO_4~(2-)。该电极在pH=5.0的磷酸盐缓冲体系中对8.5×10~(-7)-6.8×10~(-1)mol/L浓度范围内的SCN~-呈斜率为-59.0 mV/dec(25℃)的近能斯特响应,检测下限为5.0×10~(-7)mol/L,并采用交流阻抗研究了电极的响应机理。
     2.基于二(2-乙酰吡啶)丁烷-2,3.二腙的铈离子选择性电极的研究
     设计合成了二(2一乙酰毗啶)丁烷.2,3-二腙[BAPB],该分子结构中N原子的给电子特性可以提高载体对过渡金属和重金属离子的结合能力。实验结果表明,当膜组成为4.9 wt.%[BAPB],64.1 wt.%增塑剂ο-NPOE, 31.0 wt.%PVC,内充液为1.0 mol/L KNO_3和1.0×10~(-3)mol/L Ce(NO_3)_3时,该电极对Ce~(3+)有比较好的响应。该电极在3.2×10~(-6)-1.0×10~(-2) mol/L的浓度范围内表现出斜率为19.3 mV/dec的近能斯特响应,检出限2.1×10~(-6) mol/L,pH范围为2.0-5.7,响应时间约为1min,十次重复测量的标准偏差小于±1.0 mV。另外,本实验采用了分别溶液法测定了该电极的选择性系数,并与已经报道的铈离子选择性电极进行比较,结果表明该铈离子选择性电极的选择性比较好。最后,本实验采用交流阻抗和等效电路图研究了电极的响应机理,说明Ce~(3+)从水中进入膜的过程受扩散控制。
     3.基于2,6-二氨基吡啶大环Schiff碱为载体的铈离子选择性电极的研究
     设计合成了一种新的2,6-二氨基吡啶大Schiff碱,它独特的环状结构,以及给电子原子O、N的存在提高了电极对金属离子的敏感性和选择性,使之构建了一支性能比较优良的铈离子选择性电极。实验结果表明,当膜组成为4.6wt%离子载体,62.7wt%增塑剂ο-NPOE,31.7wt.%PVC,1wt%的离子添加剂NaTPB时,该离子载体制得的电极对Ce~(3+)有比较好的响应。该电极在1.0x10~(-5)-1.0x10~(-2) mol/L的浓度范围内表现出斜率为19.0mV/dec的近能斯特响应,检出限5.0x10~(-6)mol/L mol/L,最佳pH为3.0,电极在1.0x10~(-2) mol/L的Ce(NO_3)_3溶液(pH 3.0)中连续测试近8 h,电极电位读数的标准偏差为2.3 mV(n=45)。电极交替在1.0x10~(-3) mol/L和1.0x10~(-2)mol/L的Ce(NO_3)_3溶液中测试2 h,电极电位读数的标准偏差为1.1 mV(n=lO)。响应时间40 s。另外,本实验采用了分别溶液法测定了该电极的选择性系数,并与已经报道的铈离子选择性电极进行比较,结果表明该铈离子选择性电极的选择性比较好。最后,将该电极用于自来水中铈离子回收率的测定,结果表明该铈离子选择性电极可以被用于样品中铈离子的检测。
Ion-selective electrode is a kind of chemical sensors which is developed in the modern. It is widely applied in in the water analysis, the biomedicine and the clinical chemical examination, chemical and the mining and metallurgy geology department because of its wide linearity range, the rapid response, the few sample needed, the simple instrument needed, the simple handled, and so on. From valinomycin to supramolecular chemistry of calixarene, or, from the quaternary ammonium salt to the bionic anion carrier, the development direction of ion selective electrode is always the update of inonphore, the optimum of electrode response performance, constantly. In recent years, some schiff bases and schiff base metal complexes accelerate the development of the ion-selective electrode because of the special planar structure and the suitable Louise acidity. This article introduced briefly the development process of the ion-selective electrode, and emphatically in the design, the synthesis of the new schiff base and schiff base metal complexes which is used to PVC polymericn membrane ion selective electrode as ionophore.1.Study on highly selective thiocyanate electrode based on bis-bebzion schiff base binuclear copper(Ⅱ) complex as neutral carrier
     In this study, N, N'- bis[benzoin-(2-aminoethyl)}ethylenediamide binuclear copper compound [Cu(Ⅱ)-BBAE] and (2-aminoethyl) ethylenediamide binuclear copper compound [Cu(Ⅱ)- AEED] were synthesized, and they were used as neutral carriers to prepare PVC membrane ion-selective electrode. Based on the orthogonal experiments, the compositions of membrane were optimized because of the effect of membrane composition on electrode's potentiometric response characteristics. The electrode exhibited the best potentiometric response characteristics when the composition of membrane is 5.0 wt.% [Cu(Ⅱ)- BBAE], 65.0 wt.% plasticizer o-NPOE, 30.0 wt.% PVC. The electrode displayed an anti-Hofmeister selectivity sequence for a series of anions in the following order: SCN~-> C1O_4~- > Sal~- > I~-> NO_3~-> Br~- > Cl~- > NO_2~- > SO_3~(2-) > F~- > H_2PO_4~- > SO_4~(2-). The electrode exhibits near-Nernst response for SCN~- with a slope of 59.0 mV/decade over a wide concentration range 8.5×10~(-7)-6.8×10~(-1) mol/L and a detection limit 5.0×l~(-7) mol/L in pH 5.0 phosphate buffer solution at 25℃. AC impedance is used to investigate the response mechanism to thiocyanate of the membrane doped with [Cu(Ⅱ)- BBAE].2.Study on a new Ce~(3+) ion-selsective electrode based on bis (2-acetyl pyridine)butane-2,3-dihydrzone
