用户名: 密码: 验证码:
新型丙烷选择氧化催化剂制备、表征、反应及相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自Mobile公司1992年报道MCM-41介孔分子筛以来,越来越多的介孔材料相继得到成功合成,而如何应用这些新材料又给我们提出了更多的挑战。根据国际纯粹与应用化学联合会(IUPAC)的定义,介孔的尺度在2~50nm,属于纳米科学的范畴,因此介孔材料也具有“纳米特性”。在催化方面,这种“特性”表现为更高的活性和选择性。
     近年来非硅介孔材料越来越得到了人们的重视,其中介孔氧化铝是其中的一个研究热点,虽然有文献报道可合成具有规则孔道结构的纯氧化铝介孔材料,但多方面的研究表明具有无规则(蠕虫状)孔道结构的介孔氧化铝材料具有更好的催化活性。本文以无规则孔道结构的介孔氧化铝为基础,探索若干新型介孔纳米催化剂的合成、表征及其在丙烷选择氧化反应中的活性,同时注重纳米功能材料的合成以及理论方法对催化剂活性组分的研究。
     我们以硬脂酸为模板剂、仲丁醇铝为铝源合成了介孔氧化铝材料,并在其中引入P-Mo-V、Mg-V和Nb-V等活性组分。表征结果说明,通过共合成法制备的催化剂是具有无规则的介孔孔道结构,活性组份进入介孔氧化铝骨架,相对于纯介孔氧化铝其孔径分布较宽。~(27)Al MAS NMR研究显示共合成的催化剂除存在六配位和四配位铝外,还具有五配位铝,并且五配位铝的含量与所引入的活性组分的含量有关。由于共合成催化剂结构上与浸渍样品存在差异,使得它们的反应活性不同。共合成P-Mo-V-Al-O催化剂丙烷转化率较高;Mg-V-Al-O催化剂中,共合成样品的反应活性与Mg/V比例及含量均存在关系,Mg与丙烯的选择性有较大关系;而Nb-V-Al-O催化剂中,浸渍样品的反应效果优于共合成样品。所有的催化反应产物都有丙酮存在,从机理上讲应该是经历一个异丙醇中间体的过程。相对而言,P-Mo-V-Al-O催化剂有较高的丙酮选择性,丙酮选择性与活性组分的含量有关。在550℃,空速4800 mL·g~(-1)·h~(-1),C_3H_8/O_2=1.0/0.9的反应条件下样品PMoV-Al-C4的丙酮收率最高,为7.2%,丙酮的选择性为25.7%。在同样的反应条件下,Mg-V-Al-O催化剂中MgV-Al-C4的丙烯选择性最高,为77.4%,丙烷转化率为13.3%。
     我们采用“双溶剂”法,将Zn/Fe摩尔比为1/2的硝酸盐水溶液引入到SBA-15的孔道中,经后处理后得到尖晶石相的ZnFe_2O_4纳米线。600℃焙烧后出现尖晶石相,但较慢的升温速率和高的焙烧温度有利于提高纳米线的晶化程度,完好的尖晶石相焙烧温度应在900℃以上。磁性表征结果显示,所合成的尖晶石相ZnFe_2O_4纳米线具有超顺磁性。“双溶剂”法可以定量将前驱体引入到硬模板的孔道内,并在后处理过程中保持其组分的恒定,因此可通过不同的硬模板,应用于尺度和形状可控的多组分金属氧化物纳米材料的制备。
     我们运用Gaussian软件对十聚钨阴离子([W_(10)O_(32)]~(4-))进行了理论计算,采用流行的杂化泛函B3LYP及混合基组方法优化了几何参数,通过振动分析得到了体系的红外及拉曼光谱。含时方法的发展使得我们可以研究体系的激发能,从而获得体系的紫外—可见光谱。对体系的价键采用了NBO和Mayer两种方法分析。NMR技术是多酸化学研究中的一个重要手段,我们利用GIAO模型模拟了体系的~(183)W和~(17)O的NMR,结果显示通过线性校正后,~(183)W化学位移的计算结果,可对实验结果进行定性判断。~(17)O的化学位移有20~40 ppm的过高估计在此计算的基础上我们考虑[W_(10)O_(32)]~(4-)的单电子、双电子还原及氧化,对相关结果进行了对比。结果显示溶剂化效应对十聚钨酸根阴离子体系的相对稳定性有一定影响,溶剂的极性越大体系获得的稳定化能越大,体系的负电荷数越大所获得的稳定化能也越大。
     PMoV杂多酸是一类重要的多酸,目前在催化方面有不少的应用,因为它们含有普遍认为具有较好催化活性的Mo、V原子。采用前述的类似的方法对PMoV杂多阴离子进行了探讨。PMoV杂多酸是由于V取代具有Keggin型结构的[PMo_(12)O_(40)]~(3-)的杂多阴离子中的Mo而得的,由于V的取代位置不同,[PMo_(10)V_2O_(40)]~(5-)具有5种几何异构体,这为实验所证实。我们的计算结果也得到了5种异构体的稳定构象,并且发现相对稳定顺序为:Mo_(10)V_(2~-)E>Mo_(10)V_(2~-)C>Mo_(10)V_(2~-)D>Mo_(10)V_(2~-)A>>Mo_(10)V_(2~-)B。
In this thesis the research was focused on the selective oxidation of propane on mesoporous alumina based metal oxide catalysts, the exploration of novel methods for the preparation of nano metal oxide materials, and the theoretical study on polyanions.
    Mesoporous alumina was used as the support of catalysts. Three kinds of catalysts containing P-Mo-V, Mg-V, and Nb-V were prepared by both impregnation and co-synthesis methods. P-Mo-V, Mg-V, and Nb-V were introduced into the frame of mesoporous alumina by co-synthesis methods. The co-synthesized samples have disordered pores with wide pore distribution. 5-coordinated Al exists in the co-synthesized samples proved by the ~(27)A1 MAS NMR technique. The amount of 5-coordinated Al species is related to the amount of P-Mo-V, Mg-V, and Nb-V. In contrast there are only 4- and 6-coordinated Al species in impregnated samples, meso-Al_2O_3, and γ-Al_2O_3. The effects of space velocity, propane/oxygen ratio, reaction temperature, and contents of active constituent were explored. The results showed that co-synthesized P-Mo-V-Al-O catalysts have higher conversion of propane, higher selectivity of acetone, but lower selectivity of propene. Both the ratio and amount of Mg/V in co-synthesized catalysts influence the activity of Mg-V-Al-O catalysts. However, the impregnated Nb-V-Al-O catalysts has better reaction results than the related co-synthesized ones. The reaction looks like through the [CH_3CH(OH)CH_3] intermediate, because acetone was detected in the products. PMoV-Al-C4 has the highest yield of acetone (7.4%) with reaction temperature of 550 ℃, space velocity of 4800 mL·g~(-1)·h~(-1) and C_3H_8/O_2 ratio of 1.0/0.9. With the same reaction condition, MgV-A1-C4 had the highest selectivity of propene (77.4%).
    Zinc and iron nitrates with molar ratio of 1:2 were introduced into mesoporous silica host SBA-15 via a "two-solvent" route. The thermal decomposition of the precursors inside SBA-15 and the formation of spinel phase were monitored by X-ray diffraction, thermogravimetric and differential thermal analysis. The one-dimensional nanostructured spinel zinc ferrite in mesopores and pure spinel ZnFe_2O_4 nanowires, obtained through complete removal of the silica template with aqueous NaOH solution, were confirmed by TEM. The nanowires exhibited superparamagnetism at room temperature, whereas the bulk spinel ZnFe_2O_4 showed weak paramagnetism. The method may be extended to prepare nano metal oxides with defined compositions.
    Density functional method was employed to study geometry, bonds, valances, MEP, NMR, etc. of ployanions [W_(10)O_(32)]~(n-) and [PMo_(10)V_2O_(40)]~(5-). Bridged oxygen (O_b) was proved to be the active site in ployanions from MEP and other information. Solvation had some effects to the stability of [W_(10)O_(32)]~(n-). The more polarity of solvent, the higher stable energy was obtained. The more negative charge of [W_(10)O~(32)]~(n-), the more stable energy was obtained. The order of the stability is: Mo_(10)V_2-E > Mo_(10)V_2-C > Mo_(10)V_2-D > Mo_(10)V_2-A > Mo_(10)V_2-B. The results also showed the calculations of NMR are successful.
引文
[1] 昊越.催化化学[M].北京:科学出版社,2000:4.
    [2] 阎子峰.纳米催化技术[M].北京:化学工业出版社,2003:442-445.
    [3] 徐如人,庞文琴,于吉红,霍启升,陈接胜.分子筛与多孔材料化学[M].北京: 科学出版社,2004:528-684.
    [4] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid ctystal template mechanism [J], 1992, 359: 710-712.
    [5] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J Am Chem Soc, 1992, 114: 10834-10843.
    [6] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548-552.
    [7] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant inorganic composite materials [J]. Nature, 1994, 368: 317-321.
    [8] Lin H P, Kuo C L, Wan B Z, et al. Optimum synthesis of mesoporous silica materials from acidic condition [J]. J Chin Chem Soc, 20-02, 49(5): 899-906.
    [9] Monnier A, Schuth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science, 1993, 261: 1299-1303.
    [10] Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials [J]. Chem Mater, 1996, 8:1147-1140.
    [11] Collart O, Van Der Voort P, Vansant E F, et al. A high-yield reproducible synthesis of MCM-48 starting from fumed silica [J]. J Phys Chem B, 2001, 105: 12771-12777.
    [12] Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate [J]. J Chem SocChem Commun, 1993, 680-682.
    [13] Huo Q S, Leon R, PetroffP M, et al. Mesostructure Design with gemini surfactants supereage formation in a 3-dimensional hexagonal array [J]. Science, 1995, 268: 1324-1327.
    [14] Zhao D Y, Huo Q S, Feng J L, et al. Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants [J]. Chem Mater, 1999, 11: 2668-2672.
    [15] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomede surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica struetures [J]. J Am Chem Soc, 1998, 120: 6024-6036.
    [16] Ryoo R, Kim J M, Ko C H, et al. Disordered molecular sieve with brached mesoporous channel network [J]. J Phys Chem, 1996, 271: 1267-1269.
    [17] Kleitz F, Choi SH, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chem Commun, 2003, (17): 2136-2137.
    [18] Tanev P T, Chibwe M, Pinnavala T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature, 1994, 368: 321-323.
