用户名: 密码: 验证码:
氧氟沙星酰腙配合物的结构、抗氧化活性及与生物大分子的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质、核酸等基本生命物质对一切生命现象都起着至关重要的作用。在分子水平上研究药物或配合物小分子与蛋白质、核酸等生物大分子的相互作用,是当前生命科学、药物化学的重要研究课题之一。本论文合成、表征了五个氧氟沙星酰腙衍生物及其稀土配合物,发现合成的配合物与配体相比,溶解性有了很大程度地提高,说明在配体中引进金属离子对药物的药剂相性质有较明显的影响;我们推测这些化合物可能有更好的生物活性,所以研究了部分化合物与小牛胸腺DNA (CT DNA)和牛血清白蛋白(BSA)的结合性质及抗氧化活性,得到了一系列有意义的结论。
     全文一共分为五章:
     第一章:综述了DNA和BSA与小分子作用的研究进展,总结了小分子与DNA和BSA相互作用的方式、影响因素以及研究方法,阐述了小分子与DNA和BSA相互作用的研究在药物筛选和生物化学中重要的理论和实际意义。概述了本论文的选题目的及意义。
     第二章:在氧氟沙星母体上,引入羟取代基位置和数量不同的水杨醛衍生物,合成表征了三种新的水杨醛氧氟沙星酰腙配体H2L1,H2L2和H3L3及其稀土配合物ML1-3(M=Pr(Ⅲ), Nd(Ⅲ), Sm(Ⅲ));解析了PrL1和NdL1的晶体结构,其晶体组成分别为[PrL1(NO3)2(CH3OH)] NO3和[NdL1(NO3)2(CH3OH)] NO3。运用紫外可见吸收光谱、荧光光谱、圆二色谱、粘度等方法观察了以上化合物与DNA的相互作用。实验表明,这些化合物均以插入方式与DNA结合,取代基的差异只影响了它们与DNA的结合能力。DNA切割实验说明,配体H2L1,H2L2和H3L3对DNA没有明显的切割作用,但配合物ML1-3都能有效的切割DNA,表现出了一定的化学核酸酶活性。抗氧化活性实验表明,部分化合物对OH·和O2-·自由基具有清除能力,含有两个-OH的H3L3及SmL3对O2-·和OH的清除能力要强于含有一个-OH的H2L1及SmL1和H2L2及SmL2,说明羟基的数量对化合物的抗氧化活性有较大影响。
     第三章:运用紫外可见吸收光谱、荧光光谱、圆二色谱等方法,研究了羟基取代基位置和数量不同的水杨醛氧氟沙星酰腙配体H2L1,H2L2和H3L3及其配合物ML1-3与BSA的相互作用。实验表明,这些化合物对BSA的荧光淬灭机理属于静态淬灭,结合位点数都约为1,计算了化合物与BSA作用时的结合常数和热力学参数,确定了它们与BSA之间的主要作用力类型;根据Forster能量传递原理计算了化合物与BSA分子肽链中色氨酸残基之间的距离;利用圆二色光谱研究了它们对BSA二级结构的影响。探讨了-OH位置和数量的变化对化合物与BSA作用的影响。
     第四章:合成、表征了呋喃(噻吩)甲醛氧氟沙星酰腙HL4和HL5及其稀土配合物ML4 (M=La(Ⅲ), Nd(Ⅲ), Er(Ⅲ))和ML5(M=La(Ⅲ), Pr(Ⅲ)。研究发现,ML4和ML5具有类似的结构。运用光谱分析和粘度等手段观察了HL4、ML4和HL5、ML5与DNA的相互作用,分别计算了它们与DNA作用的结合常数和淬灭常数。对于HL4及ML4,结合常数和淬灭常数有如下顺序:K (HL4)      第五章:观察了2,6-二((安替比林-4-亚氨基)甲基)-4-甲酚(Dpmp)及其Co(Ⅱ)、Zn(Ⅱ)的配合物与DNA的相互作用,推测Dpmp及其配合物均以插入模式与DNA结合。通过凝胶电泳方法观察到,两种金属配合物都能够有效的切割pUC19 DNA,具有潜在的化学核酸酶活性。抗氧化活性研究表明,Dpmp及其配合物对O2-·和OH具有一定的清除能力。
The essential biological materials——protein and nucleic acid, have been playing vital roles in all kinds of biological phenomena. Exploring the interaction mechanisms on these biomacromolecules with small molecules, especially for those drug molecules, at the molecular level is of current interest in many research areas such as biology, clinical medicine chemistry, and so on. In this paper, we have reported the synthesis, characterization of five ofloxacin acylhydrazones and their metal complexes. The complexes are more soluble compare with the corresponding ligand, which may result in new biological activities, so some of them were evaluated for DNA and BSA binding properties and antioxidant activities. A series of significant conclusions have achieved from the results. The dissertation includes following five chapters:
     In chapter one, the research progress in the interactions of DNA and BSA with small molecules, as well as the interaction mode, influence factors, research methods are reviewed. The important theoretical and practical significance of the research work in the drug screening and biochemistry are also discussed herein. Moreover, the aim and significance of this thesis have been outline.
     In chapter two, three ofloxacin acylhydrazones with different number and location of hydroxyl substituting groups (H2L1, H2L2 and H3L3) and their metal complexes ML1-3(M=Pr(Ⅲ), Nd(Ⅲ), Sm(Ⅲ)) have been synthesized and characterized. The crystals structures of PrL1 and NdL1 characterized by single crystal X-ray diffraction showed that the complexes have a similar molecular structure. The interactions of above compounds with DNA were investigated by spectrophotometric methods and viscosity measurement, which suggested that the complexes bind with DNA in intercalation mode and the different position and number of substituting groups lead in different DNA binding affinity of the complexes. Experiments with pBR322 DNA show that the free ligand does not show any DNA-cleaving abilities and the complexes display chemical nuclease activity. Antioxidant tests in vitro show some complexes possess significant antioxidant activity against superoxide and hydroxyl radicals and the different number of substituting groups leads in different antioxidant activity of the complexes.
     In chapter three, the interactions of H2L1, H2L2, H3L3 and their metal complexes ML1-3 with BSA have been studied using UV-visible, fluorescence spectroscopic and CD methods. The results suggested that the quenching mechanism of BSA fluorescence by complexes was proved to be a static quenching and the numbers of binding sites were about 1. The binding constants and types of interaction forces between BSA and compounds were obtained. The average binding distance between complexes and BSA has been determined on the basis of the Forster'theory. The CD data well supports the idea that the complexes had some effect on BSA'structure. The different position and number of hydroxyl substituting groups lead in different BSA binding affinity of the complexes.
     In chapter four, two ofloxacin derivatives with different five-heterocyclic (HL4 and HL5) and their metal complexes (ML4(M=La(Ⅲ), Nd(Ⅲ, Er(Ⅲ)) and ML5(M=La(Ⅲ), Pr(Ⅲ), Sm(Ⅲ))) have been synthesized and characterized. ML4 and ML5 have a similar molecular structure. The interactions of complexes with DNA were investigated by spectrophotometric methods and viscosity measurement, which suggested that the complexes bind with DNA in groove mode. The data of the binding constants and quenching constants present the order of K (HL4)< K (LaL4)< K (NdL4)     In chapter five, the interaction of a ligand 2, 6-di((phenazonyl-4-imino)methyl)-4-methylphenol (Dpmp) and its Co(Ⅱ) and Zn(Ⅱ) complex with CT DNA have been studied. The experiment results revealed that they can bind tightly to DNA probably via the intercalative mode. Both the two complexes have been found to promote cleavage ability of pUC19 DNA. In addition, the ligand and complexes showed considerable anti-oxidative activity to superoxide and hydroxyl radicals.
引文
[1]彭师奇.多肽药物化学[M].北京:科学出版社.1998.
    [2]Robert, E.B. Steven, L.B. Chem. Rev,1997,97:1359-1363.
    [3]仇缀百.药物设计学[M].北京:高等教育出版社.1999.
    [4]徐文方.新药设计原理与方法[M].北京:中国医药科技出版社.1997.
    [5]Erkkila, K.E. Odem, D.T. Barton, J.K. Recognition and reaction of metallointercalators with DNA. Chem. Rev.1999,99:2777-2796.
    [6]Metcalfe,C. Thomas, J.A. Kinetically inert transition metal complexes that reversibly bind to DNA. Chem. Soc. Rev.2003,32:215-224.
    [7]Dandliker, P.J. Holmlin, R.E. Barton, J.K. Oxidative Thymine Dimer Repair in the DNA Helix. Science 1997,275:1465-1468.
    [8]Hall, D.B. Holmlin,R.E. Barton, J.K. Oxidative DNA Damage Through Long Range Electron Transfer. Nature 1996,382:731-735.
    [9]Keck, M.V. Lippard, S.J. Unwinding of supercoiled DNA by platinum-ethidium and related complexes. J. Am. Chem. Soc.1992,114 (9) 3386-3390.
    [10]Hartshorn, R M. Barton, J. K. Novel dipyridophenazine complexes of ruthenium(II): exploring luminescent reporters of DNA. J. Am. Chem. Soc.1992,114:5919-5925.
