用户名: 密码: 验证码:
La_(0.5)Sr_(0.5)MnO_3钙钛矿型复合氧化物的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿型复合氧化物引起了人们的广泛关注,其在汽车尾气处理方面的优越性能更吸引着越来越多的人们进行研究。本文主要采用水热法、共沉淀法两种方法分别合成钙钛矿型复合氧化物La0.5Sr0.5MnO3。同时,采用非离子表面活性剂PEG-4000对样品进行表面改性,从而研究PEG-4000对钙钛矿型复合氧化物La0.5Sr0.5MnO3的性能影响。本文主要通过XRD、TG、SEM、BET和H2-TPR等检测手段对样品进行了性能表征。
     利用水热法制备钙钛矿型复合氧化物La0.5Sr0.5MnO3时,本文主要研究不同反应条件(如水热温度、焙烧条件)对产物物相生成的影响。经XRD结果表明,本实验采用的反应条件下均未能得到单一的、纯净的钙钛矿型复合氧化物La0.5Sr0.5MnO3,说明水热法不利于钙钛矿型复合氧化物La0.5Sr0.5MnO3的合成。
     利用共沉淀法制备钙钛矿型复合氧化物La0.5Sr0.5MnO3时,本文亦讨论了焙烧温度、焙烧时间对产物物相形成的影响。结合热重分析确定了反应的焙烧温度,并通过计算和实验确定了共沉淀的pH值。最终获得的最佳反应条件为:共沉淀pH:10;焙烧温度:850℃;焙烧时间:4h。所得到的样品比表面积随温度的升高而减小。其中纯相的La0.5Sr0.5MnO3比表面积为6.86 m2.g-1。
     为了研究PEG-4000对钙钛矿型复合氧化物La0.5Sr0.5MnO3的影响,设计并进行了一系列试验。其中,经XRD结果表明,所制备的样品为单一的、纯净的钙钛矿型复合氧化物结构且PEG-4000的用量对样品物相的生成没有影响。通过BET检测结果可知,PEG-4000的加入对样品比表面积和催化性能有较大影响。适当的加入PEG-4000,可以有效的增加样品的比表面积,并显著的增强其氧化性能。SEM结果分析表明,PEG-4000的加入可以有效的降低样品颗粒团聚,同时减弱温度对样品颗粒团聚现象的影响。通过H2-TPR结果分析表明,PEG-4000分散剂的加入可以显著的提高样品的低温氧化性能,并增强其在高温反应下的结构稳定性。
Perovskite mixed oxides have been raised world-wide concern because of their remarkable ability in the treatment of exhaust. This paper is mainly engaged in two ways to synthesize La0.5Sr0.5MnO3, namely hydrothermal method and co-precipitation method in order to find out which is the appropriate way to prepare the target product. Meanwhile, surfactant PEG-4000 has been adopted to optimize the physical and chemical capabilities of the product. XRD, TG, SEM, BET and H2-TPR have been used for the characterization of the product.
     The effects of different hydrothermal temperature and calcination conditions on the phase formation of the product prepared by hydrothermal method have been studied. XRD shows that, no single-phased perovskite structured mixed oxides Lao.5Sro.5Mn03 can be obtained through hydrothermal method regardless of the change of experiment conditions. It can be concluded that hydrothermal method is not the appropriate way to synthesize La0.5Sr0.5MnO3.
     The effects of calcination temperature as well as calcination time on the phase formation of the product prepared by co-precipitation method have also been discussed. The calcination temperature has been identified with XRD and TG analysis. pH value for co-precipitation has been found by calculation as well as experiment. The optimal experimental conditions are:Co-precipitaiton pH:10; calcination temperature:850℃, calcination time:4h. With the increase of the temperature, the specific surface area has been reduced. And the specific surface area of product with single phase has reached by 6.86 m2·g-1.
     In order to study the effects of PEG-4000 on the physical and chemical capabilities of La0.5Sr0.5MnO3, a series of experiments have been designed. XRD results show that all the products obtained are single-phase and the amount of the dispersant has no effect on the phase formation. BET results show that PEG-4000 plays an important role in the specific surface area and the catalytic capabilities of the product. The appropriate amount of the dispersant can be beneficial for the specific surface area of the product, and remarkably improve its oxidizing capability. SEM results show that PEG-4000 is able to alleviate the agglomeration of the particles and reduce the effects of temperature on the particle agglomeration. H2-TPR show that, the product prepared with PEG-4000 has better oxidizing capability under low temperature and a higher structural stability under high temperature.