     In this study, bis (2-acetyl pyridine) butane-2, 3-dihydrzone [BAPB] was synthesized, the existence of donor electrom atom N can enhance the integrate ability of ionophore for transition metal and heavy metal ions. The experiment result showed that the electrode had good response characteristics when the membrane composition is 4.9 wt.% [BAPB], 64.1 wt.% plasticizerο-NPOE, 31.0 wt.% PVC, and the internal filling solution is 1.0 mol/L KNO_3 and 1.0×10~(-3) mol/L Ce(NO_3)_3. It exhibited Nernstain response with the slope of 19.3 mV/dec within wide concentration of 3.2×10~(-6) to 1.0×10~(-2) mol/L with a detection limit 2.1×10~(-6) mol/L, the pH rang is 2.0 - 5.7. Response time is about 1 minute. The standard deviation of ten replicate measurements was less than±1.0 mV. In addition, the selectivity coefficient which was measured with the separate solution method was compared with the reported Ce~(3+) ion-selective electrode, the result shown that the proposed electrode has good selectivity for Ce(Ⅲ) ion. Finally, alternating current impedance and equivalent circuit are used to investigate response mechanism, the results indicated that Ce~(3+) transfer from water to membrane, the transfer process was controlled by diffusion. 3. Study on Ce~(3+) ion-selsective electrode based on 2, 6-diaminopyridine macrocyclic schiff base as carrier
     In this study, new 2, 6-diaminopyridine macrocyclic schiff base was synthesized, the existence of peculiar macrocyclic and donor electron atoms O, N can enhance the sensitivity and selectivity for metal ions so as to construct a Ce~(3+) ion-selective electrode with good response characteristics. The experiment result shown that the electrode had good response characteristics when the membrane composition is 4.6 wt.% ionophore, 62.7 wt.% plasticizer o-NPOE, 31.7 wt:% PVC, 1wt% ion-additive NaTPB. It exhibited Nernstain response with the slope of 19.0 mV/dec within wide concentration of 1.0×10~(-5) to 1.0×10~(-2) mol/L with a detection limit 5.0×10~(-6) mol/L, the best pH is 3.0. The standard deviation (SD) of the electrode potential reading over a period of 8 h in 1.0×10~(-2) mol/L Ce(NO_3)_3 solution (pH 3.0) is 2.3 mV (n=45), and the same electrode dipped alternatively into solutions of 1.0×10~(-3) mol/L and 1.0×10~(-2) mol/L Ce(NO_3)_3 solution is 1.1 mV over 2 h (n=12), response time is about 40 seconds. In addition, the selectivity coefficient which was measured with the separate solution method was compared with the reported Ce~(3+) ion-selective electrode, the result showed that the proposed electrode has good selectivity for Ce(Ⅲ) ion. Finally, the electrode was applied to the direct determination of cerium in water samples, the result indicated the Ce~(3+) ion-selective electrode can be used to the Ce~(3+) detection in samples.
引文
[1] Lengyel B, Blum E. The behaviour of the glass electrode in connection with its chemical composition. Trans. Faraday Soc, 1934, 30: 461-471.
    [2] Frant M S, Ross J W. Electrode for sensing fluoride ion activity in solution. Science, 1966, 154: 1553-1555.