    [11]Bocarsly, J. R. Chiang, M. Y. Bryant, L. Barton, J. K. Synthesis, characterization, and solution chemistry of a family of protein-binding inorganic complexes:bis(imidazole)(amino acid-N,N-diacetato)chromium(IN). Inorg. Chem.,1990,29 (24):4898-4907
    [12]Sitlani,A. Long,E.C. Pyle, A.M. Barton, J.K. DNA photocleavage by phenanthrenequinone diimine complexes of rhodium(Ⅲ):shape-selective recognition and reaction. J. Am. Chem. Soc.1992,114 (7):2303-2312
    [13]Bailly, C. Topoisomerase Ⅰ poisons and suppressors as anticancer drugs. Curr. Med. Chem.7 (2000) 39-58.
    [14]Demeunynck, M. Bailly, C. Wilson, W.D. DNA and RNA Binders. From Small Molecules to Drugs, Wiley-VCH, Weinheim,2002.
    [15]Lyne, P. D. Structure-based virtual screening:An overview. Drug Discovery Today.2002, 7(20):1047-1055.
    [16]Tolomeo, M. Simoni, D. Drug resistance and apoptosis in cancer treatment:development of new apoptosis-inducing agents active in drug resistant malignancies, Curr. Med. Chem. Anticancer Agents,2002,3:387-401.
    [17]Goldie, J.H. Drug resistance in cancer:a perspective. Cancer Metastasis Rev.2001,20(1-2): 63-68.
    [18]P.U. Maheswari, S. Roy, H.den. Dulk, S. Barends, G.V. Wezel, B. Kozlevcar, P. Gamez, J. Reedijk, The Square-Planar Cytotoxic [Cu11(pyrimol)Cl] Complex Acts as an Efficient DNA Cleaver without Reductant. J. Am. Chem. Soc.2006,128 (3):710-711.
    [19]Suh, J. Synthetic Artificial Peptidases and Nucleases Using Macromolecular Catalytic Systems. Acc. Chem. Res.2003,36(7):562-570.
    [20]Cowan, J.A. Metal Activation of Enzymes in Nucleic Acid Biochemistry. Chem. Rev.98 (1998) 1067-1088.
    [21]Gielen, M. Tiekink, E.R.T. (Eds.), Metallotherapeutic Drugs and Metal-based Diagnostic Agents:The Use of Metals in Medicine, John Wiley & Sons,2005.
    [22]Ulrich, K.H. Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 1981,33(1):17-53.
    [23]Squella, J.A. Becerra, R. Nunez-Vergara LJ. Polarography:a new tool in the elucidation of drug-albumin interactions. Biochem. Pharmacol.1987,36(20):3531-3533.
    [24]Takahashi,H. Ogata,H. Plasma protein binding and blood cell distribution of propranolol enantiomers in rats. Biochem. Pharmacol.1990,39:1495-1498.
    [25]Sun, W. Jiao, K. Liu, X. Y. Electrochemical study of alizarin red. S-bovine serum albumin interaction. Chin. J. Anal. Chem.2002,30(3),312-314
    [26]张晓威 赵凤林 李克安.药物与血浆蛋白相互作用的体外研究Chemistry Online,2001, 13.
    [27]Dockal, M. Carter, D.C. Ruker, F. The three recombinant domains of human serum albumin: structural characterization and ligand binding properties. J of Biol. Chem.1999,274: 29303-29310.
    [28]Carter, D. C. He, X. M. Munson, S. H. Twigg, P. D. Gernet, K. M. Broom, M. B. Miller. T. Y. Three-dimensional structure of human serum albumin. Science.1989,244:1195-1198.
    [29]Carter, D.C. He, X. M. Structure of human serum albumin. Science,1990,249:302-304.
    [30]He, X. M. Carter, D.C. Atomic structure and chemistry of human serum albumin.Nature, 1992,358:209-215.
    [31]Watson, J.D. Crick, F. Molecular structure of nucleic acids:a structure fordeoxynucleic acids. Nature,1953,171:737-738.
    [32]Peng, H. Zhang, L. J. Soeller, C. Conducting polymers for electrochemical DNA sensing. Biomaterials,2009,30 (11):2132-2148.
    [33]Wu, J. K. Huang, C. H. Cheng, G. F. Electrochemically active-inactive switching molecular beacon for direct detection of DNA in homogenous solution. Electrochem. Commun.2009, 11 (1):177-180.
    [34]Li, F. Chen,W. Zhang, S. S. Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol-gel and self-assembly technologies. Biosens. Bioelectron.2008,24(4):781-786.
    [35]Hassen, W.M. Chaix, C. Abdelghani, A. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sensor. Actuat. B:Chem. 2008,134 (2):755-760.
    [36]Mokhir, A. A. Kraemer, R. Conjugates of DNA with naphthalene diimide derivatives having a broad range of DNA affinities. Bioconjugate Chem.2003,14 (5):877-883.
    [37]Liu, F. Wang, K. Bai, G. The pH-induced emission switching and interesting DNA-binding properties of a novel dinuclear. Inorg. Chem.2004,43 (5):1799-1806.
    [38]Okamoto, A. Tanabe, K. Saito I. Site-specific discrimination of cytosine and 5-methylcytosine in duplex DNA by peptide nucleic acids. J.Am. Chem. Soc.2002,124 (35): 10262-10263.
    [39]Wu, J.Z. Yuan, L. Synthesis and DNA interaction studies of a binuclear ruthenium(Ⅱ) complex wit h 2,9-bis (2-imidazo [4,5-f] [1,10]phenanthroline)-1,10-phenanthroline as bridging and intercalating ligand. J. Inorg Biochem,2004,98 (12):41-45.
    [40]Yang,P. Gao, F. The Principle of Bioinorganic Chemistry. Beijing:Science Press,002: 541-563.
    [41]、 Cheng, C.C. Huang-Fu, W. C. Hung, K. C. Mechanistic aspect s of Co (HAPP) (TFA)2 in DNA bulge-specific recognition. Nucleic Acids Res,2003,31 (8):2227-2233.
    [42]Nordell, P. Lincoln, P. Mechanism of DNA threading intercalation of binuclear Ru complexes:Uni-or bimolecular pat hways depending on ligand structure and binding density. J. Am. Chem. Soc.2005,127 (27):9670-9671.
    [43]Tse, W.C. Boger, D.L. A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Acc. Chem Res,2004,37 (1):61-69.
    [44]Yang, P. Ren, R. Guo, M. L. Double-stand hydrolysis of DNA by a magnesium(Ⅱ) complex with diethylenetriamine. J.Biol.Inorg. Chem.2004,9 (4):495-506.
    [45]Chaviara, A.T. Cox, P.J. Repana, K.H. The unexpected formation of biologically active Cu (II) Schiff mono-base complexes with 2-thiophene-carboxaldehyde and dipropylenetriamine: Crystal and molecular structure of CudptaSC12. J.Inorg. Biochem.2005,99 (2):467-476.
    [46]Kumar, C.V. Asumcion,E.H. DNA binding studies and sites elective fluorescence sensitization of an anthylprobe. J. Am. Chem. Soc.1993,115 (19):8547-8553.
    [47]陆世昌等.无机化学.成都:四川人民出版社,1983:193.
    [48]Li,F. Chen, W. Tang, C.F. Recent development of interaction of transition metal comp lexes with DNA based on biosensor and its applications. Talanta,2008,77(1):1-8.
    [49]胡劲波,李启隆.博莱霉素在Ni/GC离子注入修饰电极上的电化学行为及其应用.药学学报,2000,35(2):128-130.
    [50]董润安.卟啉类化合物对生物分子的光敏化氧化.化学进展,1998,10(1):45-54.
    [51]李锐,任海平,孙艳亭,等.小分子与生物大分子间非共价相互作用分析方法研究进展.分析化学,2006,34(12):1801-1806.
    [52]计亮年,张黔玲,刘劲刚.生物医学中DNA的结构、构象、作用机制及其生物功能的研究进展.中国科学(B辑),化学2001,31(3):193-204.
    [53]Zhang, Z.G. Yang, P. Guo, M.L. Study of interactions between titanocene dichloride and mononucleotides by high-resolution 1H-and 31P-nuclearmagnetic resonance. Transit. Met. Chem.1996,21:322-326.
    [54]杨培菊.金属配合物与DNA的相互作用.西北师范大学硕士学位论文,2005.
    [55]Utsuno, K. Maeda, Y. Tsuboi, M. How and how much can hoechst 33258 cause unwinding in a DNA duplex.Chem. Pharm. Bull.1999,47 (10):1363-1368.
    [56]周家宏,姜慧君,冯玉英,等.中性红与小牛胸腺DNA相互作用机理的电化学和紫外-可见光谱研究.应用化学,2001,18(12):994-997.
    [57]万红艳,张亚锋,陈敬华,等.芦荟大黄素与DNA相互作用的紫外光谱和电化学研究.分析测试学报,2007,26(1):59-61.
    [58]Girousi,S.T. Gherghi, I.C. Karava, M.K. DNA-modified carbon paste electrode applied to the study of interaction between rifampicin (RIF) and DNA in solution and at the electrode surface. J. Pharm. Biomed. Anal.2004,36 (4):851-858.
    [59]Sahoo, B.K. Ghosh, K.S. Bera, R. Studies on the interaction of diacetylcurcumin with calf thymus-DNA. Chem. Phys.2008,351 (123):163-169.
