用户名: 密码: 验证码:
N-杂环化合物真空紫外降解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以喹啉和异喹啉为代表,利用稳态与瞬态技术相结合,系统研究了N-杂环化合物的光降解行为。利用脉冲辐解技术研究了喹啉和异喹啉分别与HO~·、H~·、e_(aq)~-、SO_4~(-·)、Br_2~(-·)、N_3~·的反应,利用激光闪光光解技术研究了喹啉和异喹啉在紫外光作用下发生的变化,而稳态则研究了水中喹啉与异喹啉在185/254nm光辐照下降解的影响因素和反应过程以及中间产物。
     脉冲辐解的结果表明,喹啉和异喹啉均能与HO~·、H~·、e_(aq)~-、SO_4~(-·)迅速发生反应,但都不能被N_3~·氧化。异喹啉能被Br_2~(-·)氧化,但喹啉不能。测定了喹啉和异喹啉分别与HO~·、H~·、e_(aq)~-反应的速率常数。喹啉和异喹啉与e_(aq)~-的反应速率常数分别为7.1×10~9 mol~(-1)·dm~3·s~(-1)和3.4×10~9 mol~(-1)·dm~3·s~(-1),与H~·的反应速率常数分别为5.7×10~9 mol~(-1)·dm~3·s~(-1)和4.5×10~9 mol~(-1)·dm~3·s~(-1),与HO~·的反应速率常数分别为7.9×10~9 mol~(-1)·dm~3·s~(-1)和4.9×10~9 mol~(-1)·dm~3·s~(-1)(pH=3),7.2×10~9 mol~(-1)·dm~3·s~(-1)和5.5×10~9 mol~(-1)·dm~3·s~(-1)(pH=7),4.4×10~9 mol~(-1)·dm~3·s~(-1)和6..×10~9 mol~(-1)·dm~3·s~(-1)(pH=11)。比较了喹啉和异喹啉与HO~·、H~·、e_(aq)~-反应速率常数的差异,分析了产生这一差异的原因是喹啉与HO~·、H~·、e_(aq)~-反应的瞬态产物的结构均比异喹啉与它们反应的瞬态产物的结构稳定,使喹啉的反应速率比异喹啉的快。
     激光闪光光解的研究表明,在266nm的激光作用下,喹啉和异喹啉均既发生光激发,又发生光电离,光电离的量子产额分别为3.4×10~(-4)和1.58×10~(-4)。二者量子产额差异的原因是喹啉阳离子自由基比异喹啉阳离子自由基结构稳定。光电离产生的阳离子自由基可以脱去质子,二者的pKa分别为5.05和5.50。根据零时刻水合电子的量求出了喹啉和异喹啉阳离子及其衍变的自由基在各自特征吸收峰的摩尔吸光系数。在乙腈-水(90:10)体系中研究了二者的激发态,喹啉和异喹啉激发态的自衰变速率常数分别为2.87×10~8s~(-1)和1.70×10~8s~(-1),自猝灭速率常数分别为1.79×10~9mol~(-1)·dm~3·s~(-1)和9.98×10~8mol~(-1)·dm~3·s~(-1)。
     以可辐射185/254nm紫外线的低压石英汞灯为光源,研究了水中喹啉和异喹啉的紫外降解行为。结果表明,185/254nm的光协同作用,可有效地降解水中的喹啉和异喹啉,在本文的实验条件下,每耗电1kWh,可使水中810mgTOC完全降解,比文献报道的70mgTOC高出10倍以上。喹啉和异喹啉浓度的变化均符合一级反应动力学方程。
The photo-degradation of N-heterocyclic compounds was investigated by the combination of transient and stable technologies with quinoline and isoquinoline as the model compounds. The reactions of quinoline and isoquinoline with HO~·, H~· e_(aq)~-, SO_4~(-·), Br_2~(-·),N_3~· were investigated by radiolysis. The change of quinoline and isoquinoline under the radiation of UV light was studied by laser flash photolysis. Meanwhile, the degradation of quinoline and isoquinoline in water by the radiation of 185/254nm UV light was also studied with emphasis on the influence factors, reaction process and intermediate products.
    Pulse radiolysis indicated that both quinoline and isoquinoline could react with HO~·, H~·, e_(aq)~-, SO_4~(-·) very rapidly, but neither of them could react with N3~·. Isoquinoline could be oxidized by Br_2~(-·) while quinoline couldn't. The respective rate constants of the reaction of quinoline and isoquinoline with HO~·, H~· and e_(aq)~- were determined. The respective rate constants of the reaction of quinoline and isoquinoline with e_(aq)~- were 7.1 ×10~9 mol~(-1)dm~3·s~(-1) and 3.4×10~9 mol~(-1)·dm~3·s~(-1), that with H~· being 5.7×10~9 mol~(-1)·dm~3·s~(-1) and 4.5×10~9 mol~(-1)·dm~3·s~(-1). The respective rate constants of the reaction of quinoline and isoquinoline with HO~· were 7.9×10~9 mol~(-1)·dm~3·s(-1) and 4.9×10~9mol~(-1)·dm~3·s~(-1) (at pH=3), 7.2×10~9mol~(-1)·dm~3·s(-1) and 5.5× 10~9 mol~(-1)·dm~3·s~(-1) (at pH=7), 4.4× 10~9 mol~(-1)·dm~3·s~(-1) and 6.6× 10~9mol~(-1)·dm~3·s~(-1) (at pH=11). The difference of the rate constants with HO~·, H~· e_(aq)~- between quinoline and isoquinoline were compared and the reason was analyzed. The structure of the transient product of the reaction of quinoline with HO~·, H~ e_(aq)~- was more stable than that of quinoline, which result in that quinoline react with HO~·, H~ e_(aq)~- more quickly than isoquinoline.
    Laser flash photolysis showed that both quinoline and isoquinoline could produce their excited state and ionize under the excitation of the laser pulse of 266nm. The respective ionization quantum yields of quinoline and isoquinoline were 3.4×10~(-4) and 1.58×10~(-4). The reason of the difference between their ionization quantum yields
引文
[1] Hirao K., Shinohara Y., Tsuda H., Fukushima S., Takahashi M., Ito N. Hyperprolactinemia and steroid metabolism by rat mammary adenocarcinomas, Cancer Res. 1976, 36: 329-335.