    [19] Tanev P T, Pinnavaia T J. A neutral templating Route to Mesoporous molecular sieves [J]. Science, 1995, 267: 865-867.
    [20] Tanev P T, Pinnavaia T J. Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: A comparison of physical properties [J]. Chem Mater, 1996, 8: 2068-2079.
    [21] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269: 1242-1244.
    [22] Yu C Z, Yu Y H, Zhao D Y. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer [J]. Chem Commun, 2000, (7): 575-576.
    [23] Yu Y H, Yu C Z, Yu Z, et al. Polymorphism of silica mesostructures templated by poly (ethylene oxide)-b-poly(boutylene oxide) diblock copolymer [J]. Chem Lett, 2000, (5): 504-505.
    [24] Liu X Y, Tian B Z, Yu C Z, et al. Room-temperature synthesis in acidic media of largepore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry [J]. Angew Chem-Int Edit, 2002, 41: 3876-3878.
    [25] Fan J, Yu C Z, Gao T, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J]. Angew Chem-Int Edit, 2003, 42:3146-3150.
    [26] Schuth F. Non-siliceous mesostructured and mesoporous materials [J]. Chem Mater, 2001, 13: 3184-3195.
    [27] Kaneda M, Tsubakiyama T, carlsson A, et al. Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography [J]. J Phys Chem B, 2002, 106: 1256-1266.
    [28] Zhang W H, Liang C H, Sun H J, et al. Synthesis of ordered mesoporous carbons composed ofnanotubes via catalytic chemical vapor desposition [J]. Adv Mater, 2002, 14: 1776-1778.
    [29] Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons [J]. Adv Mater, 2001, 13: 677-681.
    [30] Validly F, Khodabandeh S, Davis M E. Synthesis of pure alumina mesoporous materials [J]. Chem Mater, 1996, 8: 1451-1464.
    [31] Deng W, Bodart P, Pruski M, et al. Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating [J]. Microporous Mesoporous Mater, 2002, 52:169-177.
    [32] 乐英红,马臻,华伟明,等.二氧化钛介孔分子筛的合成和表征[J].化学学报. 2000,58:777-780.
    [33] Tiemann M, Froba M. Mesostructured aluminophosphates synthesized with supramolecular structure directors [J]. Chem Mater, 2001, 13:3211-3217.
    [34] Cejka J. Orgnized mesoporous alumina: synthesis, structure and potential in catalysis [J]. Appl Catal A, 2003, 254(2): 327-338.
    [35] Bagshaw S A, Pinnavaia T J. Mesoporous alumina molecular sieves [J]. Angew Chem-Int Edit, 1996, 35: 1102-1105.
    [36] Gonzalez-Pena V, Marquez-Alvarez, Sastre E, et al. Synthesis of ordered mesoporous and microporous aluminas: strategies for tailoring texture and aluminum coordination [J]. Stud SurfSci Catal, 2002, 142: 1283-1290.
    [37] Zhang W Z, Pinnavaia T J. Rare earth stabilization of mesoporous alumina molecular sieves assembled through an N degrees I degrees pathway [J]. Chem Commun, 1998, (11): 1185-1186.
    [38] Cejka J, Zilkova N, Rathousky J, et al. Nitrogen adsorption study of organised mesoporous alumina [J]. Phys Chem Chem Phys, 2001, 3(22): 5076.
    [39] Liu X H, Wei Y, Jin D L, et al. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid [J]. Mater Lett, 2000, 42(3): 143-149.
    [40] Cabrera S, El Haskouri J, Alamo J, et al. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes [J]. Adv Mater, 1999, 11(5): 379-381.
    [41] Gonzalez-Pena V, Diaz I, Marquez-Alvarez C, et al. Thermally stable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines [J]. Microporous Mesoporous Mater, 2001, 44: 203-210.
    [42] Yang P D, Zhao D Y, Margolese D I, et al. Block copolymer templating syntheses of mesopovrous metal oxides with large ordering lengths and semicrystalline framework [J]. Chem Mater, 1999, 11(10): 2813-2826.
    [43] Emig G, Martin F. Economies of maleic anhydride production from C4 feedstocks [J]. Catal Today, 1987, 1: 477-498.
    [44] 张东生.世界丙烯业发展步履艰难[J].国际化工信息.2003, (8):14-16.
    [45] 俞文欣.丙烯需求推动丙烷脱氢技术发展[J].国际化工信息.2004,(1):20-22.
    [46] 林海鹰.世界丙烯需求将持续增长[J].国际化工信息.2004, (7):9-13.
    [47] Outokumpu HSC Chemistry for Windows 5.1 [CP/DK]. Espoo: Outokumpu Research Oy, 2003.
    [48] Mamedov E A, Cortes Corberan V. Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts: The present state of the art and outlooks [J]. Appl Catal A, 1995, 127(1-2): 1-40.
    [49] Lopez Nieto J M, Blasco T. Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts [J]. Appl Catal A, 1997, 157(1-2): 117-142.
    [50] Cavani F, Trifiro F. The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins [J]. Catal Today, 1995, 24(3): 307-313.
    [51] Liu YM, Cao Y, Zhu KK, et al. Highly efficient VOx/SBA-15 mesoporous catalysts for oxidative dehydrogenation of propane [J]. Chem Commun, 2002, (23): 2832-2833
    [52] Liu YM, Cao Y, Yan SR, et al. Highly effective oxidative dehydrogenation of propane over vanadia supported on mesoporous SBA-15 silica [J]. Catal Lett, 2003, 88(1-2): 61-67.
    [53] Liu YM, Cao Y, Yi N, et al. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane [J]. J Catal, 2004, 224(2): 417-428.
    [54] Zhang W D, Zhou X P, Tang D L, et al. Oxidative dehydrogenation of propane over fluorine promoted rare earth-based catalysts [J]. Catal Lett, 1994, 23(1-2): 103-106.
    [55] Fang Z M, Hong Q, Zhou Z H, et al. Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method [J]. Catal Lett, 1999, 61(1-2): 39-44.
    [56] Concepci6n p, Lrpez Nieto J M, Perez-Pariente J. The selective oxidative dehydrogenation of propane on vanadium aluminophosphate catalysts [J]. Catal Lett, 1993, 19(4): 333-337.
    [57] Lindblad T, Rebenstorf B, Yan Z G, et al. Characterization of vanadia supported on amorphous AlPO4 and its properties for oxidative dehydrogenation of propane [J]. Appl Catal A, 1994, 112: 187-208.
    [58] Andersson S L T. Kinetic-study of the oxidative dehydrogenation of propane over vanadia supported on amorphous AIPO4 [J]. Appl Catal A, 1994, 112(2): 209-218.
    [59] Lopez Nieto J M, Concepci6n p, Perez-Pariente J. Oxidative dehydrogenation of propane on VAPO-5, V_2O_5/ALPO4-5 and V_2O_5/MgO catalysts. Nature of selective sites [J]. J Mole Catal A, 1995, 97(3): 173-182.
    [60] Blasco T, Concepeion p, Lopez Nieto J M, et al. Preparation, characterization, and catalytic properties of VAPO-5 for the oxydehydrogenation of propane [J]. J Catal, 1995, 152(1): 1-17.
    [61] Okamoto M, Luo L, Labinger J A, et al. Oxydehydrogenation of propane over vanadyl ioncontaining VAPO-5 and CoAPO-5 [J]. J Catal, 2000, 192(1): 128-136.
    [62] Stern D L, Grasselli, R K. Propane oxydehydrogenation over molybdate-based catalysts [J]. J Catal, 1997, 167(2): 550-559.
    [63] Yoon Y S, Fujikawa N, Ueda W, et al. Oxidative dehydrogenation of propane to pmpene over cobalt molybdate catalysts [J]. Chem Lett, 1994,(9): 1635-1636.
    [64] Yoon Y S, Fujikawa N, Ueda W, et al. Propane oxidation over various metal molybdate catalysts [J]. Catal Today, 1995, 24(3): 327-333.
    [65] Yoon Y S, Ueda W, Morooka Y. Oxidative dehydrogenation of propane over magnesium molybdate catalysts [J]. Catal Lett, 1995, 35(1-2): 57-64.
    [66] Yoon Y S, Ueda W, Morooka Y. Selective conversion of propane to propene by the catalytic oxidative dehydrogenation over cobalt and magnesium molybdates [J]. Top Catal, 1996, 3(3-4): 265-275.
    [67] Lee K H, Yoon Y S, Ueda W, et al. An evidence of active surface MoO_x over MgMoO_4 for the catalytic oxidative dehydrogenation of propane [J]. CATALYSIS LETTERS 46 (3-4): 267-271 1997
    [68] Ueda W, Yoon Y S, Lee K H, et al. Catalytic oxidation of propane over molybdenum-based mixed oxides [J]. Korean J Chem Eng, 1997, 14(6): 474-478.
    [69] Ueda W, Lee K H, Yoon Y S, et al. Selective oxidative dehydrogenation of propane over surface molybdenum-enriched MgMoO_4 catalyst [J]. Catal Today, 1998, 44(1-4): 199-203.
    [70] Yoon Y S, Suzuki K, Hayakawa T, et al. Structures and catalytic properties of magnesium molybdate in the oxidative.dehydrogenation of alkanes [J]. Catal Lett, 1999, 59(2-4): 165-172.
    [71] Takita Y, Yamashita H, Moritaka K. Selective partial oxidation of propane over metal phosphate catalysts [J]. Chem Lett, 1989, 1733-1736.
    [72] Baems M, Buyevskaya O V, Kubik M, et al. Catalytic partial oxidation of propane to acrolein [J]. Catal Today, 1997, 33(1-3): 85-96.
    [73] Sinev M Y, Udalova O V, Tulenin Y P, et al. Propane partial oxidation to acrolein over combined catalysts [J]. Catal Lett, 2000, 69(3-4): 203-206.
    [74] 张昕,伊晓东,毕盈,等.钼基催化剂氧化还原性质对丙烷选择氧化制丙烯醛反应的影响[J].催化学报.2002,23(3):281-284.
    [75] Zhang X, Wan H L, Weng W Z, et al. Selective oxidation of propane to acrolein over Cedoped Ag-Mo-P-O catalysts: influence of Ce promoter [J]. Catal Lett, 2003, 87(3-4): 229-234.