    [60]Temerk, Y.M. Ibrahim, M.S. Kotb, M. Voltammetric and spectroscopic studies on binding of antitumormorin, morin-Cu complex and morin-β-cyclodextrin with DNA. Spectrochim. Acta A.2009,71 (5):1830-1836.
    [61]Shi, X.L. Chen, F. Yu, J.P. Study of interaction between smad 7 and DNA by single-molecule force spectroscopy. Biochem. Bioph. Res. Co.2008,377 (4):1284-1287.
    [62]Ling, X. Zhong,W.Y. Huang,Q. Spectroscopic studies on the interaction of pazufloxacin with calf thymus DNA. J. Photochem. Photobio. B 2008,93 (3):172-176.
    [63]Yang,Z.S. Zhang,D.P. Long,H.Y. Electrochemical behavior of gallic acid interaction with DNA and detection of damage to DNA. J. Electroanal. Chem.2008,624(122):91-96.
    [64]Wang, R.Y. Ji, M. N.Wang, R.Q. Stopped-flow kinetic fluorimetric studies of the interaction of Ru (Ⅱ) complex with DNA and its analytical application. Spectrochim. Acta A 2008,71 (3):1042-1048.
    [65]Corduneanu, O. Chiorcea-Paquim, A.M. Garnett,M. Lipoic acid-palladium complex interaction with DNA, voltammetric and AFM characterization. Talanta,2009,77 (5):1843-1853.
    [66]Breslow, R. Overman, I.E.'Artificial enzyme' combiningametal catalytic group and a hydrophobic binding cavity. J.Am. Chem. Soc.1970,92(4):1075-1077.
    [67]周江,袁谷.DNA识别分子研究进展.有机化学,2003,6(23):526-541.
    [68]Zhou, C.F. Du, X.S. Li,H. Studies of interactions among cobalt(Ⅲ) polypyridyl-complexes, 6-mercaptopurine and DNA. Bioelectrochemistry.2007,70(2):446-451
    [69]Liu, Z.Q. Jiang, M. Li,Y.T. One-dimensional copper(Ⅱ) polymer with bridgingμ- trans-oxamidate and thiocyanate ligands:synthesis, crystal structure and DNA binding studies. Inorg. Chim. Acta.2009,362(4):1253-1259.
    [70]Wolfe, A. Shimer, G.H. Meehan, T. Polycyclic aromatic hydrocarbons physically intercalate in to duplex regions of denatured DNA. Biochemistry,1987,26(20):6392-6396.
    [71]靳兰,杨频,李青山.荧光法研究手性金属配合物与DNA的作用机理.高等学校化学学报.1996,(17):1345-1348.
    [72]周庆华,杨频.二(2-苯并咪唑亚甲基)胺合铜(Ⅱ)配合物与DNA作用方式的光谱研究.化学学报.2005,63(1):71-74.
    [73]Satyanaryana, S. Dabrowiak, J.C. Chaires, J. B. Tris(phenanthroline)ruthenium(Ⅱ) enantiomer interactions with DNA:mode and specificity of binding. Biochem.1993,32 (10):2573-2584
    [74]Xi, P.X. Xu, Z.H. Chen, F.J. Zeng, Z.Z. Study on synthesis, structure, and DNA-binding of Ni, Zn complexes with 2-phenylquinoline-4-carboylhydrazide. J. Inorg. Biochem.2009,103: 210-218.
    [75]Lincoln,P. Norden, B. DNA Binding Geometries of Ruthenium(Ⅱ) Complexes with 1,10-Phenanthroline and 2,2'-Bipyridyl Ligands Studied with Linear Dichroism Spectra. Borderline Cases of Intercalation. J. Phys. Chem. B 102 (1998) 9583-9594.
    [76]Choi, S.-D., Kim, M.-S. Kim, S. K. Lincoln, P. Tuite, E. Norden, B.. Binding mode of [Ruthenium(Ⅱ)(1,10-phenanthroline)2L]2+ with poly(dT* dA-dT) triplex. Ligand size effect on third-strand stabilization. Biochemistry.1997,36:214-223
    [77]Pyle, A.M. Rehmann, J.P. Meshoyrer, R. Mixed-ligand complexes of Ruthenium(Ⅱ):Factors governing binding to DNA. J. Am. Chem. Soc.1989,111 (8):3051-3058.
    [78]Satyanarayana, S. Dabrowiak, J.C. Chaires, J.B. Neither △- nor A-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 1992,31:9319-9324.
    [79]Satyanarayana, S. Dabrowiak, J.C. Chaires, J.B. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA:mode and specificity of binding. Biochemistry 1993,32 (10):2573-2584.
    [80]Wu, J. Z. Ye, B. H. Wang, L. Ji, L. N. Zhou, J. Y. Li, R. H. Zhou, Z. Y. Bis(2,2'-bipyridine) ruthenium(II) complexes with imidazo [4,5-f] [1,10]-phenanthroline or 2-phenylimidazo [4,5-f][1,10]phenanthroline. J. Chem. Soc, Dalton Trans.1997,119:1395-1402.
    [81]Xiong,Y. He,X. F. Ji, L.N. Interaction of Polypridyl Ruthenium(Ⅱ)Complexes Containing Non-planar Ligands with DNA. J.Chem. Soc., Dalton Trans.1999(1):19-23.
    [82]Pang, D.W. Abruna, H.D. Micromethod for the interaction between DNA and redox-activemolecules, Anal. Chem.1998,70(15):3162-3169
    [83]Zhu, Z.W. Li, C. Lin, Q. Electrochemical studies of quercetin interacting with DNA. Microchemical Journal,2002,71(1):57-63
    [84]Zhao,G.C. Zhu, J.J. Chen, H.Y. Spectroelctrochemical studies on the interactions of complexes of Cu(phen) 22+and Cu(bpy) 22+with DNA. Chemical Research in Chinese Universities,1997,13(2):117-125.
    [85]Zhao, Y.D. Pang, D.W. Wang, Z.L. DNA-modified electrodes. Part 2. Electrochemical characterization of gold electrodes modified with DNA. J. Electroanal Chem.1997,431(3): 203-209
    [86]Wang, S.F. Peng, T.Z. Li, J.P. Electrochemical methods for studying the interaction of DNA with irreversible targets. Acta. Chim. Sinaca.2000,60 (2):310-316
    [87]Labuda, J. Buckova, M. Jantova, S. Modified screen-printed electrode for the investigation of the interaction of non-electroactive quinazoline derivatives with DNA. J. Anal. Chem. 2000,367(4):364-368.
    [88]苏界殊,陈小明,罗和安,等.三甲基品红与脱氧核糖核酸作用的共振光散射光谱的研究.分析测试学报.2005,24(1):60-63.
    [89]冯硕,李正平,吴秋华,等.以多胺为探针的DNA共振光散射光谱法测定.理化检验-化学分册.2007,43(7):555-557.
    [90]Kielkopf, C.L. Erkkila, K.E. Hudson, B.P. Barton, J.K. Rees, D.C. Structure of a photoactive rhodium complex intercalated into DNA. Nature Struct. Biol.2000,7:117-121.
    [91]Eriksson, M. Leijon, Hirot, C. Norden, B. Graslund, A. Binding of △-and Λ-[Ru(phen)3]2+to [d(CGCGATCGCG)]2 studied by NMR. Biochemistry 1994,33:5031-5040.
    [92]Hiort, C. Lincoln, P. Norden, B. DNA Binding of △-and Λ-[Ru(phen)2DPPZ] 2+. J. Am. Chem. Soc.1993,115(9):3448—3454
    [93]秦椿华,沈建英,黄仕和,等.DNA断裂检测方法-单细胞凝胶电泳法[J].生物化学与生物物理进展,1995,22(6):517-520.
    [94]Muzyer, G. Smalla, K. Application of denaturing gradientgel electrophoresis (DGGE) and temperature gradient gelelectrophoresis (TGGE) in microbial ecology. Antonievan Leeuwenhoek.1998,73 (1):127-141.
    [95]Park, H.I, Sanchez, D. Cho, S.K. Bacterial communities on electron-beam Pt-deposited electrodes in a mediator-less microbial fuel cell. Environ. Sci. Technol.2008,42 (16): 6243-6249.
    [96]Spiess, P.C. Morin, D. Jewell,W.T. Measurement of protein sulfhydryls in response to cellular oxidative stress using gel electrophoresis and multiplexed fluorescent imaging analysis. Chem. Res. Toxicol.2008,21 (5):1074-1085.
    [97]Fiel, R.J. Munson, B.R. Binding of meso-tetra (4-N-methylpyridyl) porphine to DNA. Nucleic Acids Res.1980,8 (12):2835-2842.
    [98]易平贵,商志才,俞庆森.微量热法研究[Cu(phen)2]-(2+)、 [Cu(bpy)_2]~(2+)与DNA的作用.无机化学学报.2001,17(1):77-82.
    [99]Zeiri, L. Bronk, B.V. Shabtai, Y. Surface-Enhanced Raman Spectroscopy as a Tool for Probing Specific Biochemical Components in Bacteria.Appl. Spectrosc.2004,58(1):33-40.