    [2] Nagao M., Yahagi T., Seino Y., Sugimura T., Ito N. Mutagenicities of quinoline and its derivatives. Murat. Res. 1977, 42: 335-342.
    [3] Willems M. I., Dubois G., Boyd D. R., Davies R. J., Hamilton L., McCullough J. J., van Bladeren P. J. Comparison of the mutagenicity of quinoline and all monohydroxy-quinolines with a series ofarene oxide, trans-dihydrodiol, diol epoxide, N-oxide and arene hydrate derivatives ofquinoline in the Ames/Salmonella microsome test. Muter. Res. 1992, 278: 227-236.
    [4] Warshawsky D. Environmental sources, carcinogenicity, mutagenicity, metabolism and DNA binding of nitrogen and sulfur heterocyclic aromatics. Environ. Carcinog. Ecotoxicol. Rev. 1992, 10: 1-71.
    [5] Hecht S. S. Tobacco smoke carcinogens and breast cancer. Environ. Mol. Mutagen. 2002, 39: 119-126.
    [6] Asakura S., Sawada S., Sughihara T. Quinoline-induced chromosome aberrations and sister chromatid exchanges in rat liver. Environ. Mol. Mutagen. 1997, 30: 459-467.
    [7] Capel P. D., Larson S. J. Effect of Scale on the Behavior of Atrazine in Surface Waters. Environ. Sci. Technol. 2001, 35: 648-657.
    [8] Kolpin D. W., Thurman E. M., Linhart S. M. Occurrence of Cyanazine Compounds in Groundwater: Degradates More Prevalent Than the Parent Compound. Environ. Sci. Technol. 2001, 35: 1217-1222.
    [9] Johansen S. S., Hansen A. B., Mosbaek H., Arvin, E. Identification of heteroaromatic and other organic compounds in ground water at creosote-contaminated sites in Denmark. Groundwater Monit. Rem. 1997, 17: 106-115.
    [10] Collin G., Hoke H. In Ullman's Encyclopedia of Industrial Chemistry, VCH: Weinheim, 1993, 22: 465-469.
    [11] Santodonato J., Howard P. H. Azaarenes: sources, distribution, environmental impact, and health effects. Hazard Assessment of Chemicals, Academic Press: New York, 1981, 1: 421-440.
    [12] U. S. Environmental Protection Agency. Toxicological Review of Quinoline. Report No. EPA/635/R-01/005, U. S. Environmental Protection Agency: Washington, DC, 2001.
    [13] Mueller J. G., Chapman P. J., Pritchard P. H. Creosote-contaminated sites. Their potential for bioremediation. Environ. Sci. Technol. 1989, 23: 1197-1201.
    [14] Fowler M. G., Brooks P. W., Northcott M., King M. W. G., Barker J. F., Snowdon L. R. Preliminary results from a field experiment investigating the fate of some creosote components in a natural aquifer. Org. Geoehem. 1994, 22: 641-649.
    [15] http://ceh.sric.sri.com/Enframe/Report.html?report=597.5000&show=Abstract.html.
    [16] 韩力平,王建龙,刘恒,等.固定化及游离态皮氏伯克霍而德氏菌(Burkholderia pickettii)降解喹啉的试验研究.环境科学学报,2000,20(3):379-381.
    [17] Miethling R., Hecht V., Deckwer W. D. Microbial degradation of quinoline: Kinetic studies with Comamonas aeidovorans DSM 6426. Biotechnol. & Bioengineering, 1993, 42: 589-595.
    [18] Schach S., Schward G., Fetzner S., et al. Microbial metabolism ofquinoline and related compounds ⅩⅦ Degradation of 3-methylquinoline by Comamonas testosteroni 63. Biol. Chem. Hoppe-Seyler, 1993, 374: 175-181.
    [19] Johansen S. S., Licht D., Arvin E., et al. Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383). Appl. Microbiol. Biotechnol, 1997, 47: 292-300.
    [20] Grant D. J. W., AI-Najjar T. R. Degradation ofquinoline by a solid bacterium. Microbios, 1976, 15: 177-189.
    [21] Aislabie J., Bej A. K., Hurst H., el al. Microbial degradation of quinoline and methylquinolines. Appl. Environ. Microbiol, 1990, 56: 345-351.
    [22] Kilbane J. J., Ranganathan R., Cleveland L., et al. Selective romoval of nitrogen from quinoline by Pseudomonas. ayucida IGNT9m. Appl. Environ. Microbiol, 2000, 66: 688-693.
    [23] Sehwarz G., Bauder R., Speer M., et al. Microbial metabolism of quinoline and related compounds Ⅱ. Degradation of quinoline by Pseudomonas fluorescens 3, Pseudomonas putida 86, and Rhodococcus spec B1. Biol. Chem. Hoppe- Seyler, 1989, 370: 1183-1189.
    [24] Hund H. K., Lingens F. Microbial metabolism of quinoline and related compounds Ⅵ. Degradation of quinaldine by Arthrobacter sp. Biol. Chem. Hoppe-Seyler, 1990, 371: 1005-1008.
    [25] Ruger A., Schwartz G., Lingens F. Microbial metabolism of quinoline and related compounds. ⅩⅨ. Degradation of 4-methylquinoline and quinoline by pseudomonas putida K1. Biol. Chem. Hoppo-Seyler, 1993, 374: 479-488.
    [26] [26]Susan D., Sutton S. L. Aerobic biodegradation of 4-methylquinoline by a soil bacterium. Appl. Environ. Microbiol., 1996, 62: 2910-2914.
    [27] 崔明超,陈繁忠,傅家谟,盛国英,孙国平,蔡小伟.4-甲基喹啉的微生物降解研究.重庆环境科学,2003,25(9):20~23.
    [28] Schmidt M., Rogers P., Lingens E Microbial metabolism of quinoline and related compounds Ⅺ. Degradation of quinoline-4-carboxylic acid by Microbaterium sp. H2, Agrobatrerium sp. 1B and Pimelobaeter simplex 4B and 5B. Biol. Chem. Hoppe-Seyler, 1991, 372: 1015-1020.
    [29] Rothenburger S., Atlas R. M. Hydroxylation and biodegradation of 6-methylquinoline by pseudomonads in aqueous and nonaqueous immobilized- cell bioreaetors. Appl. Environ. Mierobiol, 1993, 59: 2139-2144.