引文
[1]于福熹.信息材料[M].天津大学出版社,2000,4(2):465~533
    [2]周克斌,李学隽,王道,等.汽车尾气净化用稀土钙钛矿石型复合氧化物催化剂[J].大学化学,2001,16(2):30~31
    [3]罗宁,姚金华,刘治中,等.稀土催化剂在汽车尾气净化方面的应用[J].重庆环境科学,1998,20(3):47~48
    [4]王声平,陆彪,李勇军,等.贵金属稀土混合触媒汽车废气净化催化剂的研究发展[J].中国稀土学报,2001,4(23):27~28
    [5]孙锦宜,林平西.环保催化材料与应用[J].化学工业出版社,2002,11(1):32~33
    [6]罗宁,刘治中.汽车排放标准与改进燃料品质降低排放污染[J].四川环境,1997,16(3):27~30
    [7]郭伊均,陈盛梁.汽车排放污染及控制对策[J].重庆环境科学,1997,19(3):9-13
    [8]王亚明.催化原理及新催化技术[M].昆明:云南科技出版社,1997.150
    [9]麦立强,邹正光,崔天顺.TWC处理汽车尾气的研究进展[J].桂林工学院学报,1999,19(2):188~192
    [10]何元.汽车排气催化剂的技术动向[J].小型内燃机,1990,3:60
    [11]Su E C, Momtreuil C N, Rothschild W G.Oxygen storage capacity of monolish three-way catalysts[J]. Applied Catalysis,1985,17(1):75-86
    [12]Cuffini S L, Macagno V A, Carbonio R E,et al. Crystallographic, magnetic,and electrical properties of SrTi1-xRuxO3 perovskite solid solution[J]. J.Solid State Chem.,1993,105(1):161-170
    [13]陈亚芍,董涛.汽车尾气净化催化剂技术面临的问题及发展[J].陕西师范大学学报(自然科学版),2005,33(4):111~114
    [14]Tanaka H, Fujikawa H, Takahashi L. Perovskite-Pd three-way catalysts for automotive applications[J]. Catalyst and Emission Technology,1993, 968:63-76
    [15]Guilhaume N, Primet M. Three-way catalytic activity and oxygen storage capacity of perovskite LaMno.976Rho.o2403 [J]. J. Catal,1997,165(2):197
    [16]Tabakova T,Boccuzzi F,Manzoli M,et al. FT-IR Study of Low-temperature Water-gas Shift Reaction on Gold/Ceria Catalyst [J].Appl.Catal.,2003,252: 385-397
    [17]朱振忠,田群,陈宏德,等.汽车尾气三效催化剂[J].中国环保产业CEPI,2002,7(3):61~62
    [18]Martinez-Arias A.Comparative Study on Redox Properties and Catalytic Behaviour for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts[J]. J.Catal.,2000,195:207-216
    [19]彭新林,龙志奇,崔梅生.共沉淀法合成铈锆氧化物及表征[J].中国稀土学报,2004,32(4):502~506
    [20]钟铱均,陈平,周碧,等CuO/CeO2和CuO/Al2O3催化剂的催化性能[J].应用化学,1997,14(1): 49
    [21]Nakallura. Tadao. Recording process and transparent recorded products 1994, JP06,315,634
    [22]郭绪民.钙钛矿型稀土复合氧化物催化剂[J].稀土,1986,5:46
    [23]Peter S. D. Activity enhancement of mixed lanthanum-copper-iron-perovskites in the CO+NO reaction. Applied Catalysis A:General 2001,205:147 158
    [24]Yue Wu, Tao Yu, Bosheng Dou. A comparative study on perovskites-type mixed oxide catalysts A'xA1-xBO3-λ(A'=Ca, Sr, A=La, B= Mn, Fe, Co) for NH3 oxidation. J, Catal.,1989,88;120
    [25]韩巧凤,魏宝国,汪信,等.陆路德纳米钙钛矿型LaMn03的制备与汽车尾气处理[J].环境污染与防治,2001,23(4):36-37
    [26]冯长根,张江山,王亚军,等.钙钛矿型复合氧化物用于汽车尾气催化净化的研究进展[J].安全与环境学报,2004,4(4):43~44
    [27]苏勉曾,谢高阳,申泮文,等.固体化学及其应用[M].上海:复旦大学出版社,1989:272~282
    [28]Nora A Merino, Bibiana P Barbero, Paul Grange, et al. La1-xSrxMnO3 pe rovskite-type oxides:preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane[J]. Journal of Catalysis,2005, 231(1):232-244.