    [3] Ross J W. Calcium-Selective Electrode with Liquid Ion Exchanger. Science, 1967, 156: 1378-1379.
    [4] Stefanc Z, Simon W. Ion specific electrochemical behavior of macrotetrolides in membranes. Microchem. J., 1967, 12: 125-132.
    [5] Pioda L A R, Stankova V, Simon W. Highly Selective Potassium Ion Responsive Liquid-Membrane Electrode, Anal. Lett., 1969, 2: 665-674.
    [6] Moody G J, Oke R B, Thomas J D R. A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix, Analyst, 1970, 95: 910-918.
    [7] Buck R P, Lindner E. Recommendations for momenclature of ion-selective electrodes. Pure. Appl. Chem., 1994, 66: 2527-2536.
    [8] Buck R P, Lindner E. IUPAC Technical reports and recommendations, Recommendations for nomenclature of ion-selective electrodes. Pure Appl Chem., 1976,48: 127-132.
    [9] Bailey P L. Ion-Selective Electrode Reviews, 1979,1: 81-92.
    [10] Agtarap A, Chamberlin J W, Pinkerton M, Steinranf L. The structure of monensic acid, a new biologically active compound. J. Am. Chem. Soc, 1967, 89: 5737-5739.
    [11] 杨善元,叶绿素的提取纯化方法.化学通报,1979,3:36-37.
    [12] Funck R J J, Morf W. E, Schultthess A D, Simon W. Bicarbonate-sensitive liquid membrane electrodes based on neutral carriers for hydrogen ions. Anal. Chem., 1982, 54: 423-429.
    [13] Mahajan R K, Sharma M K V, Kaur I, Cesium ion selective electrode based on calix[4]crown ether-ester. Talanta, 2002, 58: 445-450.
    [14] Zhou X Y, Luo Y, Wu C T, Zou Z F, Hu Q Z. Sodium ion-selective membrane electrode based on a new crown ether, Anal. Chim. Acta, 1988, 212: 325-329.
    [15] Gutache C D. In Monographs in Supramolecular Chemistry (ed. Stoddart J F), Cambridge, Royal Society of Chemistry, 1989, 49-185.
    [16] 刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装.南开大学出版社.2003.307-341
    [17] Yamamoto H, Shinkai S. Molecular Design of Calix[4]arene-Based Sodium-Selective Electrodes Which Show Remarkably High 105.0-105.3 Sodium/Potassium Selectivity, Chem Lett., 1994, 23: 1115-1118.
    [18] Schulthess P, Shijo Y, Pham H V, Pretsch E, Ammann D, Simon W. A hydrogen ion-selective liquid-membrane electrode based on tn-n-dodecylamine as neutral carrier. Anal. Chim. Acta, 1981, 131: 111-116.
    [19] Oesch U, Ammann D, Brzozka Z, Pham H V, Pretsch E, Rusterholz B, Simon W, Suter G, Welti D H, Xu A P. Design of neutral hydrogen ion carriers for solvent polymeric membrane electrodes of selected pH range. Anal. Chem., 1986, 58: 2285-2289.
    [20] Wu H L, Yu R Q. A PVC membrane pH-sensitive electrode based on methyldioctadecylamine as neutral carrier. Talanta, 1987, 34: 577-579.
    [21] 袁若,吴海龙,俞汝勤.新型含氮化合物作中性载体 pH 选择电极研究.中国科学,1992,22:455-462.
    [22] Koryta J. Theory and applications of ion-selective electrodes part 4. Anal. Chim. Acta, 1982, 139: 1-51.
    [23] Wegmann D, Weiss H, Ammann D, Morf W E, Pretsch E, Sugahara K, Simon W. Anion-selective liquid membrane electrodes based on lipophilic quaternary ammonium compounds. Microchim. Acta, 1984, 84: 1-16.
    [24] Arnold MA, Solsky R L. Ion-selective electrodes. Anal. Chem., 1986, 58: 84-101.
    [25] Wotring V J, Johnson D M, Bachas L G. Polymeric membrane anion-selective electrodes based on diquaternary ammonium salts. Anal. Chem., 1990, 62: 1506-1510.
    [26] Hofmeister F. Zur Lehre von der Wirkung der Salze, Arch. Exp. Pathol. Pharmakol. 1888, 24: 247-260.
    [27] Morf W E. The principles of Ion-Selective Electrodes and of Membrane Transport. Elsevier: Amsterdam, New York, USA, 1981.