    [100]Breuzard, G. Millot, J. M. Riou, J. F. Manfait, M. Selective interactions of ethidiums with g-quadruplex DNA revealed by surface-enhanced raman scattering. Anal. Chem. 2003,75 (16):4305-4311.
    [101]周建英,计亮年.生物无机化学中若干主要基础理论问题的激光光谱研究.量子导电子学.1995,1:108-112.
    [102]Wang, L. Le, X.Y. Ji, L.N. Stacking between pyrido(3,2-f) (1,7)phenanthroline and nucleic bases. Polym. Adv. Technol.1996,7 (8):723-725.
    [103]Andrushchenko,V. Tsankov, D. Wieser, H. Vibrational circular dichroism spectroscopy and the effects of metal ions on DNA structure. J. Mol. Struct.2003,661:541-560.
    [104]Jonas, A. Weber, G. Presence of arginine residues at the strong, hydro-phobicanion binding sites of bovine serum albumin. Biochemistry.1971,10:1335-1339.
    [105]孙伟,焦奎.小分子与蛋白质相互作用及在蛋白质分析中的应用.青岛化工学院学报.2001,22(4):299-301.
    [106]Kragh-Hansen, U. Moller, J.V. Effect of pH and inorganic salts on the combination of phenol red with proteins. Biochim. Biophys. Acta.1973,295:447-456.
    [107]Lakin A L. Evaluation of protein quality by dye binding procedures. Proteins in human nutrition. Academic Press, New York and London,1973:179-194.
    [108]Tal,M. Silberstein, A. Nusser, E. Why does Coomassie Brilliant Blue R interact differently with different proteins? J. Biol. Chem,1980,260(18):9976-9980.
    [109]Compton, S.J. Jones, C.G. Mechanism of dye response and interference in the Bradford protein assay. Anal. Biochem.1985,151(2):369-374.
    [110]曹书霞,赵玉芬.分子吸收光谱在生物体大分子研究中的应用.光谱学与光谱分析.2004,24(10):1197-1201.
    [111]陶慰孙,李惟,姜涌明.蛋白质分子基础(2版).北京:高等教育出版社,1995.
    [112]王亚俐,王海芳.光谱法研究苯甲酸钠与牛血清白蛋白的作用.北京大学学报.2002,38(2):159-163.
    [113]魏永巨,李克安,童沈阳.血清白蛋白与偶氮肿(山)结合反应的研究.高等学校化学学报.1996,17(4):550-552.
    [114]Tang, J.H. Lian,N. He,X.H. Investigation of the interaction between sophoricoside and human serum albumin by optical spectroscopy and molecular modeling methods. J. Mol. Struct.2008,889:408-414.
    [115]Kathiravan, A. Chandramohan, M. Renganathan, R. Spectroscopic studies on the interaction between phycocyanin and bovine serum albumin.J. Mol. Struct.2009,919:210-214.
    [116]Tang, J.H. Lian, N. Simple and sensitive spectrofluorometric method for the determination of protein using an europium-thenoyltrifluoroacetone Probe. Anal. Sci.,2009, 25:1237-1242.
    [117]Zhang,Q.L. Ni, Y.N. Kokot, S. Molecular spectroscopic studies on the interaction between Ractopamine and bovine serum albumin. J. Pharmaceut. Biomed.2010,52:280-288.
    [118]Mandeville, J.S. Froehlich, E. Tajmir-Riahi, H.A. Study of curcumin and genistein interactions with human serum albumin. J. Pharmaceut. Biomed.2009,49:468-474.
    [119]Ni, Y.N. Huang, C.F, Kokot, S. Simultaneous determination of iron and aluminium by differential kinetic spectrophotometric method and chemometrics. Anal. Chim. Acta,2007, 599:209-218.
    [120]陶慰孙,李惟,姜涌明,等.蛋白质分子基础.北京:人民教育出版社,1982.
    [121]Sulkowska, A. Rownicka, J. Bojko, B. Interaction of anticancer drugs with human and bovine serum albumin.J. Mol. Struct,2003,651-653:133-140.
    [122]Jiang, M. Xie, M.X. Zheng, D. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J. Mol. Struct.2004,692:71-80.
    [123]Liu,Y. Xie, M.X. Jiang, M. Spectroscopic investigation of the interaction between human serum albumin and three organic acids. Spectrochim. Acta A,2005,61:2245-2251.
    [124]Lakowicz, J.R. Principles of Fluorescence Spectroscopy.2ed. New York:Kluwer Academic Publishers/Plenum Press,1999.
    [125]Bhattacharyya, M. Chaudhuri, U. Poddar, R.K. Evidence for cooperative binding of chlorpromazine with hemoglobin:equilibrium dialysis, fluorescence quenching and oxygen release study. Biochem. Bioph. Res. Co.1990,167:1146-1153.
    [126]许金钩,王尊本.荧光分析法(3版).北京:科学出版社,2006.
    [127]Tang J H, Qi S D, Chen X G. Spectroscopic studies of the interaction of anti-coagulant rodenticide diphacinone with human serum albumin [J].J.Mol. Struct,2005,779:87-95.
    [128]Epps D E, Raub T J, Kezdy FJ, et al. Wide-range spectrofluorometric method for measuring the site-specific affinities of drugs toward human serum albumin [J]. Anal. Biochem.,1995,227:342-350.
    [129]Tang, J.H. Luan, F. Chen, X.G. Binding analysis of glycyrrhetinic acid to human serum albumin:Fluorescence spectroscopy, FTIR, and molecular modeling. Bioorgan. Med. Chem., 2006,14:3210-3217.
    [130]Jiang, C. Q. Gao, M. X. He, J. X. Study of the interaction between terazosin and serum albumin:synchronous fluorescence determination of terazosin. Anal. Chim. Acta 2002, 452(2):185-189.
    [131]刘媛,谢孟峡,康娟.三七总皂甙对牛血清白蛋白溶液构象的影响.化学学报.2003,61,1305-1310.
    [132]Puchalski, M. M. Morra, M. J. von Wandruszka, R. Fresenius'Z. Assessment of corrections for the inner filter effect in fluorimetry. Fresenius J. Anal. Chem.1991,340, 341-344.
    [133]Birdsall, B. King, R. W. Wheeler, M. R. Lewis, C. A. Jr, Goode, S. R. Dunlap, R.B. Roberts, G. C.K. Correction for light absorption in fluorescence studies of protein-ligand interactions.Anal. Biochem.1983,132(2):353-361.
    [134]张勇,张贵珠,王月梅,卢继新.光谱法研究丝裂霉素、血清白蛋白以及金属离子间的相互作用.分析科学学报.2000,16:445-449.
    [135]魏晓芳,刘会洲. Triton X-100与牛血清白蛋白的相互作用.分析化学.2000,28(6):699-701.
    [136]Horrocks, W. DeW., Jr. Collier, W. E. J. Am. Chem. Soc.1981,103,2856-2862.
    [137]刘洛生,张虞毅,王兴坡.头孢哌酮与人血清白蛋白相互作用机制.光谱学与光谱分析,2005,25:1490-1492.
    [138]Sudlow, G. Birkett, D. J. Wade, D. N. Further characterization of two specific binding sites on human serum albumin. Mol. Pharmacol.1976,12(6):1052-1061.
    [139]Sjoholm I. Ekman B. Kober A. Ljungstedt-Pahlman I. Seiving B. Sjodin T. Binding of drugs to human serum albumin:XI. The specificity of three binding sites as studied with albumin immobilized in microparticles. Mol. Pharmacol.1979,16:767-777.
    [140]He, W.Y. Li, Y. Si, H.Z. Molecular modeling and spectroscopic studies on the binding of guaiacol to human serum albumin. J Photochem Photobiol A:Chem,2006,182:158-167
    [141]Tian, J.N. Liu, J.Q. He, W.Y. Probing the binding of scutellarin to human serum albumin by circular dichroism, fluorescence spectroscopy, FTIR, and molecular modeling method. Biomacromolecules,2004,5:1956—1961
    [142]Xiang, G.; Tong, C.; Lin, H. Nitroaniline isomers interaction with bovine serum albumin and toxicological implications. J. Fluoresc.2007,17(5):512-521.
    [143]Ross, P. D. Subramanian, S. Thermodynamics of protein association reactions:forces contributing to stability. Biochemistry 1981,20(11):3096-3102.
    [144]Jin, J. Zhu, J. F. Yao, X. J. Wu, L. M. Study on the binding of farrerol to human serum albumin. J. Photoch. Photobio. A 2007,191:59-65.
    [145]Liu, Y.C. He, W.Y. Gao, W.H. Hu, Z.D. Chen, X.G. Binding of wogonin to human gammaglobulin.Int. J. Biol. Macromol.2005,37(1-2):1-11.
    [146]马贵斌,杨频.能量转移技术及其在溶液分子的微区结构分析中的应用.化学通报,1993,54(3):29-32.
    [147]Scatchard, G. The attractions of proteins for small molecules and ions. Ann. N.Y Acad. Sci.1949,51:660-672.
    [148]杨频,高飞.生物无机化学原理.北京:科学出版社,2002.
    [149]Miller, J.N. Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. Soc.1979,16:203-208.
    [150]Brustein, E.A. Vedenkina, N.S. Irkova, M.N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem.Photobiol.1973,18:263-279.