    [76] Zhang X, Wan H L, Weng W Z, et al. Effect of promoter Ce on silver-molybdenum-phosphate catalysts for selective oxidation of propane to acrolein [J]. J Mole Catal A, 2003, 200(1-2): 291-300.
    [77] 张昕,万惠霖,翁维正,等.丙烷选择氧化制丙烯醛催化剂中Ce的作用[J].物理化学学报.2003,19(6):492-497.
    [78] 伊晓东,翁维正,黄传敬,等.MoPO/SiO_2催化剂上丙烷选择氧化制丙烯醛[J]. 催化学报.2003,24(10):769-774.
    [79] Jiang H C, Lu W M, Wan H L. The effect of MoV_(0.3)Te_(0.23)P_xO_n catalysts with different phosphorus content for selective oxidation of propane to acrolein [J]. J Mole Catal A, 2004, 208(1-2): 213-217.
    [80] Jiang H C, Lu W M, Wan H L. Synthesis ofacrolein from partial oxidation of propane on Mo-V-Te-P-O catalysts prepared by different methods [J]. Catal Commun, 2004, 5(1): 29-34.
    [81] Jiang H C, Lu W M, Wan H L. Effect of different dopant in the Mo-V-Te-O catalyst on the performance of selective oxidation propane to acrolein [J]. Chin Chem Lett, 2004, 15(8): 977-980.
    [82] 黄传敬,郭雯,金燕仙,等.丙烷选择氧化制丙烯醛MoVTeO/SiO_2催化剂结构与性能研究[J].化学学报.2004,62(18):1701-1705.
    [83] Chen L Q, Liang J, Weng W Z, et al. Direct oxidation of propane to acmlein over MCM41-supported MoVTe mixed oxide catalysts [J]. Catal Commn, 2004, 5(11): 697-701.
    [84] Yi X D, Weng W Z, Huang C J, et al. Infrared study of the reaction pathways for the selective oxidation of propane to acrolein over MOPO/SiO_2 catalyst [J]. Stud Surf Sci Catal, 2004, 147: 667-672.
    [85] Huang CJ, Guo W, Yi X D, et al. Effect of support on performance of MoVTeO catalyst for selective oxidation of propane to acrolein [J]. Stud Surf Sci Catal, 2004, 147: 661-666.
    [86] Jiang H C, Lu W M, Wan H L. Selective oxidation of propane to acrolein over different Mo-V-Te-P-O catalysts [J]. Indian J Chem Sec A, 2004, 43(11): 2320-2324.
    [87] Zhang Q H, Wang Y, Ohishi, Y, et al. V-MCM-41 for selective oxidation of propane to propene and acrolein [J]. Chem Lett, 2001, (3): 194-195.
    [88] Kolsch P, Smejkal Q, Noack M, et al. Partial oxidation of propane to acrolein in a membrane reactor-Experimental data and computer simulation [J]. Catal Commun, 2002, 3(10): 465-470.
    [89] Zhu B C, Li H B, Yang W S. AgBiVMo oxide catalytic membrane for selective oxidation of propane to acrolein [J]. Catal Today, 2003, 82(1-4): 91-98.
    [90] Mizuno N, Tateishi M, Iwamoto M. Pronounced catalytic activity of Fe_(0.08)Cs_(2.5)H_(1.26)PVMo_(11)O_(40) for direct oxidation of propane into acrylic-acid [J]. Appl Catal A, 1995, 128(2): L165-L170.
    [91] Mizuno N, Sub D J. Selective oxidative dehydrogenation of propane at 380℃ by Cs_(2.5)Cu_(0.08)H__(3.34)PV_3Mo_9O_(40) catalyst precursor [J]. Appl Catal A, 1996, 146(2): L249-L254.
    [92] Mizuno N, Hart W C, Kudo T. Selective oxidation of ethane, propane, and isobutane catalyzed by copper-containing Cs_(2.5)H_(1.5)PVMo_(11)O_(40) under oxygen-poor conditions [J]. J Catal, 1998, 178(1): 391-394.
    [93] Min J S, Mizuno N. Iron as an effective additive for enhancement of catalytic performance of cesium hydrogen salt of molybdophosphoric acid for selective oxidation of isobutane, propane, and ethane under oxygen-rich and -poor conditions and the catalyst design [J]. Catal Today, 2001, 66(1): 47-52.
    [94] Ueda W, Suzuki Y. Partial oxidation of propane to acrylic-acid over reduced heteropolymolybdate catalysts record contains structures [J]. Chem Lett 1995, (7): 541-542.
    [95] Ueda W, Suzuki Y, Lee W, et al. Catalytic oxidation of propane to acrylic acid with molecular oxygen activated over reduced heteropolymolybdates [J]. Stud Surf Sci Catal, 1996, 101: 1065-1074.
    [96] Li W, Oshihara K, Ueda W. Catalytic performance for propane selective oxidation and surface properties of 12-molybdophosphoric acid treated with pyridine [J]. Appl Catal A, 1999, 182(2): 357-363.
    [97] 张昕.Ce-Ag-Mo-P-O催化剂上丙烷选择氧化制丙烯醛反应研究[D].厦门:厦门大学, 2001.
    [98] Kaddouri A, Mazzocchia C, Tempesti E. The synthesis of acrolein and acrylic acid by direct propane oxidation with Ni-Mo-Te-P-O catalysts [J]. Appl Catal A, 1999, 180(1-2): 271-275.
    [99] Balcells E, Borgmeier F, Grisstede I, et al. Partial oxidation of propane and propene to acrylic acid over a Mo-V-Te-Nb oxide catalyst [J]. Cata Lett, 2003, 87(3-4): 195-199.
    [100] Vitry D, Morikawa Y, Dubois JL, et al. Mo-V-Te-(Nb)-O mixed metal oxides prepared by hydrothermal synthesis for catalytic selective oxidations of propane and propene to acrylic acid [J]. Appl Catal A, 2003, 251(2): 411-424.
    [101] Zhu B C, Li H B, Yang W S, et al.Effects of reaction conditions on the selective oxidation of propane to acrylic acid on Mo-V-Te-Nb oxides [J]. Catal Today, 2004, 93-95: 229-234.
    [102] Balcells E, Borgmeier F, Grisstede I, et al. Partial oxidation of propane to acrylic acid at a Mo-V-Te-Nb-oxide catalyst [J]. Appl Catal A, 2004, 266(2): 211-221.
    [103] 屠新林,住田勇一,高桥卫.金属氧化物催化剂的制造方法[P].日本专利: P2004-313956A,2004-11-11.
    [104] 金胜明.C_3烃氨氧化钼铋催化剂的制备、表征、评价及理论研究[D].长沙:中南大学,2001.
    [105] Guerrero-Perez M O, Fierro J L G, Vicente M A, et al. Effect of Sb/V ratio and of Sb+V coverage on the molecular structure and activity of alurnina-supported Sb-V-O catalysts for the ammoxidation of propane to acrylonitrile [J]. J Catal, 2002, 206 (2): 339-348.
    [106] Guerrero-Perez M O, Fierro J L G, Banares M A. Niobia-supported Sb-V-O catalysts for propane ammoxidation: effect of catalyst composition on the selectivity to acrylonitrile[J]. Phys Chem Chem Phys, 2003, 5(18): 4032-4039.
    [107] Guerrero-Perez M O, Al-Saeedi J N, Guliants V V, et al. Catalytic properties of mixed Mo-V-Sb-Nb-O oxides catalysts for the ammoxidation of propane to acrylonitrile [J]. Appl Catal A, 2004, 260(1): 93-99.
    [108] 韩维屏,相衛,王清滨,等.催化化学导论[M].北京:科学出版社,2003: 382-383.
    [109] Sun H, Blatter F, Frei H. Oxidation of propane to acetone and of ethane to acetaldehyde by O~2 in zeolites with complete selectivity [J]. Catal Lett, 1997, 44(3-4): 247-253.
    [110] Xu J, Mojet B L, van Ommen J G, et al. Desorption of acetone from alkaline-earth exchanged Y zeolite after propane selective oxidation [J]. J Phys Chem B, 2004, 108(1): 218-223.
    [111] Xu J, Mojet B L, van Ommen J G, et al. Effect of Ca~(2+) position in zeolite Y on selective oxidation of propane at room temperature J Phys Chem B, 2004, 108(40): 15728-15734.
    [112] Bettahar MM, Costentin G, Savary L, et al.On the partial oxidation of propane and propylene on mixed metal oxide catalysts [J]. Appl Catal A, 1996, 145(1-2): 1-48.
    [113] Baems M, Buyevskaya O. Simple chemical processes based on low molecular-mass alkanes as chemical feedstocks [J]. Catal Today, 1998, 45(1-4): 13-22.
    [114] Michalakos P M, Kung M C, Jahan I, et al. Selectivity patterns in alkane oxidation over mg3(VO_4)_2-MgO, Mg_2V_2O_7, and (VO)_2P_2O_7 [J]. J Catal, 1993, 140(1): 226-242.
    [115] 刘永梅.丙烷氧化脱氢制丙烯纳米催化剂的制备、表征及应用[D].上海:复旦大学,2004.
    [116] Jibril B Y, Al-Zahrani S M, Abasaeed A E, et al. Propane oxidative dehydrogenation on Cs-doped Cr-Mo-Al-O catalyst: kinetics and mechanism [J]. Chem Eng J, 2004, 103(1-3): 59-67.
    [117] Leveles L, Seshan K, Lercher J A, et al. Oxidative conversion of propane over lithiumpromoted magnesia catalyst - Ⅰ. Kinetics and mechanism [J]. J Catal, 2003, 218(2): 296-306.
    [118] Leveles L, Seshan K, Lercher J A, et al. Oxidative conversion of propane over lithiumpromoted magnesia catalyst - Ⅱ. Active site characterization and hydrocarbon activation [J]. J Catal, 2003, 218(2): 307-314.
    [119] Teng Y, Kobayashi T. Format[on of oxygenates in the propane oxidation over K~+ modified Fe/SiO_2 catalyst [J]. Chem Lett, 1998, 27(4): 327-328.
    [120] 林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004:1-155.
    [121] Braida B, Hiberty P C. What makes the trifluofide anion F_3 so special? A breathing-orbital valence bond ab initio study [J]. J Am Chem Soc, 2004, 126(45): 14890-14898.
    [122] Su P F, Song L C, Wu W, et al. Valence bond calculations of hydrogen transfer reactions: A general predictive pattern derived from theory [J]. J Am Chem Soc, 2004, 126(41): 13539-13549.