    [28] Li J Z, Pang X Y, Yu R Q. Substituted cobalt phthalocyanine complexes as carriers for nitrite-sensitive electrodes. Anal. Chim. Acta, 1994, 297: 437-442.
    [29] Sollner K, Shean G M. Liquid Ion-Exchange Membranes of Extreme Selectivity and High Permeability for Anions. J. Am. Chem. Soc, 1964, 86:1901-1902.
    [30] Li J Z, Wu X C, Yuan R, Lin H G, Yu R Q. Cobalt phthalocyanine derivatives as neutral carriers for nitrite-sensitive poly(vinyl chloride) membrane electrodes. Analyst, 1994, 119: 1363-1366.
    [31] Daunert S, Wallace S, Florido A, Bachas L G. Anion-selective electrodes based on electropolymerized porphyrin films. Anal. Chem., 1991, 63: 1676-1679.
    [32] Schulthess P, Ammann D, Simon W, Caderas C, Stepanek R, Krautler B. A Lipophilic Derivative of Vitamin B12 as Selective Carrier for Anions. Helv. Chim. Acta, 1984, 67: 1026-1032.
    [33] Shamsipur M, Khayatian G, Tangestaninejad S, Thiocyanate-Selective Membrane Electrode Based on (Octabromotetraphenylporphyrinato)manganese(Ⅲ) Chloride, Electroanalysis, 1999, 11: 1340-1344.
    [34] 李俊忠,胡敏,俞汝勤.脂溶性的酞菁钴(Ⅲ)为载体的高选择性亚硝酸根PVC膜.化学学报,1995,53:1118-1123.
    [35] Li Z Q, Yuan R, Ying M., Song Y Q, Shen G L, Yu R Q. Pentacoordinate organotin complexes as neutral carriers for salicylate-selective PVC membrane electrodes. Talanta, 1998, 46: 943-950.
    [36] Ganjali M R, Emami M, Javanbakht M, Shamsipur S N M, Yousefi M. Novel triiodide ion-selective polymeric membrane sensor based on mercury-salen, Sens. Actuators B, 2005, 105: 127-131.
    [37] Hassan S S M, Marzouk S A M, Sayour H E M. Selective potentiometric determination of nitrite ion using a novel (4-sulphophenylazo-)l-naphthylamine membrane sensor. Talanta, 2003, 59: 1237-1244.
    [38] SchiffH. Anew series of organic bases. Ann Chem, 1864, 131:118-119.
    [39] Tidwell T T, Hugo(Ugo) Schiff, Schiff bases, and a century of β-lactam synthesis. Angew. Chem. Int. Ed, 2007, 47:1016-1020.
    [40] Yoon T P, Jacobsen E N. Privileged chiral catalysts. Science, 2003, 299:1691-1693.
    [41] 南光明,刘德蓉.,浅述希夫碱及其金属配合物的由来、产生、机理、合成方法及展望.伊犁师范学院学报,2005,3:58-60.
    [42] Desai S B, Desai P B, Desai K R. Synthesis of some Schif bases thiazolidinones and azetidinones from 2. 6-diaminobe nzol [1,2-d: 4, 5-d ]bisthiazole ane their anticancer activjtie. Hetercycl. Commun., 2001, 7: 83-90.
    [43] Isse A A, Gennaro A, Vianello E. Electrochemical reduction of Schiff base ligands H2salen and H_2salophen, Electrochim. Acta, 1997,42: 2065-2071.
    [44] Ma H, Chen S H. Studies on electrochemi cal be havior of copper in aerated NaBr solutions with Schif bases, J. Electrochem.Soc, 2001, 148: 208-216.
    [45] 赵建章,赵冰,徐蔚青,刘举正,王宗睦,李耀先.Schiff碱 N,N'-双水杨醛缩-1,6己二胺的光致变色光谱的研究.高等学校化学学报,2001,22:971-975.
    [46] 明阳福,黄震年,许宝安,樊美公,金声,姚思德.双席夫碱-N,N'-二(2-羟基-1-萘甲醛)缩-1,4-苯二胺的电子光谱和光致变色机理研究.中国科学(B辑),1997,27:120-124.
    [47] Bastos M B R, Moreira J C, Farias P A M. Adsorptive stripping voltammetric behaviour of ·UO2( Ⅱ )complexed with the Schiff base N, N-prime-ethylenebis(salicylidenimine)in aqueous 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid medium. Anal. Chim. Acta, 2000, 408: 83-88.