    [30] Bott G, Lingens F. Microbial metabolism of quinoline and related compounds Ⅸ Degradation of 6-hydroxyquinoline by P. diminuta 31/1 Faland Bacillus cireulans 31/2 A1 Biol. Chem. Hoppe-Seyler, 1991, 372: 381-383.
    [31] Bott G., Schmidt M., Rommel T. O., et al. Microbial metabolism of quinoline and related compounds Ⅴ. Degradation of 1H-4-oxoquinoline by Pseudomonas putida 33/1. Biol. Chem. Hoppe-Seyler, 1990, 371: 999-1003.
    [32] Liu Shiumei, Jones W. J., Rogers J. E. Biotransformation ofquinoline and methylquinolines in anoxic freshwater sediment. Biodegradation, 1994, 5(2): 113-121.
    [33] Li Yongmei, Gu Guowei, Zhao Jianfu, et al. Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge. Process Biochemistry, 2001, 37: 81-86.
    [34] 李咏梅,顾国雄,赵建夫.焦化废水中几种含氮杂环有机物在A1-A2-O系统中的降解特性研究.环境科学学报,2002,22(1):34-39.
    [35] Licht D., Johansen S. S., Arvin E., et al. Transformation of indole and quinoline by Desulfobacterium indolicum (DSM 3383). Appi. Microbioi. Biotechnol, 1997, 47: 167-172.
    [36] Thomsen A. B. Degradation ofquinoline by wet oxidation - kinetic aspects and reaction mechanisms. Water Res., 1998, 32: 136-146.
    [37] Ulonska A., Deckwer W. D., Hecht V. Degradation of quinoline by immobilized Comamonas acidovorans in a three-phase airlift reactor. Biotechnol, Bioeng, 1995, 46: 80-87.
    [38] 韩力平,王建龙,施汉昌,等.皮氏伯克霍而德氏菌(Burkholdcria pickettii)降解喹啉动力学的研究.环境科学学报,2000,(增刊):74-76.
    [39] 韩力平,王建龙,刘恒,等.泥浆体系中受喹啉污染土壤的生物修复.环境科学,2000,21(6):89-91.
    [40] 韩力平,王建龙,刘恒,等.固定化细胞流化床反应器处理难降解有机物喹啉的试验研究.环境科学,2001,22(1):78-80.
    [41] Wang J. L., Han L. P., Shi H. C., et al. Biodegaradation of quinoline by gel immobilized Burkholderia sp. Chemosphere, 2001, 44: 1041-1046.
    [42] Wang J. L., Quan X. C., Han L. P., et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Research, 2002, 36: 2288-2296.
    [43] Wang J. L., Quan X. C., Han L. P., et al. Kinetics of co-metabolism of quinoline and glucose by Burkholderia pickettii. Process Biochemistry, 2002, 37: 831-836.
    [44] 吴立波,王建龙,钱易,等.复合生物反应器对焦化废水中典型污染物处理特性的研究.给水排水,1999,25(2):40-43。
    [45] 吴立波,王建龙,黄霞,等.自固定化高效菌种强化处理焦化废水研究.中国给水排水,1999,15(5):1-5.
    [46] 吴立波,王建龙,黄霞,等.复合生物反应器中两相微生物硝化特性比较.环境科学,1999,20(4):16-19.
    [47] 全向春,韩力平,王建龙,施汉昌,钱易.固定化皮氏伯克霍而德氏菌降解喹啉的研究.环境科学,2000,21(3):74-76
    [48] 刘佐才,全向春,韩利平,王建龙.喹啉的生物降解动力学,物理化学学报,2000,16(7):663-666
    [49] 全向春,王建龙,韩力平,施汉昌,钱易.喹啉与葡萄糖共基质条件下生物降解的动力学分析.环境科学学报,2001,21(4):416-419
    [50] Buehtmann C., Kies U., Deekwer W. D., et al. Performance of three phase fluidized bed reactor for quinoline degradation on various supports at steady state and dynamic conditions. Bioteehnol. & Bioeng., 1997, 56(3): 295-303.
    [51] Bohlmann U., Bohnet M. Improvement of process stability of microbiological quinoline degradation in a three-phase fluidized bed reactor [J]. Chem. Eng. & Techn., 2001, 24(8): 91A-96A.
    [52] Sugaya K., Nakayama O., Hinata N., et al. Biodegradation of quinoline in crude oil [J]. J. Chem. Technol. & Biotechnol., 2001, 76: 603-611.