    [29]Lal B, Raghunandan M K, Gupta M, et al. Electrocatalytic properties of perovskite-type La1-x SrxCoO3, (0    [30]Niu Xinshu, Li Honghua, Liu Guoguang. Preparation, characterization and photocatalytic properties of REFeO3 (RE=Sm, Eu, Gd) [J]. Journal of Molecular C atalysis A:Chemical,2005,232, (1-2):89-93.
    [31]Hu Zhonggai, Yang Yuying, Shang Xiuli, et al. preparation and characterization of nanometer perovskite-type complex oxides LaMnO3.15 and their application in catalytic oxidation [J]. Materials Letters,2005,59(2):1373-1377.
    [32]Yolanda Ng Lee, Rochel M Lago, Jose Luis G, et al. Hydrogen peroxide decomposition over Ln1-xAxMn03 (Ln=La or Nd and A=K or Sr) perovskites[J]. Applied Catalysis A:General,2001,215:245-256
    [33]Xu Q, Chen S, Chen W, et al. Synthesis and piezoelectric and ferroelectric properties of (Na0.5Bi0.5)1-xBaxTi03 ceramics[J]. Materials Chemistry and Physics,2005,90:111-115
    [34]Ruiqin Tan, Yongfa Zhu. Poisoning mechanism of perovskite LaCo03 catalyst by organophosphorous gas[J]. Applied Catalysis B:Environmental 58 (2005) 6168
    [35]Raveau B, Michel C, Hervien M. What about structure and nonstoichiometry in superconductive layered cuprates?[J]. J. Solid. State Chem.,181(1990),85
    [36]Michel C, Rakho LEr, Hhervieu M. BaLa4us13+8, all oxygen-deficient perovskite built up from comer-sharing CuO6 octahedra and CuO5 pyramids[J]. J. Solid State Chem.,143(1983),68
    [37]嵇世山,李增喜,谭瑞琴,等La-Ce-Cu复合金属氧化物的结构表征及催化性能[J].稀土,1999,20(1):53~57
    [38]Pavel, V.A., Sergei G. O., Vladimir A. G, et al.Theory of X-ray absorption spectra of strongly correlated cooper oxides[J]. Physica C,1997,278:94-106
    [39]Feffi D, Forni L,Dekkers M A P, et al. NO reduction by H2 over perovskite-like mixed oxides[J]. Appl. Catl. B,1998,16:339-345
    [40]Seiyama T. Total oxidation of hydrocarbon on perovskite oxides[J]. Catal.Rev. Sci.Eng.,1992,34(4):281-300
    [41]Ei-Hagary M., Shoker Y. A.,Mohammad,et al.Structural and magnetic properties of polycrystalline Lao.77Sr0.23Mn1-xCuxO3(0≤x≤0.5) manganites[J]. Journal of Alloys and Compounds,2009,468:47-53
    [42]翁端,丁红梅,徐鲁华.锶和铈对LaMnO3稀土钙钛矿材料性能的影响[J].中国稀土学报,2001,19(4):340~342
    [43]Yasuda H, Fujiwara Y, Mizuno N, et al. Oxidation of carbon monoxide on LaMn1-xCuxO3 Perovskite-type mixed oxide[J]. J Chem Soc,1994,90(8): 1183-1189