    [48] Gupta V K, Agarwal S, Jakob A., Lang H. A zinc-selective electrode based on N,N'-bis(acetylacetone)ethylenediimine.Sens. Actuators B, 2006, 114: 812-818.
    [49] Jain A K, Gupta V K, Ganeshpure P A, Raisoni J R. Ni(Ⅱ)-selective ion sensors of salen type Schiff base chelates. Anal. Chim. Acta, 2005, 553: 177-184.
    [50] Abbaspour A, Esmaeilbeig A R, Jarrahpour A A, Khajeh B, Kia R. Aluminium(Ⅲ)-selective electrode based on a newly synthesized tetradentate Schiff base. Talanta, 2002, 58: 397-403.
    [51] Mashhadizadeh M H, Sheikhshoaie I. Mercury(Ⅱ) ion-selective polymeric membrane sensor based on a recently synthesized Schiff base. Talanta, 2003, 60: 73-80.
    [52] Mahajan R K, Kaur I, Kumar M. Silver ion-selective electrodes employing Schiff base p-tert-butyl calix[4]arene derivatives as neutral carriers. Sens. Actuators B, 2003, 91: 26-31.
    [53] Ganjali M R, Emami M, Rezapour M, Shamsipur M, Maddah B, Salavati-Niasari M, Hosseini M, Talebpoui Z. Novel gadolinium poly(vinyl chloride) membrane sensor based on a new S-N Schiff s base. Anal. Chim. Acta, 2003, 495: 51-59.
    [54] Gupta V K, Singh A K, Gupta B. A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N,N_-bis[2-(salicylideneamino)ethyl]ethane-l,2-diamine. Anal. Chim. Acta, 2006, 575: 198-204.
    [55] Yuan R, Chai Y Q, Liu D, Gao D, Li J Z, Yu R Q. Schiff base complexes of cobalt(Ⅱ) as neutral carriers for highly selective iodide electrodes. Anal. Chem., 1993, 65:2572-2575.
    [56] Ganjali M R, Norouzi P, Golmohammadi M, Rezapour M, Salavati-Niasari M. Novel Bromide PVC-Based Membrane Sensor Based on Iron(Ⅲ)-Salen. Electroanalysis, 2004, 16: 910-914.
    [57] 王福昌,柴雅琴,袁若,归国风.水杨醛肟铜络合物中性载体高选择性水杨酸根电极的研究.分析化学研究简报,2006,34:725-728.
    [58] 吴庆,孙志勇,袁若,柴雅琴.以苯甲醛缩硫代氨基脲铜(Ⅱ)配合物为载体的高选择性硫氰酸根离子电极的研究.分析科学学报,2006,22:196-198.
    [59] 王秀玲,刘家辉,刘守清.以异双四齿schiff碱金属铜(Ⅱ)配合物为载体的高选择性硫氰酸根电极的研究.化学传感器,2007,28:62-65.
    [60] Sun Z Y, Yuan R, Chai Y Q, Xu L, Gan X X, Xu W J. Study of a bis-furaladehyde Schiff base copper (Ⅱ) complex as carrier for preparation of highly selective thiocyanate electrodes. Anal. Bioanal. Chem., 2004, 378:490-494.
    [61] Yuan R, Song Y Q, Chai Y Q. Design of Schiff base complexes of Co (Ⅱ) for the preparation of iodide-selective polymeric membrane electrodes. Talanta, 1999,48:649- 657.
    [62] Shamsipur M, Soleymanpour A, Akhond M, Sharghi H, Naseri M A. Iodide-selective carbon paste electrodes based on recently synthesized Schiff base complexes of Fe(Ⅲ). Anal. Chim. Acta, 2001, 450: 37-44.
    [63] Biilmann P, Yahya L, Enderes R. Ion-Selective Electrodes for Thiocyanate Based on the Dinuclear Zinc(Ⅱ) Complexof a Bis-N,O-bidentate Schiff Base. Electroanalysis, 2004, 16: 973-978.
    [64] Rothmaier M, Schaller U, Morf W E, Pretsch E. Response mechanism of anion- selective electrodes based on mercury organic compounds as ionophores. Anal. Chim. Acta, 1996, 327:17-28.
    [65] Shamsipur M, Yousefi M, Hosseini M, Ganjali M R, Sharghi H, Naeimi H. A Schiff base complex of Zn (Ⅱ) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion. Anal. Chem., 2001, 73: 2869-2874.