    [53] 王小毛,黄霞,左晨燕,胡洪营,O_3/UV降解喹啉过程中的毒性变化.环境化学,2003,22,(4):324-328
    [54] 王小毛,黄霞,左晨燕,胡洪营,喹啉的O_3及O_3/UV降解规律.中国环境科学.2003,23(2):134-138
    [55] 王小毛,黄霞,胡洪营,O_3/UV降解喹啉过程中不同氧化剂的相对重要性.环境科学.2003,24(3):35-39
    [56] Wang, X. M., Huang, X., Zuo, C. Y, Hu, H. Y. Kinetics of quinoline degradation by O3/UV in aqueous phase. Chemosphere, 2004, 55(5): 733-741
    [57] Zhang, W. B., Fu X. M., Mo J., Sheng, G. Y., Cui, M. C, Photochemical degradation performance of quinoline aqueous solution in the presence of hydrogen peroxide. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38(11): 2599-2611
    [58] Miller C. M., Valentine R. L. Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material. Water Res., 1995, 29(10): 2353
    [59] Miller C. M., Valentine R. L. Mechanistic studies of surface catalyzed H2O2 decomposition and contaminant degradation in the presence of sand. Water Research, 1999, 33(12): 2805-2816
    [60] Alexei Nedoloujko, John Kiwi. Parameters affecting the homogeneous and heterogeneous degradation of quinoline solutions in light-activated process. J. Photoehem. & Photobiol. A: Chemistry, 1997, 110: 149-157
    [61] Piehat, Pierre. Photocatalytic degradation of aromatic and alicyclic pollutants in water: by-products, pathways and mechanisms. Water Science and Technology, 1997, 35(4): 73-78
    [62] Cermenati, L., Albini, A., Pichat, P., Guillard, C. TiO_2 photocatalytic degradation of haloquinolines in water: Aromatic products GM-MS identification. Role of electron transfer and superoxide. Research on Chemical Intermediates, v, n 3, 2000, 26(3): 221-234
    [63] Enriquez, Rosario, Pichat, Pierre. Interactions of humic acid, quinoline, and TiO_2 in water in relation to quinoline photocatalytic removal. Langmuir, v, n 20, 2001, 17(20): 6132-6137
    [64] Niu, Jianjun, Conway, Brian E. Molecular structure factors in adsorptive removal of pyridinium cations, 1, 4-pyrazine and 1-quinoline at high-area C-cloth electrodes for waste-water remediation. Journal of Eleetroanalytical Chemistry, 2002, 529(2): 84-96
    [65] Thomsen, Anne Belinda, Degradation ofquinoline by wet oxidation - kinetic aspects and reaction mechanisms. Water Research, 1998, 32(1): 136-146
    [66] Thomsen, Anne Belinda, Kilen, Hans Henrik. Wet oxidation of quinoline: Intermediates and by-product toxicity. Water Research, 1998, 32(11): 3353-3361
    [67] Thomsen, Anne Belinda, Laturnus, Frank. Influence of different soil constituents on the reaction kinetics of wet oxidation of the creosote compound quinoline. Journal of Hazardous Materials, 2001, 81(2): 193-203
    [68] Beitz Toralf, Beehmann Wolfgang, Mitzner Rolf. Investigations of reactions of selected azaarenes with radicals in water. 1. Hydroxyl and sulfate radicals. Journal of Physical Chemistry A, v 102, n 34, Aug 20, 1998, p 6760-6765
    [69] Nicolaescu A. Roxana W. O., Kamat P. V. Radical-induced oxidative transformation of quinoline. Journal of Physical Chemistry, 2003, 107(23): 427-433 [70] Dupont R. Ryan, McLean Joan E., Hoff Richard H., Moore William M. Evaluation of the use of solar irradiation for the decontamination of soils containing wood treating wastes. Journal of the Air & Waste Management Association, 1990,40(9): 1257-1265
    [71 ] Stalick Wayne M., Mushrush George W., Murray Joseph H., Zahadat Nazdaneh. Pyrolysis free radical reactions of substituted long chain alkyl pyridines and quinolines. American Chemical Society, Division of Petroleum Chemistry, Hydrogen Transfer in Hydrocarbon Processing, 1994, 39(3): 317-320
    [72] Ogunsola Olubunmi M. Decomposition of isoquinoline and quinoline by supercritical water. Journal of Hazardous Materials, 2000, 74(3): 187-195
    [73] Hoffmann M.R., Martin S.T., Choi W., Bahnemannt D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95: 69-96
    [74] Linsebigler A.L., Lu G, John T., Yates J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev., 1995,95(3): 735-758
    [75] Fox M.A., Dulay M. Heterogeneous photocatalysis, Chem. Rev., 1993,93(1): 341-357
    [76] 汪大翚,雷乐成,水处理高级氧化技术, 北京,化学工业出版社. 2001
    [77] Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37-38
    [78] Carey J.H., Lawrence J., Tosine H.M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol., 1976,16(6): 697-701
    [79] Oliver B.G., Cosgrove E.G., Carey J.H. Effect of suspended sediments on the photolysis of organics in water. Environ. Sci. Technol., 1979,13(9): 1075-1077
    [80] Fujishima A., Hashimoto K., Watanabe T. TiO2 Photocatalysis Fundamentals and Applications. Tokyo: BKC Inc, 1999.
    [81] Asahi R., Morikawa T., Ohwaki T., Aoki K.,Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science ,2001,293(5528): 269-271
    [82] Diwald O., Thompson T. L., Goralski E. G., Walck S. D.,Yates Jr J.T. The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals. J. Phys. Chern. B, 2004,108(1): 52-57
    [83] Irie H., Watanabe Y., Hashimoto K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_2-xNx Powders. J. Phys. Chem. B, 2003,107(23): 5483-5486
    [84] Burda C, Lou Y., Chen X., Samia A. C. S., Stout J., Gole J. L. Enhanced Nitrogen Doping in TiO_2 Nanoparticles. Nano. Lett., 2003, 3(8): 1049-1051
    [85] Khan S. U. M., Al-Shaky M., Ingler Jr. W. B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO_2, Science, 2002,297:2243-2245
    [86] Lettmann C, Hildenbrand K., Kisch H., Macyk W., Maier W. F. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B Environ., 2001,32(4): 215-227
    [87] Sakthivel S., Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed., 2003,42(40): 4908-4911
    [88] Li X., Chen C, Zhao J. Mechanism of Photodecomposition of H2O2 on TiO2 Surfaces under Visible Light Irradiation. Langmuir,2001,17:4118-4122
    [89] Zang L., Lange C, Abraham I., Storck S., Maier W. F, Kisch H. Amorphous Microporous Titania Modified with Platinum(IV) Chloride-A New Type of Hybrid Photocatalyst for Visible Light Detoxification. J. Phys. Chem. B, 1998, 102: 10765-10771
    [90] Kisch H., Zang L., Lange C, Maier W. F, Antonius C, Meissner D.Modified. Heterogeneous photocatalysis. Part 18. Modified, amorphous titania - a hybrid semiconductor for detoxification and current generation by visible light. Angew. Chem. Int. Ed., 1998, 37: 3034-3036
    [91] Zang L., Macyk W., Lange C, Maier W R, Antonius C, Meissner D., Kisch H. Visible-light detoxification and charge generation by transition metal chloride modified titania. Chem. Eur. J., 2000,6: 379-384
    [92] Li X. Z. and Li F. B. Study of Au/Au~(3+)-TiO_2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment. Environ Sci Technol., 2001, 35: 2381-2387
    [93] Justicia I., Ordejon P., Cano G, Mozos J .L, Fraxdas J., Battiston G A., Gerbasi R., Figueras A. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater., 2002,14: 1399-1402
    [94] Klosek S., Raftery D. Visible Light Driven V-Doped TiO_2 Photocatalyst and Its Photooxidation of Ethanol. J Phys Chem. B, 2001,105(14): 2815-2819
    [95] O'Regan B., Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 1991., 353: 737-739
    [96] Wu T., Liu G, Zhao J. Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO_2 Dispersions. J. Phys. Chem. B, 1998,102:5845-5851
    [97] Zhang F, Zhao J., Shen T., et al. TiO_2-assisted photodegradation of dye pollutants. II. Adsorption and degradation kinetics of eosin in TiO_2 dispersions under visible light irradiation.Applied, Catalysis B Environ., 1998,15:147-156
    [98] Zhao J., Wu T., Wu K., et al. Photoassisted degradation of dye pollutants 3: Evidence for the need for substrate adsorption on TiO_2 particles. Environ. Sci. Technol., 1998, 32: 2394-2400
    [99] Wu T., Lin T., Zhao J., et al. TiO_2-assisted photodegradation of dye IX: photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environ. Sci. Technol., 1999,33:1379-1387
    [100] Liu G, Wu T., Zhao J. Environ. Sci. Technol., Photooxidation pathyway of sulforhodamine B dependence on the adsorption mode on TiO_2. exposed to visible light radiation. 1999, 33:2081-2087
    [101] Wu T., Zhao J., et al. Evidence for H_2O_2 Generation during the TiO_2-Assisted Photodegradation of Dyes in Aqueous Dispersions under Visible Light Illumination. J. Phys. Chem. B, 1999,103(23): 4862-4867
    [102] Jimmy C. Yu, Jiaguo Yu, Wingkei Ho and Jincai Zhao, Light-induced super- hydrophilicity and photocatalytic activity of mesoporous TiO_2 thin films. J Photochem. Photobio. A: Chem., 2002,148: 331-339
    [103] Liu G, Li X.Z, Zhao J., Hidaka H., Serpone N., Photooxidation pathway of sulforhodamine-B dependence on the adsorption mode on TiO_2 exposed to visible light radiation, Environ. Sci. Technol., 2000,34:3982-3990.