    [123] Casula M, Attaccalite C, Sorella S. Correlated geminal wave function for molecules: An efficient resonating valence bond approach [J]. J Chem Phys, 2004, 121(15): 7110-7126.
    [124] Leach A R. Molecular Modelling. Principles and applications [M]. London: Pearson Education Limited, 2001: 127-164.
    [125] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys Rev A. 140: 1133-1138.
    [126] Aulbur W. Density functional theory [EB/OL]. http://www.physics.ohio-state.edu/~aulbur/dft.html.
    [127] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic medhod [J]. Phys Rev Lett, 1980, 45: 566-569.
    [128] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density [J]. Phys Rev B, 1988, 37: 785-789.
    [129] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis [J]. Can J Phys, 1980, 58: 1200-1211.
    [130] Perdew J P, Wang Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation [J]. Phys Rev B, 1986, 33(12): 8800-8802.
    [131] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A, 1988, 38: 3098-3100.
    [132] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys Rev B, 1992, 45(23): 13244-13249.
    [133] Becke A D. Density-functional thermochemistry .4. A new dynamical correlation functional and implications for exact-exchange mixing [J]. J Chem Phys, 1996,104 (3): 1040-1046.
    [134] Becke A D. Density-functional thermochemistry .3. The role of exact exchange [J]. J Chem Phys, 1993, 98(7): 5648-5652.
    [135] Xu X, Goddard W A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties [J]. Proc Natl Acad Sci USA, 2004, 101(9): 2673-2677.
    [136] Xu X. Zhang Q S, Muller R P, et al. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems [J]. J Chem Phys, 2005, 122(1): Art. No. 014105.
    [137] Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J]. Chem Phys Lett, 1996,256 (4-5): 454-464.
    [138] Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J]. J Chem Phys, 1998, 108(11): 4439-4449.
    [139] Stratmann R E, Scuseria G E, Frisch M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J Chem Phys, 1998, 109(19): 8218-8224.
    [140] Gao J. Methods and applications of combined quantum mechanical and molecular mechanical potentials [J]. Rev Comp Chem, 1995, 7:119-185.
    [141] Yam C Y, Zheng X, Chen G H. Linear-scaling quantum mechanical methods for nanoscopic structures [C]. Reith M, Schommers W. Handbook of theoretical and computational nanotechnology. California: American Scientific Publishers, 2005: in press.
    [142] Hu L H, Wang X J, Wong L H, et al. Combined first-principles calculation and neural- network correction approach for heat of formation [J]. J Chem Phys, 2003,119(22): 11501- 11507.
    [143] Wang X J, Hu L H, Wong L H, et al. A combined first-principles calculation and Neural Networks correction approach for evaluating Gibbs energy of formation [J]. Mole Simul, 2004, 30(1): 9-15.
    [144] Kohler C, Seifert G, Frauenheim T. Density functional based calculations for Fe_n (n <= 32) [J]. Chem Phys, 2005: 309(1): 23-31.
    [145] Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory [J]. Chem Rev,2003,103(5):1793-1873.
    [1] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision B.03 [CP/DK]. Pittsburgh: Gaussian, Inc. 2003.
    [1] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem Rev, 1997, 97(6): 2373-2420.
    [2] Lee B, Zhu H G, Zhang Z T, et al. Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method [J]. Microporous Mesoporous Mater, 2004, 70(1-3): 71-80.
    [3] Wang L P, Kong A G, Chen B, et al. Direct synthesis, characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H_2O_2 [J]. J Mole Catal A, 2005, 230 (1-2): 143-150.
    [4] Shi L Y, Wang Y M, Ji A, et al. In situ direct bifunctionalization of mesoporous silica SBA-15 [J]. J Mater Chem, 2005, 15(13): 1392-1396.
    [5] Yasuda H, Nakayama Y, Satoh Y, et al. Activity of samarocene catalysts adsorbed on mesoporous silicates for the polymerization of methyl methacrylate [J]. Polymer Int, 2004, 53(11): 1682-1685.
    [6] Ryoo R, Ko C H, Kim J M, et al. Preparation of nanosize Pt clusters using ion exchange of Pt(NH_3)_4~(2+) inside mesoporous channel of MCM-41 [J]. Catal Lett, 1996, 37(1-2): 29-33.
    [7] Rodriguez-Castellon E, Diaz L, Braos-Garcia P, et al. Nickel-impregnated zirconium-doped mesoporous molecular sieves as catalysts for the hydrogenation and ring-opening of tetralin [J]. Appl Catal A, 2003, 240(1-2): 83-94.
    [8] Liu Q Y, Wu W L, Wang J, et al. Characterization of 12-tungstophosphoric acid impregnated on mesoporous silica SBA-15 and its catalytic performance in isopropylation of naphthalene with isopropanol [J]. Microporous Mesoporous Mater, 2004, 76(1-3): 51-60.
    [9] Inaki Y, Kajita Y, Yoshida H, et al. New basic mesoporous silica catalyst obtained by ammonia grafting [J]. Chem Commun, 2001, (22): 2358-2359.
    [10] Shylesh S, Singh A P. Synthesis, characterization, and catalytic activity of vanadiumincorporated, -grafted, and -immobilized mesoporous MCM-41 in the oxidation of aromatics [J]. J Catal, 2004, 228(2): 333-346.
    [11] Kapoor M P, Iehihashi Y, Kuraoka K, et al. Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide [J]. J Mole Catal A, 2003, 198(1-2): 303-308.
    [12] Chiker F, Nogier J P, Launay E, et al. Optimisation of gas phase deposition of titanium on mesoporous silica SBA-15: active site counting and catalytic activity in cyclohexene epoxidation [J]. Appl Catal A, 2004, 259(2): 153-162.
    [13] Sayafi A, Liu P. Non-silica periodic mesostructured materials: recent progress [J]. Microporous Mater, 1997, 12(4-6): 149-177.
    [14] Schuth F. Non-siliceous mesostructured and mesopomus materials [J]. Chem Mater, 2001, 13: 3184-3195.
    [15] Yu C Z, Tian B Z, Zhao D Y. Recent advances in the synthesis of non-siliceous mesopomus materials [J]. Curr Opin Solid State Mater Sci, 2003, 7(3): 191-197.
    [16] Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons [J]. Adv Mater, 2001, 13: 677-681.
    [17] Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinum films from lyotropic liquid crystalline phases [J]. Science, 1997, 278(5339): 838-840.
    [18] Attard G S, Coleman N R B, Elliott J M. The preparation of mesoporous metals from preformed surfactant assemblies [J]. Stud Surf Sci Catal, 1998, 117: 89-94.
    [19] MacLachlan M J, Coombs N, Ozin G A. Non-aqueous supmmolecular assembly of mesostructured metal germanium sulphides from (Ge_4S_(10))~(4-) clusters [J]. Nature, 1999, 397 (6721): 681-684.
    [20] Wachs I E, Weckhuysen B M. Structure and reactivity of surface vanadium oxide species on oxide supports [J]. Appl Catal A, 1997, 157(1-2): 67-90.
    [21] Blasco T, Galli A, Lopez Nieto J M, et al. Oxidative dehydrogenation of ethane and nbutane on VO_x/Al_2O_3 catalysts [J]. J Catal, 1997, 169 (1): 203-211.
    [22] Le Bars J, Auroux A, Forissier M, et al. Active sites of V_2O_5/γ-Al_2O_3 catalysts in the oxidative dehydrogenation of ethane [J]. J Catal, 1996, 162(2): 250-259.
    [23] Gao X T, Banares M A, Wachs I E. Ethane and n-butane oxidation over supported vanadium oxide catalysts: An in situ UV-Visible diffuse reflectance spectroscopic investigation [J]. J Catal, 1999, 188(2): 325-331.
    [24] Eon J G, Olier R, Volta J C. Oxidative dehydrogenation of propane on γ-Al_2O_3 supported vanadium-oxides [J]. J Catal, 1994, 145(2): 318-326.
    [25] Lopez Nieto J M, Coenraads R,L Dejoz A, et al. The role of metal oxides as promoters of V_2O_5/γ-Al_2O_3 catalysts in the oxidative dehydrogenation of propane [J]. Stud Surf Sci Catal, 1997, 110: 443-452.
    [26] Capannelli G, Carosini E, Cavani F, et al. Comparison of the catalytic performance of V_1O_5/γ-Al_2O_3 in the oxidehydrogenation of propane to propylene in different reactor configurations: 1) Packed-bed reactor, 2) Monolith-like reactor and, 3) Catalytic membrane reactor [J]. Chem Eng Sci, 1996, 51(10): 1817-1826.
    [27] Galli A, L6pez Nieto J M, Dejoz A, et al. The effect of potassium on the selective oxidation of n-butane and ethane over Al_2O_3-supported vanadia catalysts [J]. Catal Lett, 1995, 34(1-2): 51-58.
    [28] Mattos A R J M, San Gil R A D, Rocco M L M, et al. Zinc-modified, alumina-supported vanadium oxides as catalysts for propane oxidative dehydrogenation [J]. J Mole Catal A, 2002, 178(1-2): 229-237.
    [29] Harlin M E, Niemi V M, Krause A O I, et al. Effect of Mg and Zr modification on the activity of VO_x/Al_2O_3 catalysts in the dehydrogenation of butanes [J]. J Catal, 2001,203(1): 242-252.
    [30] Mazzocchia C, Aboumrad C, Diagne C, et al. On the NiMoO_4 oxidative dehydrogenation of propane to propene - some physical correlations with the catalytic activity [J]. Catal Lett, 1991, 10(3-4): 181-191.
    [31] Yoon Y S, Fujikawa N, Ueda W, et al. Propane oxidation over various metal molybdate catalysts [J]. Catal Today, 1995, 24(3): 327-333.
    [32] Abello M C, Gomez M F, Ferretti O. Mo/λ-Al_2O_3 catalysts for the oxidative dehydrogenation of propane. Effect of Mo loading. Appl Catal A, 2001, 207 (1-2): 421-431.
    [33] Abello M C, Gomez M F, Ferretti O. Oxidative conversion of propane over Al_2O_3-supported molybdenum and chromium oxides [J]. Catal Lett, 2003, 87(1-2): 43-49.
    [34] Abello M C, Gomez M F, Casella M, et al. Characterization and performance for propane oxidative dehydrogenation ofLi-modified MoO_3/Al_2O_3 catalysts [J]. Appl Catal A, 2003, 251 (2): 435-447.