    [151]Honore, B.; Pedersen, A.O. Conformational changes in human serum albumin studied by fluorescence and absorption spectroscopy. Distance measurements as a function of pH and fatty acids. Biochem. J.1989,258(1):199-204.
    [152]鲁子贤,崔涛,施庆洛编著,圆二色性和旋光色散在分子生物学中的应用.北京:科学出版社,1987.
    [153]Liu, X. H. Xi, P. X. Chen, F. J. Xu, Z. H. Zeng Z. Z. Spectroscopic studies on binding of 1-phenyl-3-(coumarin-6-yl)sulfonylurea to bovine serum albumin. J Photoch. Photobio. B 2008,92:98-102.
    [154]Khan, M.A. Muzammil, S. Musarrat, J. Differential binding of tetracyclines with serum albumin and induced structure alterations in drug-bound protein. Int. J. Biol. Macromol.2002, 30:243-249
    [155]Chen, Y. H.; Yang, J. T.; Martinez, H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 1972,11(22): 4120-4131.
    [156]Wang, T. Xiang, B.R. Li, Y. Studies on the binding of a carditionic agent to human serum albumin by two-dimensional correlation fluorescence spectroscopy and molecular modeling.J. Mol. Struct.2009,921:188-198.
    [157]Zhang, Y.H. Dong, L.J. Li, J.Z. Studies on the interaction of gallic acid with human serum albumin in membrane mimetic environments. Talanta,2008,76:246-253.
    [158]Ni, F.F. Deoliveira, D.B. Trumble, W.R. Secondary structure estimation of proteins using the amide Ⅲ region of Fourier transform infrared spectroscopy:application to analyze calcium-binding-induced structural changes in calsequestrin. Appl. Spectrosc.1994,48: 1432-1441.
    [159]谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究.高等学校化学学,2003,24(2):226-231.
    [160]吴瑾光.傅里叶变换光谱分析.北京:科学技术出版社,1993.
    [161]Byler, D.M. Brouillette, J.N. Sus, H. Quantitative studies of protein structure by FT-IR spectra deconvolution and curve-fitting. Spectroscopy.1986,1(3):29-32.
    [162]游效曾,孟庆金,韩万书,等.配位化学进展.北京:高等教育出版社,2000
    [163]Ashok, M. Holla,B.S. Poojary,B. Convenient one pot synthesis and antimicrobial evaluation of some new Mannich bases carrying 4-methylthiobenzyl moiety. Eur. J. Med. Chem.2007,42 (8):1095-1101
    [164]Shiradkar, M. Suresh Kumar, G.V. Dasari,V. Clubbed triazoles:A novel approach to antitubercular drugs. Eur. J. Med. Chem.2007,42(6):807-816
    [165]王积涛,陈蓉,冯霄,等.手性过渡金属(Mn, Co,Ni)-Salen配合物催化NaOCl对称氧化苯乙烯的反应研究.有机化学,1998,18(2):228-234
    [166]Nakajina, K. Kojima, M. Toriumi,K. Crystal Structures of [VO (Sal-L-Ala) (OCH3) (CH3OH)](Sal-L-Ala= N-Salicylidene-L-Alaninate) and [[VO (Sal-L-Ala)]20]2. 2CH2Cl2, and the Catalytic Activity of These and Related Comp lexes on Asymmetric Oxidation of Methyl Phenyl Sulfide with Tert-butyl Hydroperoxide. Bull. Chem. Soc. Jpn. 1989,62 (3):760-767
    [167]Casella, L. Gullotti, M. Synthesis, stereochemistry, and oxygenation of cobalt (Ⅱ)-pyridoxalmodel complexes. A new family of chiral dioxygen carriers Luigi Casella, Michele Gullotti. Inorg. Chem.1986,25 (9):1293-1303
    [168]徐汉红,朱传方.席夫碱及其配合物的可逆热致变色材料.化学通报,2000,63(8): 15-20
    [169]Reddy, P.A.N. Nethaji, M. Chakravaty, A.R. Synthesis,crystal structures and properties of ternary copper (Ⅱ) complexes having 2,2'- bipyridine and α- amino acid salicylaldiminates as models for the type-2 sites in copper oxidases. Inorg. Chim. Acta. 2002,337:450-458.
    [170]Srinivas, B. Arulsamy, N. Zacharias, P.S. Catalytic and magnetic properties of a new series of binuclear copper (Ⅱ) complexes. Polyhdron 1991,10(7):731-736.
    [171]Stephan, K. Roland, B. Martin, E. Synthesis, crystal structure, spectroscopy, and theoretical investigations of tetrahedrally distorted copper (Ⅱ) chelates with [CuN2S2] coordination sphere. Eur. J. Inorg. Chem.1999,8:1393-1403.
    [172]Christine, A.G. Synthesis and structural characterization of a tetracopper (Ⅰ) complexes of 2,6-(bis (3-dimethylamino)-propyliminomethyl)-4-methylthiophenolate. Polyhedron.1997,16:4273-4278.
    [173]Chen,H. Rhodes, J. Schiff base forming drugs:mechanisms of immune potentiation and therapeutic poten-tM. Mol. Med.1996,74:497-504
    [174]Lumme,P. Honnu,H.Elo. Antitumor activity and metal complexes of the first transition series. Trans-bis(salicylaldoximato) copper (Ⅱ) and related copper (Ⅱ) complexes, a novel group of potential antitumor agents. Inorg. Chim. acta,1984,92 (4):241-251
    [175]Holnett, E.M. Dunn, W.J. Structure-antitumor activity correlation of some Schiff bases. J. Med. Chem,1970,13:768-770
    [176]Nehru, K. Athappan, P. Rajagopal, G. Ruthenium (Ⅱ)/(Ⅲ) complexes of bidentate acetylhydrazide Schiff bases. Transition Met.Cheml,2001,26:652-656
    [177]Ainscough, E.W. Brodie, A.M. Dobbs, A.J. Antitumour copper (Ⅱ) salicylaldehyde benzoyhydrazone complexes. Inorg. Chim.Acta.1998,267:27-38
    [1]谭非.浙江大学博士学位论文.浙江大学.2005:27.
    [2]Abd-Allah, A.R.A. Gannam, B.B. Hamada, F.M.A. The impact of ofloxacin on rat testicular DNA:application of image analysis. Pharm. Res.2000,42 (2):145-150.
    [3]Sanders Jr., W.E. Oral ofloxacin:a critical review of the drug application. Clin. Infect. Dis. 1992,14:539-554.
    [4]颜桂炀,郑柳萍,林深,等.相转移催化合成水杨醛.石油化工.2000,29:354-355.
    [5]柳翠英,葛蔚颖.卤代水杨醛N4-取代缩氨基硫脲衍生物的合成和生物活性研究.化学试剂.2003,25(3):160-162.
    [6]党元林,包晓玉,祝心德,等.水杨醛缩精胺及其配合物的合成与生物活性.化学研究与应用.2002,14(4):430-432.
    [7]江森明,龚启孙,姚巍,等.嘧啶氧苄胺类除草剂的合成研究.浙江化工.2005,36(10):11-15.
    [8]阮丽琴.水杨醛合成方法[J].福建化工.2004(2):33-36.
    [9]丁德润,陈燕青,刘鸿志.降解壳聚糖与水杨醛改性衍生物对Ca2+、Fe3+的螯合性质.精细化工.2003,20(4):247-249.
    [10]Milyutin, A.V. Amirova, L.R. Kolla, V.E. Nazmetdinov, F.Ya. Drovosekova, L.P. Andreichikov, Yu.S. Amides and hydrazides of aroylpyrivic acids. Part 6 Synthesis and study of antiinflammatory and analgesic activity of β-aroylpyruvoyl hydrazides of 2-methyl(phenyl)-4-quinolinecarboxylic acids. Pharm. Chem. J.1998,32(8) 422-424.
    [11]Sheldrick, G.M. SHELXTL v5, Reference Manual, Siemens Analytical X-ray Systems, Madison, WI,1996.
    [12]M. Eriksson,M. Leijon, C.Hiort, B.Norden, A.Gradsland, Binding of.DELTA.-and.LAMBDA.-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 Studied by NMR. Biochemistry 1994,33(17):5031-5040.
    [13]Xiong,Y. He, X.F. Zou, X.H. Wu, J.Z. Chen, X.M. Ji, L.N. Li, R.H. Zhou, J.Y. Yu, R.B. Interaction of polypyridyl ruthenium(II) complexes containing non-planar ligands with DNA. J. Chem. Soc, Dalton Trans.1999,1:19-24.
    [14]Wolf, A. Shimer, G.H. Meehan, T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 1987,26 (20):6392-6396.
    [15]Lehrer, S.S. Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 1971,10 (17) 3254-3263.
    [16]Winterbourn, C.C. Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals. Biochem. J.1979,182 (2):625-628.
    [17]Winterbourn, C.C. Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide. Biochem. J.1981,198(1):125-131.
    [18]Xi, P.X. Xu,Z.H. Chen, F.J. Zeng, Z.Z. Zhang, X.W. Study on synthesis, structure, and DNA-binding of Ni, Zn complexes with 2-phenylquinoline-4-carboylhydrazide. J. Inorg. Biochem.2009,103 (2):210-218.
    [19]Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds.Coord. Chem. Rev.1971,7:81-122.