    [66] Gupta V K, Jain A K., Maheshwari G. Manganese (Ⅱ) selective PVC based membrane sensor using a Schiff base. Talanta, 2007, 72:49-53.
    [67] Gupta V K, Singh A K, Gupta B. Schiff bases as cadmium(Ⅱ) selective ionophores in polymeric membrane electrodes. Anal. Chim. Acta, 2007, 583:340-348.
    [68] Jeong T, Lee H K, Jeong D C, Jeon S. A lead(Ⅱ)-selective PVC membrane based on a Schiff base complex of N,N'-bis(salicylidene)-2,6-pyridmediamine. Talanta, 2005, 65:543-548.
    [69] Ensafi A A, Naeimi H, Dastanpour A, Shamlli A. Highly selective lead(Ⅱ) coated-wire electrode based on a new Schiff base. Sen. Actuators B, 2003, 96: 441-445.
    [70] Abbaspour A, Esmaeilbeig A R, Jarrahpour A A, Khajeh B, Kia R. Aluminium(Ⅲ)-selective electrode based on a newly synthesized tetradentate Schiff base. Talanta, 2002, 58: 397-403.
    [71] Ganjali M R, Mizani F, Salavati-Niasari M, Javanbakht M. Novel potentiometric membrane sensor for the determination of trace amounts of chromium(Ⅲ) ions. Anal. Sci., 2003, 19: 235-238.
    [72] Zamani H A, Ganjali M R, Norouzi P, Adib M, Aceedy M. Synthesis of N'-(l-Pyridin-2-ylmethylene)-2-furohydrazide and Its Application in Construction of a Highly Selective PVC-Based Membrane Sensor for La(Ⅲ) Ions, Anal. Sci., 2006, 22: 943-948.
    [73] Ganjali M R, Norouzi P, Tamaddon A, Adib M. Nano-level monitoring of ytterbium(Ⅲ) by a novel ytterbium(Ⅲ) membrane sensor based on 3-hydroxy-N_-[(2-hydroxyphenyl) methylene]-2-naphthohydrazide. Sens. Actuators B, 2006, 114: 855-860.
    [74] Zhang G E, Li B, Fan J, Feng S L. Determination of trace thiocyanate in body fluids by a kinetic fluorimetric method. Talanta, 1997, 44: 1141-1147.
    [75] Buhlmann P, Pretsch E, Bakker E. Carrier-based ion-selective electrode and bulk optodes 2 ionophores for potentiometric and optical sensors. Chem. Rev., 1998, 98: 1593-1687.
    [76] Simon W, Pretsch E, Morf W E, Ammann D, Oesch U, Dinten O. Design and application of neutracarrier-based ion-selective electrodes. Analyst, 1984, 109: 207-209.
    [77] Daunert S, Bachas L G. Anion-selective electrodes based on a hydrophobis vitamin B_(12) derivative. Anal. Chem, 1989, 61: 499-503.
    [78] Gao D, Li J Z, Yu R Q. Metalloporphyrin derivatives as neutral carriers for PVC membrane electrodes. Anal. Chem, 1994, 66: 2245-2249.
    [79] Rothmaier M, Simon W. Chloride-selective electrode based on mercury organic compounds as neutral carriers. Anal. Chim. Acta, 1993, 271: 135-141.
    [80] Schulthess P, Ammann D, Krautler B, Caderas C, Stepanek R, Simon W. Nitrite-selective liquid membrane electrode. Anal. Chem., 1985, 57: 1397-1401.
    [81] Stepinek R, Krautler B, Schulthess P, Lindemann B, Ammann D, Simon W. Aquocyanocobalt(lll)-hepta (2-phenylethyl)-cobyrinate as a cationic carrier for nitrite-selective liquid-membrane and electrodes. Anal. Chim. Acta, 1986, 182: 83-90.
    [82] Lu X .B, Wu S G, Wang L, Su Z X. Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell. Sens. Actuators B, 2005, 107: 812-817.
    [83] Tatyana A B, Juyoul K, Thomas, C H. Development and environmental application of a nitrate selective microsensor based on doped polypyrrole films. Sens. Actuators B, 2005, 106: 512-517.
    [84] Zine N, Bausells J, Teixidor F, Vinas C, Masalles C, Samitier J, Errachid A. All-solid-state hydrogen sensing microelectrodes based on novel PPy [3, 3'-Co (l,2-C_2B_9H_(11))_2] as a solid internal contact. Matt. Sci. Engi. C, 2006, 26: 399-404.