    [35] Calaza F C, Gomez M F, Arrua L A, et al. Oxidative dehydrogenation of propane over Mo/gamma-Al2O3- effect of precursor [J]. React Kinet Catal Lett, 2004, 81 (2): 259-264.
    [36] Takita Y, Kikukawa S, Abe Y, et al. Partial oxidation of propane over V-P-P catalysts and promoters [J]. Nippon Kagaku Kaishi, 1992, (4): 354-360.
    [37] Jibril B Y. Effects of feed compositions on oxidative dehydrogenation of propane over Mn-P-O catalyst [J]. Ind Eng Chem Res, 2005, 44(4): 702-706.
    [38] Perez-Reina F J, Rodriguez-Castellon E, Jimenez-Lopez A. Dehydrogenation of propane over chromia-pillared zirconium phosphate catalysts [J]. Langrnuir, 1999, 15 (24): 8421-8428.
    [39] Jimenez-Lopez A, Rodriguez-Castellon E, Santamaria-Gonzalez J, et al. Insertion of porous chromia in gamma-zirconium phosphate and its catalytic performance in the oxidative dehydrogenation of propane [J]. Langmuir, 2000, 16(7): 3317-3321.
    [40] Dimitratos N, Vedrine J C. Properties of Cs_(2.5) salts of transition metal M substituted Keggin-type M_(1-x)PV_1M_xMo_(11-x)O_(40) heteropolyoxometallates in propane oxidation [J]. Appl Catal A, 2003, 256(1-2): 251-263.
    [41] Dimitratos N, Vedrine J C. Role of acid and redox properties on propane oxidative dehydrogenation over polyoxometallates [J]. Catal Today, 2003, 81 (4): 561-571.
    [42] Al-Zahrani S M, Jibril B Y, Abasaeed A E. Keggin-type polyoxotungstate as a catalyst in oxidative dehydrogenation of propane [J]. J Mole Catal A, 2001, 175(1-2)259-265.
    [43] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269: 1242-1244.
    [44] Balcar H, Hamtil R, Zilkova N, et al. Rhenium oxide supported on mesoporous organized alumina as a catalyst for metathesis of 1-alkenes [J]. Catal Lett, 2004, 97(1-2): 25-29.
    [45] Kim P, Kim Y, Kim H, et al. Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas [J]. Appl Catal A, 2004, 272: 157-166, 2004
    [46] P. Kim, Y. Kim, Kim H, et al. Synthesis and characterization of mesoporous alumina for use as a catalyst support in the hydrodechlorination of 1,2-dichloropropane: effect of preparation condition of mesoporous alumina [J]. J Mole Cata A, 2004, 219: 87-95.
    [47] Zhang X, Zhang F, Chan K Y, The synthesis of large mesopores alumina by microemulsion templating, their characterization and properties as catalyst support [J]. Mater Lett, 2004, 58: 2872-2877.
    [48] Tsigdinos G A, Hallada C J. Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization [J]. Inorg Chem, 1968, 7(3): 437-441.
    [49] Kim Y, Lee B, Yi J. Synthesis of mesoporous γ-alumina through pre-and post-hydrolysis methods [J]. Korean J Chem Eng, 2002, 19(5): 908-910.
    [50] Akba O, Guzel F, Yurdakoc K, et al. Preparation and characterization of polyoxometallates of molybdenum, tungsten and their salts [J]. Synth React Inorg Met-Org Chem, 1997, 27 (9): 1399-1415.
    [51] Pope M T, Scully T F. Geometrieal isomerism arising from partial substitution of metal atoms in isopoly and heteropoly complexes. Possibilities for the Keggin structure [J]. Inorg Chem, 1975, 14(4): 953-954.
    [52] Pettersson L, Andersson I, Grate J H, et al. Multicomponent Polyanions. 46. Characterization of the isomeric Keggin decamolybdodivanadophosphate ions in aqueous solution by ~(31)p and ~(51)V NMR. Inorg Chem, 1994, 33(5): 982-993.
    [53] Bagshaw S A, Pinnavaia T J. Mesoporous alumina molecular sieves [J]. Angew Chem-Int Edit, 1996, 35: 1102-1105.
    [54] Gonzalez-Peria V, Diaz I, Marquez-Alvarez C, et al. Thermally stable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines [J]. Microporous Mesoporous Mater, 2001, 44-45: 203-210.
    [55] 马礼敦.高等结构分析[M].上海:复旦大学出版社,2002:55-66.
    [56] Deng W, Bodart P, Pruski M, et al. Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating [J]. Microporous Mesoporous Mater, 2002, 52: 169-177.
    [57] Coster D, Fripiat J J. Memory effects in gel-solid transformations: coordinately unsaturated aluminum sites in nanosized aluminas [J]. Chem Mater, 1993, 5(9): 1204-1210.
    [58] Coster D, Blumenfeld A L, Fripiat J J. Lewis acid sites and surface aluminum in aluminas and zeolites: A high-resolution NMR study [J]. J Phys Chem, 1994, 98(24): 6201-6211.
    [59] Amoldy P, De Jonge J C M, Moulijn J A. Temperature-programed reduction of molybdenum(Ⅵ) oxide and molybdenum(Ⅳ) oxide [J]. J Phys Chem, 1985, 89(21): 4517-4526.
    [60] Shiju N R, Anilkumar M, Mirajkar S P, et al. Oxidative dehydrogenation of ethylbenzene over vanadia-alumina catalysts in the presence of nitrous oxide: structure-activity relationship [J]. J Catal, 2005, 230(2): 484-492.
    [61] Koranne M M, Goodwin J G, Marcelin G. Characterization of silica-supported and alumina-supported vanadia catalysts using temperature-programmed reduction [J]. J Catal, 1994, 148 (1): 369-377.
    [62] Bettahar MM, Costentin G, Savary L, et al. On the partial oxidation of propane and propylene on mixed metal oxide catalysts [J]. Appl Catal A, 1996, 145(1-2): 1-48.
    [63] Gasior M, Grzybowska B, Samson K, et al. Oxidation of CO and C-3 hydrocarbons on gold dispersed on oxide supports [J]. Catal Today, 2004, 91-92: 131-135.
    [64] Rane VH, Rajput A M, Karkamkar A J, et al. Energy-efficient conversion of propane to propylene and ethylene over a V_2O_5/CeO_2/SA5205 catalyst in the presence of limited oxygen [J]. Appl Eng, 2004, 77(4): 375-382.
    [1] Chaar M A, Patel D, Kung M C, et al. Selective oxidative dehydrogenation of butane over V-Mg-O catalysts [J]. J Catal, 1987, 105(2): 483-498.
    [2] Chaar M A, Patel D, Kung H H. Selective oxidative dehydrogenation of propane over V-Mg-O catalysts [J]. J Catal, 1988, 109(2): 463-467.
    [3] Sam D S H, Soenen V, Volta J C. Oxidative dehydrogenation of propane over V-Mg-O catalysts [J]. J Catal, 1990, 123(2): 417-435.
    [4] Gao X T, Ruiz P, Xin Q, et al. Effect of coexistence of magnesium vanadate phases in the selective oxidation of propane to propene [J]. J Catal, 1994, 148(1): 56-67.
    [5] 方智敏,翁维正,万惠霖,等.丙烷氧化脱氢VMgO催化剂双相协同催化作用[J].分子催化,1995,(6):401-410.
    [6] Corma A, Lopez Nieto J M, Paredes N. Influence of the preparation methods of V-Mg-O catalysts on their catalytic properties for the oxidative dehydrogenation of propane [J]. J Catal, 1993, 144(2): 425-438.
    [7] Pantazidis A, Auroux A, Herrmann J M. Role of acid-base, redox and structural properties of VMgO catalysts in the oxidative dehydrogenation of propane [J]. Catal Today, 1996, 32 (1-4): 81-88.
    [8] Kung H H, Kung M C. Oxidative dehydrogenation of alkanes over vanadium-magnesium-oxides [J]. Appl Catal A, 1997, 157(1-2): 105-116.
    [9] Kung M C, Kung H H. The effect of potassium in the preparation of magnesium orthovanadate and pyrovanadate on the oxidative dehydrogenation of propane and butane [J]. J Catal, 1992, 134(2): 668-677.
    [10] Valenzuela R X, Mamedov E A, Corberan V C. Effect of different additives on the performance of V-Mg-O catalysts in the oxidative dehydrogenation of propane [J]. React Kinet Catal Lett, 1995, 55(1): 213-220.
    [11] Sugiyama S, Iizuka Y, Fukuda N, et al. Enhancement of the activities iwth feedstream doping by tetrachloromethane in the oxidative dehydrogenationof propane on a-magnesium pyrovanadate [J]. Catal Lett, 2001, 73(2-4): 137-140.
    [12] Sugiyama S, Iizuka Y, Konishi Y, et al. Oxidative dehydrogenation of propane on magnesium vanadates in the presence of tetrachloromethane [J]. Bull Chem Soc Jpn 2002, 75(1): 181-186.
    [13] Murgia V, Sham E, Gottifredi J C, et al. Oxidative dehydrogenation of propane and nbutane over alumina supported vanadium catalysts [J]. Latin Am Appl Res, 2004, 34(2): 75-82.
    [14] Carja G, Nakamura R, Aida T, et al. Mg-V-Al mixed oxides with mesoporous properties using layered double hydroxides as precursors: catalytic behavior for the process of ethylbenzene dehydrogenation to styrene under a carbon dioxide flow [J]. J Catal, 2003, 218(1): 104-110.
    [15] Chao Z S, Ruckenstein E. V-Mg-O prepared via a mesoporous pathway: a low-temperature catalyst for the oxidative dehydrogenation of propane to propene [J]. Catal Lett, 2004, 94 (3-4): 217-221.
    [16] Kim C, Kim Y, Kim P, et al. Synthesis of mesoporous alumina by using a cost-effective template [J]. Korean J Chem Eng, 2003, 20(6): 1142-1144.
    [17] Wachs I E, Chen Y S, Jehng J M, et al. Molecular structure and reactivity of the Group V metal oxides [J]. Catal Today, 2003, 78(1-4): 13-24.
    [18] Bettahar M M, Costentin G, Savary L, et al. On the partial oxidation of propane and propylene on mixed metal oxide catalysts [J]. Appl Catal A, 1996, 145(1-2): 1-48.