    [20]Lewis, F.D. Barancyk, S.V. Lewis acid catalysis of photochemical reactions.8. Photodimerization and cross-cycloaddition of coumarin. J. Am. Chem. Soc.1989,111 (23): 8653-8661.
    [21]Wang, B.D. Yang, Z.Y. Zhang, D.W. Wang, Y. Synthesis, structure, infrared and fluorescence spectra of new rare earth complexes with 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone. Spectrochim. Acta Part A 2006,63 (1):213-219.
    [22]Raman, N. Kulandaisamy, A. Jeyasubramanian, K. Synthesis, spectral, redox and biological studies of some Schiff base copper(Ⅱ), nickel(Ⅱ), cobalt(Ⅱ), manganese(Ⅱ), zinc(Ⅱ) and oxovanadium(Ⅱ) complexes derived from 1-phenyl-2,3-dimethyl-4(4-iminopentan-2-one)-pyrazol-5-one and 2-aminophenol/2-aminothiophenol. J. Ind. Chem.2002,41A (5):942-949.
    [23]Barton, J.K. Raphael, A.L. Tris(phenanthroline)ruthenium(Ⅱ):stereoselectivity in binding to DNA. J. Am. Chem. Soc.1984,106:2172-2176.
    [24]Chao, H. Mei, W. Huang, Q. Ji, L.N. DNA binding studies of ruthenium(Ⅱ) complexes containing asymmetric tridentate ligands. J. Inorg. Biochem.2002,92 (3-4):165-170.
    [25]Long, E.C. Barton, J.K. On demonstrating DNA in tercalation. Acc. Chem. Res.1990,23: 271-273.
    [26]Efthimiadou, E.K. Karaliota, A. Psomas, G. Metal complexes of the third-generation quinolone antimicrobial drug sparfloxacin:Structure and biological evaluation. J. Inorg. Biochem.2010,104 (5):455-466.
    [27]Zhao, G.H. Lin, H.K. Zhu, S.R. Sun, H.W. Chen, Y.T. Dinuclear palladium(Ⅱ) complexes containing two monofunctional [Pd(en)(pyridine)Cl]+ units bridged by Se or S. Synthesis, characterization, cytotoxicity and kinetic studies of DNA-binding. J. Inorg. Biochem.1998, 70(3-4):219-226.
    [28]Zeng, Y.B. Yang, N. Liu, W.S. Tang, N. J. Synthesis, characterization and DNA-binding properties of La(Ⅲ) complex of chrysin. Inorg. Biochem.2003,97 (3):258-264.
    [29]Kumar, C.V. Barton, J.K. Turro, N.J. Photophysics of ruthenium complexes bound to double helical DNA. J. Am. Chem. Soc.1985,107:5518-5523.
    [30]Norden, B. Tjerneld, F. Structure of methylene blue DNA complexes studied by linear and circular dichroism spectros- copy. Biopolymers.1982,21:1713-1734.
    [31]Kelly, J.M. McConnell, D.J. Uigin, C. Oh. Tossi, A.B. Kirsch-De, M. A. Masschelein, A. J. Nasielski, Ruthenium polypyridyl complexes; their interaction with DNA and their role as sensitisers for its photocleavage. J. Chem. Soc. Chem. Commun 1987,24:1821-1823.
    [32]Mahadevan, S. Palaniandavar, M. Spectroscopic and voltammetric studies on copper complexes of 2,9-dimethyl-1,10-phenanthrolines bound to calf thymus DNA. Inorg. Chem. 1998,37 (4):693-700.
    [33]Tossi, A.B. Kelly, J.M. A study of some polypyridylruthenium complexes as DNA binders and photocleavage agents. Photochem. Photobiol.1989,49:545-556.
    [34]Liu, J.G. Zhang, Q.L. Shi, X.F. Ji, L.N. Interaction of [Ru(dmp)2(dppz)]2+and [Ru(dmb)2(dppz)]2+ with DNA:effects of the ancillary ligands on the DNA-binding behaviors. Inorg. Chem.2001,40 (19):5045-5050.
    [35]Satyanarayana, S. Dabrowiak, J.C. Chaires, J.B. Tris(phenanthroline)ruthenium(Ⅱ) enantiomer interactions with DNA:Mode and specificity of binding. Biochemistry 1993, 32(10):2573-2584.
    [36]Kelly, J.M. Tossi, A.B. McConnell, D.J. Study of the interactions of some polypyridylruthenium (Ⅱ) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucl. Acids Res.1985,13(17):6017-6034.
    [37]Jenkins, Y. Friedman, A.E. Turro, N.J. Characterization of Dipyridophneazine Complexes of Ruthenium(Ⅱ):The Light Switch Effect as a Function of Nucleic Acid Sequence and Conformation. Biochemistry,1992,31(44):10809-10816.
    [38]Friedman,A.E. Chambron, J.C. Sauvage, J.P. Molecular'Light Switch'for DNA: Ru(bpy)2(dppz)2+,J, Am. Chem. Soc.,1990,112:4960-4961.
    [39]Vaidyanathan, V.G Nair, B.U. J. Synthesis, characterization and DNA binding studies of a ruthenium(Ⅱ) complex. Inorg. Biochem.2002,91(2):405-412.
    [40]Ichikawa, K. Tarnai, M. Uddin, M.K. Nakata, K. Sato, S.Hydrolysis of natural and artificial phosphoesters using zinc model compound with a histidine-containing pseudopeptide. Inorg. Biochem.2002,91(3):437-450.
    [41]叶勇,胡继明,曾云鹗.2-氯代苯甲醛-丙氨酸席夫碱类抗癌药物对DNA作用的谱学研究.无机化学学报.1998,14(1):84-91.
    [42]林秋月,胡瑞定,郑孝华.铜(Ⅱ)配合物与DNA作用的光谱法研究.光谱学与光谱分析.2004,24(8):988.
    [43]Li, Y. Yang, Z.Y. Wang, M.F. Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(Ⅲ) complexes with hesperetin-4-one-(benzoyl) hydrazone. Eur. J. Med. Chem.2009,44:4585-4595.
    [44]Liu,Y.C. Yang, Z.Y. Crystal structures, antioxidation and DNA binding properties of Dy(III) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxaldehyde and four aroylhydrazines. Eur. J. Med. Chem.2009,44:5080-5089
    [45]Lu, H.L. Liang, J.J. Zeng, Z.Z. Xi, P.X. Liu, X.H. Chen, F.J. Xu, Z.H. Three salicylaldehyde derivative Schiff base ZnⅡ complexes:synthesis, DNA binding and hydroxyl radical scavenging capacity. Transit. Met. Chem.2007,32:564-569.
    [46]Behrens, C. Harrit, N. Nielsen, P.E. Synthesis of a Hoechst 32258 Analogue Amino Acid Building Block for Direct Incorporation of a Fluorescent, High-Affinity DNA Binding Motif into Peptides. Bioconjugate Chem.2001,12:1021-1027.
    [47]Frau, S. Bernadou, J. Meunier, B. Nuclease activity and binding characteristics of a cationic "manganese porphyrin-bis(benzimidazole) dye (Hoechst 33258)" conjugate. Bioconjugate Chem.1997,8:222-231.
    [48]Lerman, L.S. Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 1961,3:18-30
    [49]Sashidhara, K.V. Kumar, A. Bhatia, G. Khan, M.M. Khanna, A.K. Saxena, J.K. Antidyslipidemic and antioxidative activities of 8-hydroxyquinoline derived novel keto-enamine Schiffs bases. Eur. J. Med. Chem.2009,44:1813-1818.
    [50]Skorda, K. Perlepes, S. P. Raptopoulou, C. P. A structural model for the copper(II) site of Cu-Zn superoxide dismutase:preparation, crystal structure and properties of [Cu(Mebta)4(H2O)](ClO4)2-0.4EtOH (Mebta= 1-methylbenzotriazole). Trans. Met. Chem. 1999,24 (5):541-545.
    [51]Udilova, N. Kozlov, A.V. Bieberschulte, W. Frei, K. Ehrenberger, K. Nohl, H. The antioxidant activity of caroverine; protection of oxidative membrane degradation. Biochem. Pharma.2003,65:59-65.
    [1]阎隆飞,孙荣之.蛋白质分子结构.北京:清华大学出版社,1999.
    [2]Erdem, A. Ozsoz, M. Interaction of the anticancer drug epirubicin with DNA. Analytica Chimica Acta.2001,437:107-114.
    [3]Gelamo, E.L. Sliva, C.H.T.P. Imasato, H. Interaction of BSA and HAS with ionic surfactants: spectroscopy and modeling. Biochimica et Biophysica Acta,2002,1594:84-99.
    [4]李守军,方洪壮,武冬梅.大黄酚和牛血清蛋白相互作用的电化学/光谱性质研究.分子科学学报,2008,24(6):411-415.
    [5]周兴军,敖登高娃.培氟沙星-铽(Ⅲ)-牛血清白蛋白体系的荧光光谱及其应用.分析试验室,2009,28(5):20-23.
    [6]谭非,张胜建.氟罗沙星与人血清白蛋白相互作用研究.化学研究与应用,2009,21(2):184-188.
    [7]冯素玲,袁道琴.阿魏酸哌嗪与牛血清白蛋白相互作用的研究.分析试验室,2009,28(7):78-82.