    [85] Badr I H A, Meyerhoff M E. Highly selective single-use fluoride ion optical sensor based on aluminum(Ⅲ)-salen complex in thin polymeric film. Anal. Chim. Acta, 2005, 553: 169-176.
    [86] Dai J Y, Chai Y Q, Yuan R, Zhang Y S, Liu Y, Zhong X, Tang D P. Thiocyanate-selective PVC membrane electrode based on tricoordinate Schiff base copper(Ⅱ) complex. Chem. Lett., 2005, 34: 62-63.
    [87] Shahrokhian S, Amini M K, Kia R, Tangestaninejad S. Salicylate-Selective Electrodes Based on Al(Ⅲ) and Sn(Ⅳ) Salophens. Anal. Chem., 2000, 72: 956-962.
    [88] Xu L, Yuan R, Fu Y Z, Chai Y Q. Potentiometric membrane electrode for salicylate based on an organotin complex with a salicylal Schiff base of amino acid. Anal. Sci., 2005, 21: 287-292.
    [89] Xu W J, Chai Y Q, Yuan R, Liu S L. A novel thiocyanate-selective electrode based on a zinc-phthalocyanine. Anal. Bioanal. Chem., 2006, 385: 926-930.
    [90] Arvand M, Zanjanchi M A, Heydari L.. Novel thiocyanate-selective membrane sensor based on crown ether-cetyltrimethyl ammonium thiocyanate ion-pair as a suitable ionophore. Sens. Actuators B,2007,122:301-308.
    [91]Dai J Y,Chai Y Q,Yuan R,An L X,Liu Y,Zhong X,Tang D P.Tricoordinate schiff base copper(Ⅱ)complex as neutral carrier for highly selective thiocyanate electrode.Anal.Lett.,2005,38:389-400.
    [92]Li Z Q,Wu,Z Y,Yuan R,Ying M,Shen G L,Yu R Q.Thiocyanate-selective PVC membrane electrodes based on Mn(Ⅱ)complex of N,N′-bis-(4-phenylazosalicylidene)o-phenylene diamine as a neutral carrier.Electrochim.Acta,1999,44:2543-2548.
    [93]Xu L,Yuan R,Chai Y Q,Fu Y Z.Novel membrane potentiometric thiocyanate sensor based on tribenzyltin(Ⅳ)dithiocarbamate.Electroanalysis,2005,17:1003-1007.
    [94]Homing E C.Organic Syntheses,Collect;John Wiley:New York;1955.Vol.Ⅲ,140-141.
    [95]Niu D Z,Zhu S R,Luo Q H.Synthesis and properties of Cu(Ⅱ)and Ni(Ⅱ)complexes of double-cavity dioxotetraamine.Chin.J.Inorg.Chem.,1994,10:1-5.
    [96]Zhong C F,Deng J C,Tong J,Yao X H,Zhu W S.Synthesis,characterization and oxygenation property of bisbenzion-senitriethylenetetraamine and it's binuclear transition metal complexes.Chem.J.Chin.Univ.,1998,19:174-178.
    [97]Moody G J,Oke R B,Thomas J D R.A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinylchloride)matrix.Analyst,1970,95:910-913.
    [98]Ganjali M R,Poursaberi T,Basiripour F,Salavati-Niasari M,Yousefi M,Shamsipur M.Highly selective thiocyanate poly(vinyl chloride)membrane electrode based on a cadmium-Schiff s base complex.Fresenius J.Anal.Chem.,2001,370:1091-1095.
    [99]Jesus M,Lizondo J,Martinez R,Sancenon F,Soto J.Linear polyamines as carriers in thiocyanate-selective membrane electrodes.Talanta,2006,68:1182-1189.
    [100]Yan Z N,Lu Y Q,Li X.Silver ion-selective electrodes based on bis(dialkyldithiocarbamates)as neutral ionophores.Sens.Actuators B,2007,122:174-181.
    [101]Ye G R,Chai Y Q,Yuan R,Dai J Y.A Mercury(Ⅱ)Ion-selective Electrode Basedon N,N-Dimethylformamide-salicylacylhydrazone as a Neutral Carrier,Anal.Sci.,2006,22:579-582.
    [102]Yari A,Darvishi L,Shamsipur M.Al(Ⅲ)-selective electrode based on newly synthesized xanthone derivative as neutral ionophore.Anal.Chim.Acta,2006,555:329-335.