    [1] Nowak I, Ziolek M. Niobium compounds: preparation, characterization, and application in heterogeneous catalysis [J]. Chem Rev, 1999, 99(12): 3603-3624.
    [2] Ziolek M. Niobium-containing catalysts—the state of the art [J]. Catal Today, 2003, 78(1-4): 47-64.
    [3] Tanabe K. Catalytic application of niobium compounds [J]. Catal Today, 2003, 78(1-4): 65-77.
    [4] Young F G, Thorsteinson E M. Low temperature oxydehydrogenation of ethane to ethylene [P]. US Patent: 4,250,346, 1981-02-10.
    [5] Smits R H H, Seshan K, Ross J R H. The selective oxidative dehydrogenation of propane over niobium pentoxide [J]. J Chem Soc Chem Commun, 1991, (8): 558-559.
    [6] Smits R H H, Seshan K, Leemreize H, et al. Influence of preparation method on the performance of vanadia-niobia catalysts for the oxidative dehydrogenation of propane [J]. Catal Today, 1993, 16(3-4): 513-523.
    [7] Ushikubo T, Kinoshita H, Watanabe N. Manufacture of mixed metal oxide catalyst and acrylic acid production using thereof [P]. JP Patent: 10-57813, 1998-03-03.
    [8] Ushikubo T, Oshima K, Kiyono K, et al. Production of nitrile [P]. JP Patent: 05-148212, 1993-10-26.
    [9] Ushikubo T. Activation of propane and butanes over niobium- and tantalum-based oxide catalysts [J]. Catal Today, 2003, 78(1-4): 79-84.
    [10] Schuth F, Unger K. in: Ertl G, Knozinger H, Weitkamp J (Eds). Preparation of Solid Catalysts. Handbook of heterogeneous catalysis Vol 1 [C]. Weinheim: Wiley-VCH, 1999: 82-83.
    [11] Eon J G, Deoliveira P G P, Lefebvre F, et al. Comparison between gamma-alumina and aluminum niobate supported vanadium-oxides in propane oxidative dehydrogenation [J]. Stud Surf Sci Catal, 1994, 82: 83-92.
    [12] Resini C, Panizza M, Raccoli F, et al. Oxidation of ethane and cyclohexane over vanadia-niobia- silica catalysts [J]. Appl Catal A, 2003, 251(1): 29-38.
    [13] Noronha F B, Aranda D A G, Ordine A P, et al. The promoting effect of Nb_2O_5 addition to Pd/Al_2O_3 catalysts on propane oxidation [J]. Catal Today, 2000, 57(3-4): 275-282.
    [14] 田部浩三,禦園生诚,小野嘉夫,等.新固体酸和碱及其催化作用[M].北京:化学工业出版社,1992:64-65.
    [15] Wachs I E, Chen Y S, Jehng J M, et al. Molecular structure and reactivity of the Group V metal oxides [J]. Catal. Today, 2003, 78(1-4): 13-24.
    [16] Hu Z, Kunimori K, Uchijima T. Interaction of hydrogen and oxygen with niobia-supported and niobia-promoted rhodium catalysts [J]. Appl Catal, 1991, 69(2): 253-268.
    [17] Mendes F M T, Perez C A, Soares R R. Ammonium complex of niobium as a precursor for the preparation of Nb_2O_5/Al_2O_3 catalysts [J]. Catal. Today, 2003, 78(1-4): 449-458.
    [1] Gao G Z. Nanostructures and Nanomaterials: Synthesis, Properties and Applications [M]. London: Imperial College Press, 2004.
    [2] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998,279(5350): 548-552.
    [3] Imperor-Clerc M, Bazin D, Appay M D, et al. Crystallization of β-MnO_2 nanowires in the pores of SB A-15 silicas: In situ, investigation using synchrotron radiation [J]. Chem Mater, 2004, 16(9): 1813-1821.
    [4] Jiao K, Zhang B, Yue Y, et al. Growth of Porous Single-Crystal Cr_2O_3 in a 3-D Mesopore System [J]. Chem Commun, 2005, (in press).
    [5] Zhang Y, Kolmakov A, Chretien S, et al. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it [J]. Nano Lett, 2004, 4(3): 403-407.
    [6] Yin S F, Xu B Q, Ng C F, et al. Nano Ru/CNTs: a highly active and stable catalyst for the generation of CO_x-free hydrogen in ammonia decomposition [J]. Appl Catal B, 2004, 48(4): 237-241.
    [7] Zhong Z H, Qian F, Wang D L, et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices [J]. Nano Lett, 2003, 3(3): 343-346.
    [8] Wang Z L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides - From materials to nanodevices [J]. Adv Mater, 2003, 15(5): 432-436.
    [9] Liu Z Q, Zhang D H, Han S, et al. Laser ablation synthesis and electron transport studies of tin oxide nanowires [J]. Adv Mater, 2003, 15(20): 1754-1757.
    [10] Gu J L, Shi J L, Xiong L M, et al. A new strategy to incorporate high density gold nanowires into the channels of mesoporous silica thin films by electroless deposition [J]. Solid State Sci, 2004, 6(7): 747-752.
    [11] Wang Y L, Herricks T, Xia Y M. Single crystalline nanowires of lead can be synthesized through thermal decomposition of lead acetate in ethylene glycol [J]. Nano Lett, 2003, 3(8): 1163-1166.
    [12] Song J H, Messer B, Wu Y Y, et al. MMo_3Se_3 (M = Li~+, Na~+, Rb~+ Cs~+, NMe~(4+)) nanowire formation via cation exchange in organic solution [J]. J Am Chem Soc, 2001, 123(39): 9714-9715.
    [13] Li Z Q, Xiong Y J, Xie Y. Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route [J]. Inorg Chem, 2003, 42(24): 8105-8109.
    [14] Choi H, Park S H. Seedless growth of free-standing copper nanowires by chemical vapor deposition [J]. J Am Chem Soc, 2004, 126(20): 6248-6249.
    [15] Choi Y C, Kim W S, Park YS, et al. Catalytic growth of β-Ga_2O_3 nanowires by arc discharge [J]. Adv Mater, 2000, 12(10): 746-750.
    [16] Xiong Y, Xie Y, Chen S W, et al. Fabrication of self-supported patterns of aligned β- FeOOH nanowires by a low-temperature solution reaction [J]. Chem-Eur J, 2003,9(20): 4991-4996.
    [17] Zhang H, Ma XY, Xu J, et al. Arrays of ZnO nanowires fabricated by a simple chemical solution route [J]. Nanotechnology, 2003, 14(4): 423-426.
    
    [18] Hsieh C T, Chen J M, Lin H H, et al. Synthesis of well-ordered CuO nanofibers by a self- catalytic growth mechanism [J]. Appl Phys Lett, 2003, 82(19): 3316-3318.
    [19] Lv R T, Cao C B, Guo Y J, et al. Preparation of ZnS nanotubes via surfactant micelle- template inducing reaction [J]. J Mater Sci, 2004,39(5): 1575-1578.
    [20] Kang H, Jun Y, Park J I, et al. Synthesis of porous palladium superlattice nanoballs and nanowires [J]. Chem Mater, 2000, 12(12): 3530-3532.
    [21] Terasaki O, Liu Z, Ohsuna T, et al. Electron microscopy study of novel Pt nanowires synthesized in the spaces of silica mesoporous materials [J]. MICROSC MICROANAL, 2002, 8(1): 35-39.
    [22] Huang M H, Choudrey A, Yang P D. Ag nanowire formation within mesoporous silica [J]. Chem Commun, 2000, (12): 1063-1064.
    [23] Brieler F J, Grundmann P, Froba M, et al. Formation of Zn_(1-x)Mn_xS nanowires within mesoporous silica of different pore sizes [J]. J Am Chem Soc, 2004, 126(3): 797-807.
    [24] Watanabe Y, Hibino H, Bhunia S, et al. Site-controlled InP nanowires grown on patterned Si substrates [J]. Phys E, 2004,24(1-2): 133-137.
    
    
    [25] Zhu K K, Yue B, Zhou W Z, et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15 [J]. Chem Commun, 2003, (1): 98-99.
    [26] Jiao F, Yue B, Zhu K K, et al. α-Fe_2O_3 nanowires. Confined synthesis and catalytic hydroxylation of phenol [J]. Chem Lett, 2003, 32(8): 770-771.
    [27] Zhu K K, He H Y, Xie S H, et al. Crystalline WO_3 nanowires synthesized by templating method [J]. Chem Phys Lett, 2003, 377(3-4): 317-321.
    [28] Yang W S, Zhang G, Xie J Y, et al. A combustion method to prepare spinel phase LiMn_2O_4 cathode materials for lithium-ion batteries [J]. J Power Sources, 1999, 81:412-415.
    [29] Tabuchi M, Ado K, Masquelier C, et al. Electrochemical and magnetic properties of lithium manganese oxide spinels prepared by oxidation at low temperature of hydrothermally obtained LiMnO_2 [J]. SOLID STATE ION, 1996, 89(1-2): 53-63.
    [30] Yang G Q, Han B, Sun Z T, et al. Preparation and characterization of brown nanometer pigment with spinel structure [J]. Dyes Pigment, 2002, 55(1): 9-16.
    [31] Liu J J, Li F, Evans D G, et al. Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide (hydrotalcite-like) precursor [J]. Chem Commtm, 2003, (4): 542-543.
    [32] Tsutaoka T. Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials [J]. J Appl Phys, 2003, 93(5): 2789-2796.
    [33] Shimizu Y, Shiotsuka M. Optoelectrochemical hydrogen-phosphate ion sensor based on electrochromism of spinel-type oxide thin-film electrode [J]. Jpn J Appl Phys Pt 1, 2002, 41 (10): 6243-6246.
    [34] Miura N, Zhuiykov S, Ono T, et al. Mixed potential type sensor using stabilized zirconia and ZnFe_2O_4 sensing electrode for NO_x detection at high temperature [J]. Sensor Actuator B, 2002, 83(1-3): 222-229.
    [35] Vrieland G E, Khazai B, Murchison C B. Anaerobic oxidation of butane to butadiene over magnesium molybdate catalysts .2. Magnesia alumina supported catalysts [J]. Appl Catal A, 1996, 134(1): 123-145.
    [36] Ahmed A, Oak S G, Darshane V S. Decomposition of cyclohexanol on the spinel system CuCr_(2-x)Fe_xO_4 [J]. Bull Chem Soc Jpn, 1995, 68(12): 3651-3657.