    [8]陈泽忠,冯锋,杨文娟.左氧氟沙星与牛血清白蛋白相互作用的液滴荧光法研究.光谱学与光谱分析,2008,28(7):1612-1616.
    [9]Ulrich,K.H. Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev.1981, 33(1):17-53.
    [10]Sguella, J.A. Becerra, R. Nunez-Vergara, L.J. Polarography:a new tool in the elucidation of drug-albumin interactions. Biochem.Pharmacol.1987,36(20):3531-3533.
    [11]Ojha,B. Das, G. The Interaction of 5-(Alkoxy)naphthalen-l-amine with bovine serum albumin and its effect on the conformation of protein. J. Phys. Chem. B 2010,114: 3979-3986.
    [12]Mandal,G. Bardhan, M. Ganguly,T. Interaction of bovine serum albumin and albumin-gold nanoconjugates with L-aspartic acid. A spectroscopic approach. Colloids and Surfaces B: Biointerfaces 2010,81:178-184.
    [13]F.J. Chen, G.Q. Liu, Z.H. Xu, Z.Z. Zeng. Effect of metal ions on the secondary structure and activity of calf intestine phosphatase. Biochem.Mol. Biol.Int.2008,41:305-309.
    [14]Liu, X. H. Xi, P. X. Chen, F. J. Xu, Z. H. Zeng, Z. Z. Spectroscopic studies on binding of 1-phenyl-3-(coumarin-6-yl)sulfonylurea to bovine serum albumin, J Photoch. Photobio. B. 2008,92:98-102.
    [15]曹书霞,赵玉芬.分子吸收光谱在生物大分子研究中的应用.光谱学与光谱分析.2004,24(10):1197-1201.
    [16]林钧材.血液生物化学.北京:人民卫生出版社.1988:37-40.
    [17]陶慰孙,李惟,姜涌明.蛋白质分子基础,北京:高等教育出版社.1995:85-90.
    [18]陈国珍,黄贤智,郑朱梓,许金钩,王尊本.荧光分析法.北京:科学出版社.1990,502-506
    [19]Jiang, C.Q. Gao, M.X. He, J.X. Study of the interaction between terazosin and serum albumin synchronous fluorescence determination of terazosin. Anal. Chim. Acta.2002,452: 185-189.
    [20]Tian, J.N. Liu, J.Q. Tian, X. Hu, Z.D. Chen, X.G. Study of the interaction of kaempferol with bovine serum albumin. J. Mol. Struc.,2004,691:197-202.
    [21]Liu,H.Y. Xu, Z.H. Liu, X.H. Xi, P.X. Zeng, Z.Z. Analysis of Binding Interaction between Bovine Serum Albumin and the Cobalt(II) Complex with Salicylaldehyde-2-phenylquinoline-4- Carboylhydrazone, Chem. Pharm. Bull.2009,57(11): 1237-1242.
    [22]Ross, P. D. Subramanian, S. Thermodynamics of protein association reactions:forces contributing to stability. Biochemistry 1981,20(11):3096-3102.
    [23]Horrocks, W. D. Collier, W. E. Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions:quantitation of energy transfer between tryptophan and terbium(Ⅲ) or europium(Ⅲ) in the calcium-binding protein parvalbumin. J. Am. Chem. Soc.1981,103(10):2856-2862.
    [24]Lakowicz, J.R. Principles of Fluorescence Spectroscopy,2nd ed., Kluwer Academic Publishers/Plenum Press, New York,1999:13
    [1]Ibrahim, G. Bouet, G.M. Hall, I.H. Khan, M.A. Stability constants of potent cytotoxic copper(II) complexes with furan semicarbazones in ethanolic solutions. J. Inorg. Biochem. 2009,81(1-2):29-34.
    [2]Rawal, R.K. Prabhakar, Y.S. Katti, S.B. De.Clercq, E. 2-(Aryl)-3-furan-2-yl-methyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg. Med. Chem.2005,13(24):6771-6776.
    [3]Chen, Y.L. Zhao, Y.L. Lu, C.M. Tzeng, C.C. Wang, J.P. Synthesis, Cytotoxicity, and Anti-inflammatory Evaluation of 2-(Furan-2-yl)-4-(phenoxy)quinoline Derivatives. Part 4. Bioorg. Med. Chem.2006,14:4373-4378.
    [4]Zanatta, N. Alves, S.H. Coelho, H.S. Borchhardt, D.M. Machado, P. Flores, K.M. Silva, F.M.D. Spader, T.B. Santurio, J.M. Bonacorso, H.G. Martins, M.A.P. Synthesis, antimicrobial activity, and QSAR studies of furan-3-carboxamides, Bioorg. Med. Chem.2007,15: 1947-1958.
    [5]Min, B.S. Yun, B.S. Lee, H.K. Jung, H.J. Jung, H.A. Choi, J.S. Two novel furan derivatives from Phellinus linteus with anti-complement activity. Bioorg. Med. Chem. Lett.2006,16(12): 3255-3257.
    [6]Pozas, R. Carballo, J. Castrob, C. Rubio, Synthesis and in vitro antitrypanosomal activity of novel Nifurtimox analogues. J. Bioorg. Med. Chem. Lett.2005,15(5):1417-1421.
    [7]Simpson, I.J. Lee, M. Kumar, A. Boykinb, D.W. Neidle, S. DNA minor groove interactions and the biological activity of 2,5-bis-[4-(N-alkylamidino)phenyl] furans. Bioorg. Med. Chem. Lett.2000,10(23):2593-2597.
    [8]Augeri, D.J. Janowick, D. Kalvin, D. Sullivan, G. Larsen, J. Dickman, D. Ding, H. Cohen, J. Lee, J. Warner, R. Kovar, P. Cherian, S. Saeed, B. Zhang, H. Tahir, S. Ng, S.C. Sham, H. Rosenberg, S.H. Potent and orally bioavailable noncysteine-containing inhibitors of protein farnesyltransferase. Bioorg. Med. Chem. Lett.1999,9(8):1069-1074.
    [9]Garcia-Tojal, J. Garcia-Orad, A. Serra, J.L. Pizarro, J.L. Lezama, L. Arriortua, M.I. Rojo, T. Synthesis and spectroscopic properties of copper(II) complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Structure and biological activity of [Cu(C6H6N3S2)2]. J. Inorg. Biochem.1999,75(1):45-54.
    [10]Garcia-Tojal, J. Pizarro, J.L. Garcia-Orad, A. Perez-Sanz, A.R. Ugalde, M. Diaze, A.A. Serra, J.L. Arriortua, M.I. Rojo, T. Biological activity of complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Crystal structure of [Ni(C6H6N3S2)2].J.Inorg. Biochem.2001,86(2-3):627-633.
    [11]Babu, G. Yu, H.M. Yang, S.M. Fang, J.M. Carbazolothiophene-2-carboxylic acid derivatives as endothelin receptor antagonists. Bioorg. Med. Chem. Lett.2004,14(5):1129-1132.
    [12]Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev.1971,7:81-122.
    [13]Marchetti, F. Pettinari, C. Pettinari, R. Cingolani, D. Leonesi, D. Lorenzotti, A. Group 12 metal complexes of tetradentate N2O2-Schiff-base ligands incorporating pyrazole synthesis, characterization reactivity toward S- donors, N-donors, copper and tin acceptors. Polyhedron 1999,18:3041-3050.
    [14]Narang, K. Singh, V.P. Synthesis and characterization of cobalt(Ⅱ), nickel(Ⅱ), copper(Ⅱ) and zinc(Ⅱ) complexes with acetylacetone bis-benzoylhydrazone and acetylacetone bis-isonicotinoylhydrazone. Trans. Met. Chem.1993,18:287-290.
    [15]Wang, B.D. Yang, Z.Y. Zhang, D.W. Wang, Y. Synthesis, structure, infrared and fluorescence spectra of new rare earth complexes with 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone. Spectrochim. Acta, Part A 2006,63:213-219.
    [16]Barton, J.K. Danishefsky, A. Goldberg, J. Tris(phenanthroline)ruthenium(Ⅱ):stereoselectivity in binding to DNA. J. Am. Chem. Soc.1984,106(7):2172-2176.
    [17]Wang B.D. Yang, Z. Y. Lu M.H. Hai, J. Wang Q. Chen Z.N. Synthesis, characterization, cytotoxic activity and DNA binding Ni(Ⅱ) complex with the 6-hydroxy chromone-3-carbaldehyde thiosemicarbazone. J. Organomet. Chem.2009,694:4069-4075.
    [18]Liu,Y.J. Zeng, C.H. Huang, H.L. He,L.X. Wu F.H. Synthesis, DNA-binding, photocleavage, cytotoxicity and antioxidant activity of ruthenium (Ⅱ) polypyridyl complexes, Eur. J. Med. Chem.2009,1-8.
    [19]Liu Z.C. Wang, B.D. Yang Z.Y. Li, Y. Qin, D.D. Li, T.R. Synthesis, crystal structure, DNA interaction and antioxidant activities of two novel water-soluble Cu(Ⅱ) complexes derivated from 2-oxo-quinoline-3-carbaldehyde Schiff-bases. Eur. J. Med. Chem.2009,44:4477-4484.