    [104] Chen C, Ma W., Zhao J., et al., Effect of Transition Metal Ions on the TiO_2-Assisted Photodegradation of Dyes under Visible Irradiation: A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism. J. Phys. Chem. B.2002,106(2): 318-324
    [105] Zhao W., Chen C, Li X., Zhao J., et al., Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-catalyst, J Phys. Chem. B, 2002,106(19): 5022-5028
    [106] Chen C, Zhao W., Li J., Zhao J., et al., Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO-2 dispersion Environ. Sci. Technol., 2002, 36: 3604-3611
    [107] Zhao W., Chen C, Li X., Zhao L., Efficient photoinduced conversion of an azo dye on hexachlorplatinate (IV)-modified TiO_2 surfaces under visible light irradiation------A photosensitization pathway. Chem. Eur. J. ,2003,9:3292-3299
    [108] Qu P., Zhao J. C, et al. Enhancement of the photoinduced electron transfer from cationic dyes to colloidal TiO_2 particles by addition of an anionic surfactant in acidic media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998,138(1):39-50
    [109] Cho Y., Choi W., Lee C. H., Hyeon T., et al. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO_2, Environm. Sci. Technol., 2001,35(5): 966-970
    [110] Bae E., Choi W., Highly Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO_2 under Visible Light, Environ. Sci. Technol., 2003,37: 147-152
    [111] Li X., Zhao W., Zhao J., Visible light-sensitized semiconductor photocatalytic degradation of 2,4-DCP. Science in China, Sen B, 2002,45:421-425
    [112] Fenton H. J. H., Oxidation of tartaric acid in the presence of iron. J. Chem. Soc, 1894,65: 899-901
    [113] Bossmarln S. H., Oliveros E., et al., New Evidence against Hydroxyl Radicals as Reactive Intermediates in the Thermal and Photochemically Enhanced Fenton Reactions, J. Phys. Chem. A, 1998,102(28): 5542-5550
    [114] Pignatello J. J., Liu D., Huston P., Evidence for an Additional Oxidant in the Photoassisted Fenton Reaction. Environ. Sci. Technol., 1999,33(11): 1832-1839
    [115] Sun Y., Pignatello J. J. Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV. Environ. Sci. Technol., 1993, 27(2): 304-310
    [116] Pignatello J. J., Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol., 1992,26(5): 944-951
    [117] Fukushima M., Tatsumi K., Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron(III), humic acid, and hydrogen peroxide. Environ. Sci, Technol., 2001,35(9): 1771-1778
    [118] Chen F., Ma W., He J., Zhao J. Fenton Degradation of Malachite Green Catalyzed by Aromatic Additives, J. Phys Chem. A, 2002,106(41): 9485-9490
    [119] Wu K., Zhao J., Hidaka H., et al. Photo-Fenton degradation of a dye under visible light irradiation. J. Mol. Catal. A: Chem, 1999,144(1): 77-84
    [120] Xie Y., Chen F., Zhao J., et al. Photoassisted degradation of dyes in the presence of Fe~(3+) and H_2O_2 under visible irradiation. J. Photochem. Photobiol. A: Chem., 2000,136(3): 235-240
    [121] Xie Y., He J., Zhao J., Investigation of the intermediates formed during the degradation of malachite green in the presence of Fe~(3+) and H_2O_2 under visible irradiation. Research on Chemical Intermediates, 2000,27(3): 237-248
    [122] Chen F, Xie Y, Zhao J., et al. Photo-Fenton Degradation of Dye in Methanolic Solution under both UV and Visible Irradiation. J Photochem. Photobiol. A: Chem., 2001,138: 139-146
    [123] Chen F., He J., Zhao J., et al. Photo-Fenton Degradation of Malachite Green Catalyzed by Aromatic Compounds under Visible Light Irradiation. New J. Chem., 2002,36: 336-341
    [124] Lin S. S., Gurol M. D., Catalytic decomposition of hydrogen peroxide on iron oxide:kinetics,mechanism and implications, Environ. Sci. Technol., 1998,32:1417-1423
    [125] Bandara J., Mielczarski J. A., Kiwi J., Molecular Mechanism of Surface Recognition. Azo Dyes Degradation on Fe, Ti, and Al Oxides through Metal Sulfonate Complexes, Langmuir,1999,15(22): 7670-7679
    [126] Pulgarin C, Kiwi L. Iron Oxide-Mediated Degradation, Photodegradation, and Biodegradation of Aminophenols, Langmuir, 1995,11(2): 519-526
    [127] Watts R. J., Bottenberg B. C, Hess T. F., Jensen M. D., Teel A. L. Role of Reductants in the Enhanced Desorption and Transformation of Chloroaliphatic Compounds by Modified Fenton's Reactions. Environ. Sci. Technol., 1999, 33(19): 3432-3437
    [128] Ju He, Wanhong Ma, Jianjun He, Jincai Zhao and Jimmy C. Yu, Photooxidation of azo dye in aqueous dispersions of H_2O_2/α-FeOOH. Appl. Catal. B: Environ., 2002,39 (3): 213-222
    [129] He J., Tao X., Ma W., Zhao J. Efficient photooxidation degradation of organic compounds in the presence of iron. Chem. Lett., 2002, 31(1): 86-87