    [103]Dai J Y,Chai Y Q,Yuan R,Zhong X,Liu Y,Tang D P.Bis-dimethylaminobenzaldehyde Schiff-Base Cobalt(Ⅱ)Complex as a Neutral Carrier for a Highly Selective Iodide Electrode.Anal.Sci.,2004,20:1661-1665.
    [104]Vassilev V,Tomova K,Boycheva S.Pb(Ⅱ)-ion-selective electrodes based on chalcogenide glasses.J.Non-Crystal.Solids,2007,353:2779-2784.
    [105]Chandra S,Lang H.A new sodium ion selective electrode based on novel silacrown ether.Sens.Actuators B,2006,114:849-854.
    [106]Gupta V K,Chandra S,Lang H.A highly selective mercury electrode based on a diamine donor ligand.Talanta,2005,66:575-580.
    [107]Shamsipur M,Yousefi M,Ganjali M R.PVC-based 1,3,5-trithiane sensor for cerium(Ⅲ)ions.Anal.Chem.,2000,72:391-2394.
    [108] Zamani H A, Ganjali M R, Adib M. Construction of a highly selective PVC-based membrane sensor for Ce(Ⅲ) ions. Sens. Actuators B, 2007, 120: 545-550.
    [109] Akhond M, Najafi M B, Tashkhourian J. A new cerium (Ⅲ)-selective membrane electrode based on 2-aminobenzothiazole. Sens. Actuators B, 2004, 99: 410-415.
    [110] Szigeti Z, Vigassy T, Bakker E, Pretsch E. Approaches to improving the lower detection limit of polymeric membrane ion-selective electrodes. Electroanalysis, 2006, 18: 1254-1265.
    [111] Sokalski T, Zwickl T, Bakker E, Pretsch E. Lowering the detection limit of solvent polymeric ion-selective electrodes. 1. Modeling the influence of steady-state ion fluxes. Anal. Chem., 1999,71:1204-1214.
    [112] Cammann K. Working with Ion Selective Electrodes, Springer, Berlin, 1979, 35-42.
    [113] Ferg D. Ion-Sel. Electrode Rev., 1987, 9: 95-100.
    [114] Chattopadhyaya M C. Precipitate based selective ion sensitive membrane electrodes for tripositiv chromium and cadmium. J. Ind. Chem. Soc, 1989, 66: 54-55.
    [115] Coldur F, Andac M, Isildak I, Saka T. A micro-sized PVC membrane Li~+-selective electrode without internal filling solution and its medical applications. J. Electroanal. Chem., 2009, 626: 30-35.
    [116] Lisak G, Grygolowicz-Pawlak E, Mazurkiewicz M, Malinowska E, Sokalski T, Bobacka J, Lewenstam A. New polyacrylate-based lead(Ⅱ) ion-selective electrodes. Microchim. Acta, 2009, 164: 293-297.
    [117] Maleki R, Hosseinzadeh R, Mehrabi H, Hassanzadeh A, Farhadi K. 6-Ketomethyl Phenanthridine as a New Carrier in the Construction of a Highly Selective Fe(Ⅲ) Ion-Selective Membrane Electrode. Turk. J. Chem., 2009, 33: 1-10.
    [118] Chandra S, Lang H. A new sodium ion selective electrode based on novel silacrown ether. Sens. Actuators B, 2006, 114: 849-854.
    [119] Yari A, Azizi S, Kakanejadifard A. An electrochemical Ni(Ⅱ)-selective sensor-based on a newly synthesized dioxime derivative as a neutral ionophore. Sens. Actuators. B, 2006, 119: 167-173.
    [120] Gupta V K, Chandra S, Lang H. A highly selective mercury electrode based on a diamine donor ligand. Talanta, 2005, 66: 575-580.
    [121] Ammann D, Pretsch E, Simon W, Linder E, Bezegh A, Pungor E. Lipophilic salts as membrane additives and their influence on the properties of macro-and micro-electrodes based on neutral carriers. Anal. Chim. Acta, 1985, 171: 119-129.
    [122] Huster M, Gehring P M, Morf W E, Simon W. Membrane technology and dynamic response of selective liquid-membrane electrode. Anal. Chem., 1990, 63: 1380-1386.
    [123] Bakker E, Buhlmann P, Pretsch E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev., 1997, 97: 3083-3132.
    [124] Ganjali M R, Emami M, Salavati-Niasari M. Novel copper(Ⅱ)-selective sensor based on a newhexadentates Schiff s base. Bull. Korean Chem. Soc, 2002, 23: 1394-1398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700