    [37] Stoyanova D, Christova M, Dimitrova P, et al. Copper-cobalt oxide spinel supported on high-temperature aluminosilicate carders as catalyst for CO-O_2 and CO-NO reactions [J]. Appl Catal B, 1998, 17(3): 233-244.
    [38] Lahiri P, Sengupta S K. Spinel ferrites as catalysts - a study on catalytic effect of coprecipitated ferrites on hydrogen-peroxide decomposition [J]. Can J Chem, 1991, 69(1): 33-36.
    [39] Zhou Z H, Xue JM, Chan H S O, et al. Nanocomposites of ZnFe_2O_4 in silica: synthesis, magnetic and optical properties [J]. Mater Chem Phys, 2002, 75(1-3): 181-185.
    [40] Wang L, Zhou Q G, Li F S, Ionic disorder and Yaffet-Kittel angle in nanoparticles of ZnFe_2O_4 prepared by sol-gel method [J]. Phys Status Solid B, 2004, 241(2): 377-382.
    [41] Kuang W X, Fan Y I, Chert Y. Preparation, characterization, and catalytic properties of ultrafine mixed Fe-Mo oxide particles [J]. J Colloid Interface Sci, 1999, 215(2): 364-369.
    [42] Xiong C R, Chen Q L, Lu W R, et al. Novel Fe-based complex oxide catalysts for hydroxylation of phenol [J]. Catal Lett, 2000, 69(3-4): 231-236.
    [43] Sreekumar K, Jyothi T M, Mathew T, et al. Selective N-methylation of aniline with dimethyl carbonate over Zn_(1-x)Co_xFe_2O_4 (x= 0, 0.2, 0.5, 0.8 and 1.0) type systems [J]. J Mole Catal A, 2000, 159(2): 327-334.
    
    [44] Ramankutty C G, Sugunan S. Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods [J]. Appl Catal A, 2001,218 (1-2): 39-51.
    [45] Liu G G, Zhang X Z, Xu Y J, et al. Effect of ZnFe_2O_4 doping on the photocatalytic activity of TiO_2 [J].Chemosphere, 2004, 55(9):1287-1291.
    [46] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J Am Chem Soc, 1998, 120(24): 6024-6036.
    
    [47] Ueno Y, Horiuchi T, Tate A, et al. Effect of the calcination temperature of self-ordered mesoporous silicate on its adsorption characteristics for aromatic hydrocarbons [J]. New J Chem, 2005, 29(3): 504-508.
    [48] Ryoo R, Ko C H, Kruk M, et al. Block-copolymer-templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network? [J]. J Phys Chem B, 2000,104 (48): 11465-11471.
    [1] 顾翼东,谢高阳,宋沅,等.络分族,无机化学丛书 第八卷[M].北京:科学出版社,1998:556-562.
    [2] Himeno S, Kitaztumi I. Capillary electrophoretic study on the formation and transformation of isopolyoxotungstates in aqueous and aqueous-CH_3CN media [J]. Inorg Chim Acta, 2003, 355: 81-86.
    [3] Yamase T. Involvement of hydrogen-bonding protons in delocalization of the paramagnetic electron in a single crystal fo photoreduced decatungstate [J]. J Chem Soc Dalton Trans, 1987, (7): 1597-1604.
    [4] 岳斌,朱思三,谢高阳,等.有机铵十聚钨酸盐在溶液中的光致变色性质研究[J].无机化学学报.1992,8(2):219-221.
    [5] 王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1997:151.
    [6] Chambers R C, Hill C L. Redox catalysis involving substrate photooxidation with catalyst regeneration by substrate reduction - simultaneous oxidative C-H bond-cleavage and reductive C-S bond-cleavage in thioethers catalyzed by W_(10)O_(32)~(4-) [J]. J Am Chem Soc, 1990, 112(23): 8427-8433.
    [7] Attanasio D, Suber L, Thorslund K. Aerobic photooxidation of substituted benzenes catalyzed by the tungsten isopolyanion [W_(10)O_(32)]~(4-) [J]. Inorg Chem, 1991, 30(3): 590-592.
    [8] Chambers R C, Hill C L. Comparative-study of polyoxometalates and semiconductor metaloxides as catalysts - photochemical oxidative-degradation of thioethers [J]. Inorg Chem, 1991, 30(13): 2776-2781.
    [9] Yue B, Zhu S S, Xie G Y, et al. Photooxidation of some organic compounds catalyzed by decatungstates [J]. Chin Chem Lett, 1995, 6(3): 215-216.
    [10] Renneke R F, Kadkhodayan M, Pasquali M; et al. Roles of surface protonation on the photodynamic, catalytic, and other properties of polyoxometalates probed by the photochemical functionalization of alkanes - implications for irradiated semiconductor metal-oxides [J]. J Am Chem Soc, 1991, 113(22): 8357-8367.
    [11] Ermolenko L P, Giannotti C. Aerobic photoeatalysed oxidation of alkanes in the presence of decatungstates: Products and effects of solvent and counter-ion of the catalyst [J]. J Chem Soe-Perkin Trans 2, 1996, (6): 1205-1210.
    [12] Goodall BL, McCann M, McDonnell D. Single-crystals of isopolyoxometallate(Ⅵ) salts as catalysts for the ring-opening polymerization of norbomene [J]. J Mole Catal A, 1995, 96 (1): 31-34.
    [13] Maldotti A, Molinari A, Bergamini P. Photocatalytic oxidation of cyclohexane by (nBtu_4N)_4W_(10)O_(32)/Fe(Ⅲ) porphyrins integrated systems [J]. J Mole Catal A, 1996, 113(1-2): 147-157.
    [14] Maldotti A, Amadelli R, Camssiti V, et al. Catalytic oxygenation of cyclohexane by photoexcited (nBu_4N)_4W_(10)O_(32): The role of radicals [J]. Inorg Chim Acta, 1997, 256(2): 309-312.
    [15] Molinari A, Maldotti A, Amadelli R, et al. Integrated photocatalysts for hydrocarbon oxidation: polyoxotungstates iron porphyrins systems in the reductive activation of molecular oxygen [J]. Inorg Chim Acta, 1998, 272(1-2): 197-203.
    [16] Molinari A, Amadelli R, Andreotti L, et al. Heterogeneous photocatalysis for synthetic purposes: oxygenation of cyclohexane with H_3PW_(12)O_(40) and (nBu_4N)_4W_(10)O_(32) supported on silica [J]. J Chem Soc-Dalton Trans, 1999, (8): 1203-1204.
    [17] Molinari A, Amadelli R, Carassiti V, et al. Photocatalyzed oxidation of cyclohexene and cyclooctene with (nBu_4N)_4W_(10)O_(32) and (nBu_4N)_4W_(10)O_(32)/Fe-Ⅲ[meso-tetrakis(2,6-dichlorophenyl)-porphyrin] in homogeneous and heterogeneous systems [J]. Eur J Inorg Chem, 2000, (1): 91-96.
    [18] Maldotti A, Molinad A, Varani G, et al. Immobilization of (nBu_4N)_4W_(10)O_(32) on mesoporous MCM-41 and amorphous silicas for photocatalytic oxidation of cycloalkanes with molecular oxygen [J]. J Catal, 2002, 209(1): 210-216.
    [19] Viswanathan B. Extended huckel molecular-orbital calculations on anionic units simulated for heteropoly acid catalysts [J]. Indian J Chem A, 1990, 29(6), 509-511.
    [20] 肖慎修,杨胜勇,陈天朗,等.中心原子对Keggin结构杂多阴离子的电子结构和催化性质的影响[J].化学学报.1997,55(4):356-362.
    [21] Poblet J M, Lopez X, Bo C. Ab initio and DFT modelling of complex materials: towards the understanding of electronic and magnetic properties of polyoxometalates [J]. Chem Soc Rev, 2003, 32(5): 297-308.
    [22] Bridgeman A J, Cavigliasso G. Structure and bonding in [M_6O_(19)]~(n-) isopolyanions [J]. Inorg Chem, 2002, 41(7): 1761-1770.
    [23] Maestre J M, Lopez X, Bo C, et al. Electronic and magnetic properties of α-keggin anions: A DFT study of [XM_(12)O_(40)]~(n-) (M= W, Mo; X= Al~Ⅲ, Si~Ⅳ,P~Ⅴ, Fe~Ⅲ, Co~Ⅱ, Co~Ⅲ) and [SiM_(11)VO_(40)]~(m-) (M = Mo and W) [J]. J Am Chem Soc, 2001, 123(16): 3749-3758.
    [24] Lopez X, Bo C, Poblet J M. Electronic properties of polyoxometalates: electron and proton affinity of mixed-Addenda Keggin and Wells-Dawson anions [J]. J Am Chem Soc, 2002, 124(42): 12574-12582.
    [25] Bridgeman A J. Density functional study of the vibrational frequencies of α-Keggin heteropolyanions [J]. Chem Phys, 2003, 287(1-2): 55-69.
    [26] Lopez X, Maestre J M, Bo C, et al. Electronic properties of polyoxometalates: A DFT study of α/β-[XM_(12)O_(40)]~(n-) relative stability (M = W, Mo and X a main group element) [J]. J Am Chem Soc, 2001, 123(39): 9571-9576.
    [27] Bagno A, Bonchio M, Sartorel A, et al. Relativistic DFT calculations of polyoxotungstate ~(183)W NMR spectra: Insight into their solution structure [J]. ChemPhysChem, 2003, 4(5): 517-519.
    [28] Tanielian C. Decatungstate photocatalysis [J]. Coord Chem Rev, 1998, 178-180 Part 2: 1165-1181.
    [29] Chemseddine A, Sanchez C, Livage J, et al. Electrochemical and photochemical reduction of decatungstate: A reinvestigation [J]. Inorg Chem, 1984, 23(17): 2609-2613.
    [30] Duncan D C, Hill C L. Synthesis and characterization of the mixed-valence diamagnetic two-electron-reduced isopolytungstate [W_(10)O_(32)]~(6-). Evidence for an asymmetric d-electron distribution over the tungsten sites [J]. Inorg Chem, 1996, 35(20): 5828-5835.
    [31] Bridgeman A J, Cavigliasso G. Structure and bonding in [W_(10)O_(32)]~(n-) isopolyanions [J]. J Phys Chem A, 2002, 106(25): 6114-6120.