    [130] Hiskia A., Mylonas A., Papaconstantinou E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev., 2001, 30(1): 62-69
    [131] Pope M. T., Muller A., Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines. Angew. Chem. Int. Ed. Engl., 1991,30:34-48
    [132] Hill C. L. Homogeneous catalysis. Controlled green oxidation, Nature, 1999,401 (6752): 436-437
    [133] Weinstock I. A., Barbuzzi E. M., Cowan J. J., Wemple M. W., et al. Equilibrating metal-oxide cluster ensembles for oxidation reactions using oxygen in water, Nature, 414(6860): 191-195
    [134] Mylonas A., Papaconstantinou E. On the mechanism of photocatalytic degradation of chlorinated phenols to CO_2 and HCl by polyoxometalates. J. Photochem. Photobiol. A: Chem., 1996,94(1):77-82
    [135] Androulaki E., Hiskia A., Dimotlkali D., Minero C, CalmP., pelizzetti E., Papaconstantinou E. Light Induced Elimination of Mono- and Polychlorinated Phenols from Aqueous Solutions by PW_(12)O_(40)~(3-). The Case of 2,4,6-Trichlorophenol.Environ. Sci. Technol., 2000,34(10): 2024-2028
    [136] Mylonas A., Hiskia A., Papaconstantinou E. Contribution to water purification using polyoxometalates, aromatic derivatives, chloroacetic acids. J. Mol. Catal. A, 1996, 114(1-3): 192-200
    [137] HiskiaA., Ecke A., Troupis A., Kokorakis A., Herlnig H., Papaconstantinou E. Sonolytic, Photolytic, and Photocatalytic Decomposition of Atrazine in the Presence of Polyoxometalates, Environ. Sci. Technol., 2001,35(11): 2358-2364
    
    [138] Ozer R. R., Ferry J. L., Kinetic Probes of the Mechanism of Polyoxometalate-Mediated Photocatalytic Oxidation of Chlorinated Organics, J. Phys. Chem. B, 2000,104(40): 9444-9448
    
    [139] Texier I., Ouazzani J., Delaire J., Giannotti C. Study of the mechanisms of the photodegradation of atrazine in the presence of two photocatalysts: TiO_2 and Na_4W_(10)O_(32).Tetrahedron, 1999, 55(11): 3401-3412
    [140] Tamelian C, Duffy K., Jones A. Kinetic and Mechanistic Aspects of Photocatalysis by Polyoxotungstates: A Laser Flash Photolysis, Pulse Radiolysis, and Continuous Photolysis Study, J. Phys. Chem. B, 1997,101(21): 4276-4282
    [141] Duncan D. C, Fox M. A., Early Events in Decatungstate Photocatalyzed Oxidations: A Nanosecond Laser Transient Absorbance Reinvestigation J. Phys. Chem. A, 1998, 102(24): 4559-4567
    [142] Chen C, Li J., Zhao W., Zhao J., et al. Photodegradation of sulorhodamine-B dye in platinum as a functional Co-catalyst light-sensitized semiconductor photocatalytic degradation of 2,4-DCP. Science in China, Ser. B, 2002,45: 421-425
    [143] Ozer R. R., Ferry J. L. Photocatalytic Oxidation of Aqueous 1,2-Dichlorobenzene by Polyoxometalates Supported on the NaY Zeolite, J. Phys. Chem. B, 2002, 106(16): 4336-4342
    [144] Yihang Guo, Changwen Hu, Shicheng Jiang, Caixin Guo, Yu Yang and Enbo Wang. Heterogeneous photodegradation of aqueous hydroxy butanedioic acid by microporous polyoxometalates. Applied Catalysis B: Environmental, 2002,36 (1): 9-17
    [145] Guo Y. H., Hu C. W., Jiang C. J. et al. Preparation and heterogeneous photocatalytic behaviors of the surface-modified porous silica materials impregnated with monosubstituted Keggin units. J.Catal., 2003,217(1): 141-151
    [146] Guo Y.,Wang Y, Hu C, Wang Y.Wang E., Zhou Y., Feng S. Microporous Polyoxometalates POMs/SiO_2: Synthesis and Photocatalytic Degradation of Aqueous Organocholorine Pesticides, Chem. Mater. 2000, 12(11): 3501-3508
    
    [147] Yue B., Zhou Y, et al. Photocatalytic Degradation of Aqueous 4 - Chlorophenol by Silica- Immobilized Polyoxometalates, Environ. Sci. Technol., 2002, 36:1325-1329
    [148] Ozer R. R., Ferry J. L., Investigation of the photocatalytic activity of TiO_2-polyoxometalate systems. Environ. Sci. Technol., 2001, 35(15): 3242-3246
    [149] Yoon M., Charlg J. A., Kim Y, Choi J. R. Heteropoly Acid-Incorporated TiO_2 Colloids as Novel Photocatalytic Systems Resembling the Photosynthetic Reaction Center J. Phys. Chem. B, 2001,105(13): 2539-2545
    [150] Chen C, Li J., Zhao W., Zhao J. Photocatalysis by titanium dioxide and polyoxometalate/TiO_2 co-catalysts. Intermediates and mechanistic study. Environ. Sci. Technol., 2004,38: 329-337
    [151] Sorokin A., Meunier B. J. Efficient H_2O_2 oxidation of chlorindated phenols catalyzed by supported iron phthalocyanines. Chem. Soc. Chem. Commun., 1994, 15: 1799-1780
    [152] Collins T. J. TAML Oxidant Activators: A New Approach to the Activation of Hydrogen Peroxide for Environmentally Significant Problems. Acc. Chem. Res., 2002, 35(9): 782-790
    [153] Sen G S., Stadler M., Noser C. A., Ghosh A., et al., Rapid total destruction of chlorophenols by activated hydrogen peroxide. Science (Washington, DC, United States) 2002, 296(5566): 326-328.