    [20]Sarkar, S. Mondal, A. Chopra, D. Ribas, J. Rajak, K.K. A Ferromagnetically Coupled, Bent, Trinuclear Copper(Ⅱ) Complex:Synthesis, Structure, Hydrogen-Bonding Network, Magnetic Properties and DNA Interaction Study. Eur. J. Inorg. Chem.2006,17:3510-3516.
    [21]Chen, J. W. Wang, X. Y. Shao, Y. Zhu, J. H. Zhu, Y. G. Li, Y. Z. Xu, Q. Guo, Z.G. A Trinuclear Copper(Ⅱ) Complex of 2,4,6-Tris(di-2-pyridylamine)-1,3,5-triazine Shows Prominent DNA Cleavage Activity. Inorg. Chem.2007,46(8):3306-3312.
    [22]Kaushik, G. Nidhi, T. Pramod, K. Udai, P. S. Nidhi, G. Stabilization of Mn(II) and Mn(III) in mononuclear complexes derived from tridentate ligands with N2O donors:Synthesis, crystal structure, superoxide dismutase activity and DNA interaction studies. J. Inorg. Biochem.2010, 104:9-18.
    [23]Wolfe, A. Shimer, GH. Meehan, T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 1987,26:6392-6396.
    [24]Lakowica, J.R. Weber, G. Quenching of fluorescence by oxygen.Biochemistry 1973,12(21): 4161-4170.
    [25]Vaidyanathan, V.G. Nair, B.U. Synthesis, characterization and binding studies of chromium(Ⅲ) complex containing an intercalating ligand with DNA. J. Inorg. Biochem. 2003,95(4):334-342.
    [26]Vijayalakshmi, R. Kanthimathi, M. Parthasarathi, R. Nair, B.U. Interaction of chromium(Ⅲ) complex of chiral binaphthyl tetradentate ligand with DNA. Bioorg. Med. Chem.2006, 14(10):3300-3306.
    [27]Maheswari, P.U. Palaniandavar, M. DNA binding and cleavage properties of certain tetrammine ruthenium(Ⅱ) complexes of modified 1,10-phenanthrolines-effect of hydrogen-bonding on DNA-binding affinity. J. Inorg. Biochem.2004,98(2):219-230.
    [28]Mesmaeker, A.K. Orellana, G. Barton, J.K. Turro, N.J. Ligand-dependent interaction of ruthenium(Ⅱ) polypyridyl complexes with DNA probed by emission spectroscopy. Photochem. Photobiol.1990,52(3):461-472.
    [29]Chaires, J.B. Dattagupta, N. Crothers, D.M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid:equilibrium binding studies on interaction of daunomycin with deoxyribonucleic acid. Biochemistry 1982,21(17):3933-3940.
    [30]Wu, J.Z. Yuan, L. Wu, J.F. Synthesis and DNA binding of μ-[2,9-bis(2-imidazo[4,5-f] [1,10]phenanthroline)-1,10-phenanthroline]bis[1,10-phenanthroli necopper(Ⅱ)]. J. Inorg. Biochem.2005,99(11):2211-2216.
    [31]Peng, B. Chao, H. Sun, B. Li, H. Gao, F. Ji, L.N. Synthesis, DNA-binding and photocleavage studies of cobalt(Ⅲ) mixed-polypyridyl complexes:[Co(phen)2(dpta)]3+ and [Co(phen)2(amtp)]3+. J. Inorg. Biochem.2007,101(3):404-411.
    [32]Li Y. Yang Z.Y. Wang M.F. Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(Ⅲ) complexes with hesperetin-4-one-(benzoyl) hydrazone. Eur. J. Med. Chem.2009,44:4585-4595.
    [33]Khorasani-Motlagh, M. Noroozifar M. Mirkazehi-Rigi S. Fluorescence and DNA-binding spectral studies of neodymium(Ⅲ) complex containing 2,2-bipyridine, [Nd(bpy)2Cl3·OH2].Spectrochim.Acta Part A 2010,75:598-603.
    [34]Satyanarayana, S. Dabrowiak, J.C. Chaires, J.B. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA:Mode and specificity of binding. Biochemistry 1993, 32(10):2573-2584.
    [35]Liu, J.G. Zhang, Q.L. Shi, X.F. Ji, L.N. Interaction of [Ru(dmp)2(dppz)]2+ and [Ru(dmb)2(dppz)]2+ with DNA:effects of the ancillary ligands on the DNA-binding behaviors. Inorg. Chem.2001,40 (19):5045-5050.
    [36]Selvi, P.T. Palaniandavar, M. Viscometric and electrochemical studies on mixed ligand Cobalt(Ⅲ) complexes of certain Diimine ligands bound to Calf Thymus DNA. Inorg Chim. Acta.2002,337:420-428.
    [1]Zuehlke, S. Duennbier, U. Heberer, T. Investigation of the behavior and metabolism of pharmaceutical residues during purification of contaminated ground water used for drinking water supply. Chemosphere 2007,69 (11):1673-1680.
    [2]Marmur, J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol.Biol.1961,3:208-211.
    [3]Liu, H.Y. Shi, X.Y. Xu, M. Li, Z.P, Huang, L. Bai, D.C. Zeng, Z.Z. Transition metal complexes of 2,6-di ((phenazonyl-4-imino) methyl)-4-methylphenol:Structure and biological evaluation Eur. J. Med. Chem.2011,46:1638-1647.
    [4]Nohara, A. Umetani, T. Sanno, Y. A facile synthesis of chromone-3-carboxaldehyde, chromone-3-carboxylic acid and 3-hydroxymethylchromone. Tetrahedron Lett.1973,14(22): 1995-1998.
    [5]Barton, J.K. Raphael, A.L. Tris(phenanthroline)ruthenium(Ⅱ):stereoselectivity in binding to DNA. J. Am. Chem. Soc.1984,106(7):2172-2176.
    [6]Chao, H. Mei, W. Huang, Q. Ji, L. DNA Binding Studies of Ruthenium(Ⅱ) Complexes Containing Asymmetric Tridentate Ligands. J. Inorg. Biochem.2002,92:165-170.
    [7]Long, E.C. Barton, J.K. On demonstrating DNA intercalation. Acc. Chem. Res.1990,23: 271-273.
    [8]Efthimiadou, E.K. Karaliota, A. Psomas, G. Metal complexes of the third-generation quinolone antimicrobial drug sparfloxacin:Structure and biological evaluation. J. Inorg. Biochem.2010,104:455-466.
    [9]Wolf, A. Shimer, G.H. Meehan, T. Polycyclic aromatic hydrocarbons physically intercalateinto duplex regions of denatured DNA. Biochemistry 1987,26:6392-6396.
    [10]Mahadevan, S. Palaniandavar, M. Spectroscopic and voltammetric studies on copper complexes of 2,9-dimethyl-1,10-phenanthrolines bound to calf thymus DNA. Inorg. Chem. 1998,37(4):693-700.
    [11]Tossi, A.B. Kelly, J.M. A study of some polypyridylruthenium(Ⅱ) complexes as DNA binders and photocleavage reagents. Photochem. Photobiol.1989,49(5):545-556.
    [12]Liu, J.G. Zhang, Q.L. Shi, X.F. Ji, L.N. Interaction of [Ru(dmp)2(dppz)]2+ and [Ru(dmb)2(dppz)]2+ with DNA:Effects of the Ancillary Ligands on the DNA-Binding Behaviors.Inorg. Chem.2001,40:5045-5050.
    [13]Satyanarayana, S. Dabrowiak, J.C. Chaires, J.B. Tris(phenanthroline)ruthenium(Ⅱ) enantiomer interactions with DNA:Mode and specificity of binding. Biochemistry 1993,32: 2573-2584.
    [14]Kelly, J.M. Tossi, A.B. McConnell, D.J. Study of the interactions of some polypyridylruthenium (Ⅱ) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucl. Acids Res.1985,13(17):6017-6034.
    [15]Jenkins, Y. Friedman, A.E. Turro, N.J. Characterization of Dipyridophneazine Complexes of Ruthenium(Ⅱ):The Light Switch Effect as a Function of Nucleic Acid Sequence and Conformation. Biochemistry,1992,31(44):10809-10816.
    [16]Friedman,A.E. Chambron, J.C. Sauvage, J.P. Molecular'Light Switch' for DNA: Ru(bpy)2(dppz)2+ J. Am. Chem. Soc.,1990,112:4960-4961.
    [17]Sashidhara, K.V. Kumar, A. Bhatia, G. Khan, M.M. Khanna, A.K. Saxena, J.K. Antidyslipidemic and antioxidative activities of 8-hydroxyquinoline derived novel keto-enamine Schiffs bases. Eur. J. Med. Chem.2009,44:1813-1818.
    [18]Skorda, K. Perlepes, S. P. Raptopoulou, C. P. A structural model for the copper(II) site of Cu-Zn superoxide dismutase:preparation, crystal structure and properties of [Cu(Mebta)4(H2O)](ClO4)2·0.4EtOH (Mebta= 1-methylbenzotriazole). Trans. Met. Chem. 1999,24 (5):541-545.
    [19]Udilova, N. Kozlov, A.V. Bieberschulte, W. Frei, K. Ehrenberger, K. Nohl, H. The antioxidant activity of caroverine; protection of oxidative membrane degradation. Biochem. Pharma.2003,65:59-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700