    [32] Borshch S A. Electron distribution in the two-electron reduced isopolytungstate [W_(10)O_(32)]~(6-) [J]. Inorg Chem, 1998, 37(12): 3116-3118.
    [33] Duclusaud H, Borshch S A. On the nature of the charge-transfer transient in photocatalysis by the decatungstate anion [J]. Chem Phys Lett, 1998, 290(4-6): 526-534.
    [34] 岳斌,刘惠章,金松林,等.2-电子还原的十聚钨酸吗啡啉[MPHL]_4H_2W_(10)O_(32)的光化学合成和表征[J].复旦学报(自然科学版).1996,35(1):69-73。
    [35] O'Boyle N M, Vos J G. GaussSum 0.9 [CP/DK]. Dublin: Dublin City University, 2005. http://gausssum.soureeforge.net
    [36] Becke A D. Density-functional thermochemistry .3. The role of exact exchange [J]. J Chem Phys, 1993, 98(7): 5648-5652.
    [37] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density [J]. Phys Rev B, 1988, 37: 785-789.
    [38] Mayer I. BORDER 1.0 [CP/DK]. Budapest: Hungarian Academy of Sciences, 2005. http://occam.chemres.hu/programs/
    [39] Mayer I. Charge, bond order and valence in the ab initio SCF theory [J]. Chem Phys Lett, 1983, 97(3): 270-274.
    [40] Mayer I. Addendum of "Charge, bond order and valence in the ab initio SCF theory" [J]. Chem Phys Lett, 1985, 117(4): 396.
    [41] Bridgeman A J, Cavigliasso G, Ireland L R, et al. The Mayer bond order as a tool in inorganic chemistry [J]. J Chem Soc Dalton Trans, 2001, 2095-2108.
    [42] Ma Z, Zaera F. Role of the solvent in the adsorption-desorption equilibrium of cinchona alkaloids between solution and a platinum surface: Correlations among solvent polarity, cinchona solubility, and catalytic performance [J]. J Phys Chem B, 2005, 109: 406-414.
    [43] 杨胜勇,肖慎修,陈天朗,等.骨架金属原子对Keggin阴离子电子结构和物化性质的影响[J].化学学报.2000,58(1):43-49.
    [44] Lopez X, Femandez J A, Romo S, et al. Are the solvent effects critical in the modeling of polyoxoanions [J]. J Comp Chem, 2004,25(12): 1542-1549.
    [45] Kempf J Y, Rohmer M-M, Poblet J M, et al. Relative basicities of the oxygen sites in [V_(10)O_(28)]~(6-). An analysis of the ab initio determined distributions of the electrostatic potential and of the Laplacian of charge density [J]. J Am Chem Soc, 1992, 114(4): 1136-1146.
    [46] Brevard C, Schimpf R, Tourne G, et al. Tungsten-183 NMR: Assignment of the tungsten-tungsten connectivities in heteropolytungstates via two-dimensional ~(183)W NMR techniques [J]. J Am Chem Soc, 1983, 105(24): 7059-7063.
    [47] Sveshnikov N N, Pope M T. Assignment of multiline Tungsten-183 NMR spectra of diamagnetic polyoxotungstates from intenisty patterns [J]. Inorg Chem, 2000, 39(3): 591-594.
    [48] Helgaker T, Jaszunski M, Ruud K. Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants [J]. Chem Rev, 1999, 99(1): 293-352.
    [49] Bagno A, Bonchio M. Effective core potential DFT calculations of nuclear shielding as a tool for the prediction and assignment of the tungsten chemical shift in mono- and polynuclear complexes [J]. Chem Phys Lett, 2000, 317(1-2):123-128.
    [50] Fournier M, Louis C, Che M, et al. Polyoxometallates as models for oxide catalysts : Part Ⅰ. An UV-visible reflectance study of polyoxomolybdates: Influence of polyhedra arrangement on the electronic transitions and comparison with supported molybdenum catalysts [J]. J Catal, 1989, 119(2): 400-414.
    [51] Rosa A, Ricciardi G, Gritsenko O, et al. Excitation energies of metal complexes with time-dependent density functional theory [J]. Struct Bonding, 2004, 112:49-115.
    [52] Termes S C, Pope M T. Reduction of the decatungstate anion in nonaqueous solution and its confirmation as "polyttmgstate-Y" [J]. Inorg Chem, 1978, 17(2): 500-501.
    [1] Hill C L. Eds. [J]. Chem Rev, 1998, 98(1): 1-390.
    [2] 胡长文,黄如丹.多金属氧酸盐化学研究进展与展望[J].无机化学学报.2003,19(4):337-344.
    [3] 王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1997:14.
    [4] Hu C J, Duan C Y, Liu Y J, et al. Synthesis, spectroscopic characterization and X-ray crystal structure of vanadylpolymolybdophosphates with monocapped Keggin polyanion [PMo_5V_7O_(40)(VO)]~(7-) [J]. Polyhedron, 2001, 20(17): 2117-2121.
    [5] Nomiya K, Yagishita K, Nemoto Y. Functional action of Keggin-type mono-vanadium(V)-substituted heteropolymolybdate as a single species on catalytic hydroxylation of benzene in the presence of hydrogen peroxide [J]. J Mole Catal A, 1997, 126(1): 43-53.
    [6] Dimitratos N, Vedrine J C. Role of acid and redox properties on propane oxidative dehydrogenation over polyoxometallates [J]. Catal Today, 2003, 81 (4): 561-574.
    [7] Volkova L K, Rudakov E S, Tretyakov V P. Interaction of methane with (PdCl_2-Na_nH_9-n [PMo_6V_6O_(40)])/SiO_2 at 300℃ [J].Kinet. Catal, 1996, 37(4): 540-541.
    [8] Grennberg H, Bergstad K, Backvall J E. Aerobic palladium-heteropolyacid-catalyzed allylic acetoxylation of cyclohexene [J]. J Mole Catal A, 1996, 113(1-2): 355-358.
    [9] Yang J I, Lee D W, Lee J H, et al. Selective and high catalytic activity of Cs_nH_(4-n)PMo_(11)VO_(40) (n>=3) for oxidation of ethanol [J]. Appl Catal A, 2000, 194: 123-127.
    [10] Alekar N A, Halligudi S B, Rajani R et al. Molybdovanadophosphoric acid catalyzed oxidation of hydrocarbons by H_2O_2 to oxygenates [J]. React Kinet Catal Lett.2001, 72(1): 169-176.
    [11] Burton H A, Kozhevnikov I V. Biphasie oxidation of arenes with oxygen catalysed by Pd (Ⅱ)-heteropoly acid system: oxidative coupling versus hydroxylation [J]. J Mole Catal A, 2002, 185(1-2): 285-290.
    [12] Cavani F, Mezzogori R, Pigamo A, et al. Main aspects of the selective oxidation of isobutane to methacrylie acid catalyzed by Keggin-type polyoxometalates [J]. Catal Today, 2001, 71(1-2): 97-110.
    [13] Larortze N, Marehal-Roch C, Guillou N, et al. Solid-state chemistry of ammonium and cesium 1-vanado-11-molybdophosphate and ammonium 12-molybdosilicate: application to oxidation catalysis [J]. J Catal, 2003, 220(1): 172-181.
    [14] Liu Y Y, Murata K, Inaba M, et al. Selective oxidation of propylene to acetone by molecular oxygen over M_(x/2)H_(5-x)[PMo_(10)V_2O_(40)]/HMS (M=Cu~(2+), Co~(2+), Ni~(2+)) [J]. Catal Commun, 2003, 4(6): 281-285.
    [15] Poblet J M, Lopez X, Bo C. Ab initio and DFT modelling of complex materials: towards the understanding of electronic and magnetic properties of polyoxometalates [J]. Chem Soc Rev, 2003, 32(5): 297-308.
    [16] 杨胜勇,肖慎修,陈天朗,等.骨架金属原子对Keggin阴离子电子结构和物化性质的影响[J].化学学报.2000,58(1):43-49.
    [17] 肖慎修,杨胜勇,陈天朗,等.Keggin杂多阴离子电子结构和物化性质与中心原子的关系[J].化学学报.2001,59(8):1165-1170.
    [18] Lopez X, Maestre J M, Bo C, et al. Electronic properties of polyoxometalates: A DFT study of α/β-[XM_(12)O_(40)]~(n-) relative stability (M = W, Mo and X a main group element) [J]. J Am Chem Soc, 2001, 123(39): 9571-9576.
    [19] Bridgeman A J. Computational study of the vibrational spectra of α- and β-Keggin polyoxometalates [J]. Chem-Eur J, 2004, 10(12): 2935-2941.
    [20] Bridgeman A J. Density functional study of the vibrational frequencies of α-Keggin heteropolyanions [J]. Chem Phys, 2003, 287(1-2): 55-69.
    [21] Lopez X, Poblet J M. DFT study on the five isomers of PW_(12)O_(40)~(3-): Relative stabilization upon reduction. Inorg Chem, 2004, 43 (22): 6863-6865.
    [22] Lopez X; Nieto-Draghi C, Bo C, et al. Polyoxometalates in solution: Molecular dynamics simulations on the alpha-PW_(12)O_(40)~(3-) keggin anion in aqueous media [J]. J Phys Chem A, 2005, 109(6): 1216-1222.
    [23] Guan W, Yan L K, Su Z M, et al. Electronic properties and stability of dititanium(Ⅳ) substituted alpha-keggin polyoxotungstate with heteroatom phosphorus by DFT [J].Inorg Chem, 2005, 44(1): 100-107.
    [24] 郭元茹,潘清江,韦永德,等.Keggin结构多金属氧酸盐α-[SiW_(12)O_(40)]~(4-)的从头算理论研究[J].高等学校化学学报.2003,24(10):1862-1864.
    [25] Pope M T, Scully T F.Geometrical isomerism arising from partial substitution of metal atoms in isopoly and heteropoly complexes. Possibilities for the Keggin structure [J]. Inorg Chem, 1975, 14(4): 953-954.
    [26] Check C E, Faust T O, Bailey J M, et al. Addition of polarization and diffuse functions to the LANL2DZ basis set for p-block elements [J]. J Phys Chem A, 2001, 105(34): 8111-8116.
    [27] Domallle P J, Knoth W H. Ti_2W_(10)PO_(40)~(7-) and [CpFe(CO)_2Sn]_2W_(10)PO_(38)~(5-). Preparation, properties, and structure determination by tungsten-183 NMR [J]. Inorg Chem, 1983, 22(5): 818-822.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700