    [154] Tao X., Ma W., Zhang T., Zhao J. Efficient oxidative degradation of organic pollutants in the presence of iron tetrasulfophthalayanine under visible irradiation, Angew. Chem. Int. Ed., 2001,40 (16): 3 013-3016
    [155] Tao X., Ma W., Zhang T., Zhao J. A Novel Approach for the Oxidative Degradation of Organic Pollutants in Aqueous Solutions Mediated by Iron Tetrasulfophthalocyanine under Visible Light Radiation, Chem. Eur. J., 2002 8:1321-1326
    [156] Tao X., Ma W., Zhao J., et al. Efficient degradation of organic pollutants mediated by immobilized iron tetrasulfophthalocyanine under visible light irradiation. Chem. Commun., 2003,1:80-81
    [157] Huang Y., Ma W., Li J., et al., A Novel -CD-Hemin Complex Photocatalyst for Efficient Degradation of Organic Pollutants at Neutral pHs under Visible Irradiation, J. Phys. Chem. B, 2003,107(35): 9409-9414
    [158] Weber L., Hommel R., Behling J., et al. Photocatalytic Oxygenation of Hydrocarbons with (Tetraarylporphyrinato)iron(III) Complexes and Molecular Oxygen. Comparison with Microsomal Cytochrome P-450 Mediated Oxygenation Reactions, J. Am. Chem. Soc, 1994,116(6): 2400-2408
    [159] Ma W., Li J., Zhao J., et al. Efficient degradation of organic pollutants by using dioxygen activated by resin-exchanged iron(II) bipyridine under visible irradiation. Angew. Chem. Int. Ed., 2003,42:1029-1032
    [160] Li J., Ma W., Zhao J., et al. A highly selective photooxidation approach using 02 in water catalyzed by iron ( II ) bipyridine complex supported on NaY zeolite. Chem. Commun., 2003,17:2214-2215
    [161] Oppenlander T. Photochemical Purification of Water and Air, Wiley-VCH, Weinheim, 2003
    [162] Legrini O., Oliveros E., Braun A.M., Photochemical processes for water treatment, Chem. Rev. 1993, 93(2): 671-698.
    [163] Weeks, J. L., Meaburn, G M. A. C, Gordon, S. Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet. Radiation Research, 1963,19(3): 559-67.
    [164] Bielski B.H., Generation of superoxide radicals in aqueous and ethanolic solutions by vacuumUV photolysis, Methods Enzymol. 1984,105: 81-88,
    [165] Bielski B.H., Araudi R.L., Paration and stabilization of aqueous/ethanolic superoxide solutions.Anal. Biochem. 1983,133(1): 170-178.
    [166] Rosso J.A., Bertolotti S.G, Braun A.M., M'artire D.O., Gonzalez M.C, Reactions of carbon dioxide radical anion with substituted benzenes. J. Phys. Org. Chem. 2001,14(5): 300-309.
    [167] Neumann L., Yang B., Maier D., Braun A.M., Hydrogen peroxide generation by UV-irradiation (185, 254 nm) of water and aqueous solutions of methanol, in: Proceedings of the European Conference on UV Radiation, UVKA04-4-1, Karlsruhe, Intl. Ultraviolet Association Inc., Ayr, 2004.
    [168] Heit G, Braun A.M., Spatial resolution of oxygen measuremernts during VUV photolysis of aqueous systems, J. Inf. Rec. 1996, 22: 543-546.
    [169] Braun A.M., Maurette M.T., Oliveros E., Technologie Photochimique, Presses Polytechniques Romandes, Lausanne, 1986,
    [170] Braun A.M., Maurette M.T., Oliveros E., Photochemical Technology, Wiley, Chichester, 1991.
    [171] Oppenlander T., Baum G, Streiff F, Mathys P., Schneider G, Use of static mixers in excimer flow-through photoreactors for wastewater treatment by vacuum UV oxidation. Chem. Ing. Tech. 1996, 68(1/2): 155-157,
    
    [172] Oppenlander T., Mathys P., Schneider G, European Patent, EP 0697374 Al, 1994.
    [173] Oppenlander T., Vacuum-UV-initiated photo-mineralization of dissolved organic matter using a xenon excimer flow-through photoreactor with an incorporated ceramic oxygenator, in: B. Quintero, M.C. Cabeza (Eds.), Proceedings of the XXth IUPAC Symposium on Photochemistry, Book of Abstracts, Granada, 2004, pp. 150-151,
    [174] Worner M., Gieser J., Pocorny M.D., Mena R., Nickels P., Wakahata Y., Braun A.M., Miniaturized Xe_2*-excimer reactor module for the flow-through analytical sample preparation in aqueous systems, in: B. Quintero, M.C. Cabeza (Eds.), Proceedings of the XXth IUPAC Symposium on Photochemistry, Book of Abstracts, Granada, 2004, pp. 594-595.
    [175] Braun A.M., Worner M., Schnabel C, Reid V., Bailleux C, European Patent, EP 1160203 2000.
    [176] Worner M., Schnabel C, Zegenhagen F., Workman A., Braun A.M., Kombinierte Anwendung von VUV (Vakuum Ultraviolett)- Technik und Elektrolyse zur beschleunigten Mineralisierung organischer Schadstoffe in wassrigen Phasen, in: D.M. Kolb, K. Mund, J. Russow (Eds.), GDCh-Fachgruppe Angewandte Elektrochemie, Jahrestagung, GDCh-Monographie, Bd. 21, GDCh, Frankfurt, 2001, p. 330.
    [177] Farhataziz, A.B. Ross, Selected specific rates of reactions of transients from water in aqueous solutions. I. Hydrated electron, NSRDS-NBS 43 and Supplement, National Bureau of Standards, Washington, DC, 1977,
    [178] Farhataziz, A.B. Ross, Selected specific rates of reactions of transients from water in aqueous solutions. II. Hydrogen atom, NSRDSNBS 51, National Bureau of Standards, Washington, DC, 1977,
    [179] Farhataziz, A.B. Ross, Selected specific rates of reactions of transients from water in aqueous solutions. III. Hydroxyl radical and perhydroxyl radical and their radical ions, NSRDS-NBS 59, National Bureau of Standards, Washington, DC, 1977,
    [180] Neta P., Huie R.H., Ross A.B., Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988,17(3): 1027-1284.
    [181] Loraine G A., Short wavelength ultraviolet photolysis of aqueous carbon tetrachloride. Hazardous Waste & Hazardous Materials, 1993,10(2): 185-94.
    [182] Oppenlander T., Baum G, Chlorocarbons removal from water by vacuum UV and UV photolysis in continuous-flow excimer photoreactions. Chem. Ing. Tech. 1995,67(1): 96-99
    [183] Baum G and Oppenlander T., Vacuum-UV-Oxidation of chloroorganic compounds in an excimer flow through. photoreactor. Chemosphere, 1995, 30: 1781-1790
    [184] Worner M., Schnabel C, Hashem T. M., Zegenhagen F., Gieser J., Braun A. M. Dehalogenation of halogenated organic compounds in aqueous solution by different photochemical methods. Journal of Information Recording, 1998,24(5-6): 455-460.
    [185] Rosso J.A., Allegretti P.E., M'artire D.O., Gonzalez M.C., Reaction of sulfate and phosphate radicals with-trifluorotoluene. J. Chem.Soc, Perkin Trans. 1999,2: 205-210.
    [186] Gonzalez M.C., Braun A.M., Vacuum-UV photolysis of aqueous solutions of nitrate: effect of organic matter I. Phenol J. Photochem. Photobiol. A: Chem. 1996,93: 7-19.
    [187] Oppenlander T., Gliese S., Mineralization of organic micropollutants (homologous alcohols and phenols) in water by vacuum-UV-oxidation (H_2O-VUV) with an incoherent xenon-excimer lamp at 172 nm. Chemosphere, 2000, 40(1): 15-21.
    [188] Gonzalez M.C., Hashem T. M., Jakob L, Braun A.M., Oxidative degradation of nitrogen-containing organic compounds: vacuum-ultraviolet (VUV) photolysis of aqueous solutions of 3-amino 5-methylisoxazole. Journal of Analytical Chemistry. 1995,351(1): 92-97.
    [189] Gonzalez M. C, Braun A. M., Prevot A. Bianco, Pelizzetti E. Vacuum-ultraviolet (VUV) photolysis of water: mineralization of atrazine. Chemosphere, 1994, 28(12): 2121-2127.
    [190] Bianco Prevot A., Pelizzetti E., Hashem T.M., Braun A.M., Vacuum-ultraviolet (VUV) photolysis of aqueous solutions of atrazine compounds, Chemosphere, 2000,40(2): 215-221..
    [191] Tauber A., Von Sonntag C, Products and kinetics of the OH-radical-induced dealkylation of atrazine. Acta Hydrochim. Hydrobiol. 2000,28:15-23.
    [192] Andresen P., Ondrey GS., Titze B., Rothe E., Nuclear and electron dynamics in the photodissociation of water, J. Chem. Phys. 1984, 80: 2548-2569.
    [193] McNesby J.R., Tanaka J., Okabe H., J. Chem. Phys. 36 (1962) 605-607.
    [194] Cottin M., Masanet J., Vermeil C, Photolysis of water vapor in the presence of deuterium at 1236 and 1470 A. J. Chim. Phys. 1966,63(7-8): 959-968.
    [195] Getoff N. Radiation chemistry and the environment. Radiation Physics and Chemistry 1999, 54(4): 377-384.
    [196] Swallow A. J. Application of pulse radiolysis to the study of aqueous organic systems. In The Study of Fast Processes and Transient Species by E.lectron Pulse Radiolysis. (Edited by J. H. Baxendale and F. Busi), D. Reidel Publ. Co., Dordrecht. 1982,241 -266
    [197] Eberhard Janata and Robert H. Schuler. Rate constant for scavenging e_((?)q)~- in nitrous oxide-saturated solutions. J. Phys. Chem., 1982,16(11): 2078-2084
    [198] Buxton G. V., Greenstock C. L., Critical review of rate constants for reactions of hydrated electron, hydrogen atoms in aqueous solution. J. Phys. Chem. Ref. Data., 1988,17 (2): 513
    [199] Yao Si-de, Zhang Jia-shan, Lin Nian-yun. Nanosecond pulse radiolysis studies in China. Radiat. Phys. Chem., 1995,46(1): 105-109
    [200] M. Anbar and J. K. Thomas. Pulse Radiolysis Studies of Aqueous Sodium Chloride Solutions. J. Phys. Chem., 1964,68(12): 3829
    
    [201] Hart E. J., Anbar M., The Hydrated Electron, New York, Wiley, 1970.
    [202] Jortner J., Ottolenghi M., Stein G., On the photochemistry of aqueous solutions of chloride, bromide, and iodide ions, J. Phys. Chem. 1964,68(2): 247-254.
    [203] Giovanni Bentivenga, Carlo Bonini, Maurizio D'Auriqa, et al. Singlet oxygen degradation of lignin: a GC-MS study on the residual products of the singlet oxygen degradation of a steam exploded lignin from beech. J. Photochem. Photobiol. A: Chem. 1999,128: 139- 143.
    [204] Fernando Lledas, Pablo Rangel, Wilhelm Hansberg. Singlet oxygen is part of a hyperoxidant state generated during spore germination. Free Radical Biology & Medicine, 1999,26(11/12): 1396-1404,
    [205] Giovanni Bentivenga, Carlo Bonini, Maurizio D'Auriqa, et al. Singlet oxygen mediate degradation of Klason lignin. Chemosphere, 1999,39 (14): 2409-2417
    [206] Maurizio D'Auria, Carlo Bonini, Lucia Emanuele, et al. Singlet oxygen mediate degradation of lignin Isolation of oxidation products from steam-exploded lignin from straw. J. Photochem. Photobiol. A: Chem. 2002,147: 153-156
    [207] Heit G., Braun A. M. VUV-photolysis of aqueous systems: spatial differentiation between volumes of primary and secondary reactions. Wat. Sci.Tech., 1997, 35 (4): 25-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700