    [44]Dai H. X., Au C.T., Chan Y. Halide-doped perovskite-type AMn1-xCux03 (A=La0.8Ba0.2) catalysts for methane-selective oxidation to methane[J]. Applied Catalysis A:General 2001,213:91-102
    [45]王疆瑛,姚熹,张良莹.钛酸锶钡(BaxSr1-xTiO3)陶瓷制备及其介电性能的研究[J].功能材料,2004,35(2):212~217
    [46]Kang D, Han M, Lee S, et al. Dielectric and pyroelectric properties of barium strontium calcium titanate ceramics[J]. Journal of the European Ceramic Society. 2003,23:515-518
    [47]Zhou L, Vilarinho P M, Baptista J L. Dielectric properties of bismuth doped Ba1-xSrxTiO3 ceramics[J]. Journal of the European Ceramic Society,2001,21: 531-534
    [48]饶宇翔,向勇,谢道华.ABO3型氧化物的结构与性能及其应用[J].材料工程,2000,9:15~18
    [49]王凤华,郭瑞松,魏秋桐SOFC阳极NiO-YSZ粉末的制备技术[J].硅酸盐通报,2004,3:14~15
    [50]吕振刚,郭瑞松.钙钛矿型高温固体氧化物燃料电池阴极材料[J].中国陶瓷,2004,2:36~37:
    [51]李强.类钙钛矿结构中温固体氧化物燃料电池阴极材料的性能研究:[博士学位论文].哈尔滨,哈尔滨理工大学,2007
    [52]孟波,谭小耀,张宝砚,柳玉英,杨乃涛,等.新的燃烧工艺合成BaCe_(0.95)Y_(0.05)O_(3-δ)纳米粉[J].中国稀土学报,2004,6:62~63:
    [53]黄喜强,吕喆,刘巍,刘志国,裴力,贺天民,刘江,苏文辉,等.一种增加SOFC阳极三相反应区的方法[J].高等学校化学学报,2000,6:55~56:
    [54]王金霞,纪媛,许大鹏,贺天民,王巍然,周险峰,苏文辉,等.NiO晶粒尺寸对SOFC阳极电化学性能的影响[J].高等学校化学学报,2004,3:46-48
    [55]姚海军,刘献明,张校刚.钠米PbTiO3改性MnO2电极[J].应用化学,2003,20(4):336~340.
    [56]王广建,秦永宁,马智,王永成,等.钙钛矿型复合氧化物材料[J].化学通报,2005,2:117~122.
    [57]李大光,章弘毅,张鹤丰,郭清泉,曹明澈,等.钙钛矿型复合氧化物的研究与应用进展[J].材料导报,2006,5(20):296~299
    [58]朱志杰,唐有根,宋永江,罗继,等.钙钛矿催化剂的改性与性能研究[J].功能材料,2007,11(38):1834~1840
    [59]戴洪兴,何洪,李佩珩,訾学红,等.稀土钙钛矿型氧化物催化剂的研究进展[J].中国稀土学报,2003,12(21):1-15
    [60]翁端,吴晓东.稀土催化材料在能源环境中的研究现状及发展前景[A].第十 届全国稀土催化学术会议论文集[C].北京,2003,1
    [61]吴越.催化化学[M].北京:科学出版社,1998.65
    [62]陈广新,余林,林永强,王明强,等La-Sr-Fe-Co系钙钛矿型汽车尾气净化催化剂的性能研究[J].分子催化,2005,19(4):260-264.
    [63]Voorhoeve RJ H, Remeika J P, Johnson DW. Rare earth manganites:Catalysts with low ammonia yield in the reduction of nitrogen oxide [J]. Science,1973, 180(4081):62-64
    [64]Li Wan, Wang Dao. Rare earth perovskite type catalysts and hopcalite[J]. Environmental Chemistry,1985,4(2):1-6
    [65]Yamazoe N, Teraoka Y. Oxidation catalysis of perovskite relationships to bulk structure and composition (valency, defect, etc.)[J]. Catal Today,1990,8(2): 175-199
    [66]朱保芹.汽车尾气净化催化剂—稀土钙钛矿型复合氧化物[J].广东有色金属学报,1995,19(5):72
    [67]Jitka Kirchncrova, Danilo Klvana. Synthesis and characteriza-tion of perovskite Catalystsp[J]. Solid State Ionics,1999,123:307-317
    [68]Doshi R, Alcock C.B, Carberry J.J. Effect of surface area on CO oxidation by the perovskite catalysts La1-xSrxMO3-δ(M=Co,Cr)[J]. Catal.Lett.1993.18 (4):337
    [69]Choudhary VR, Uphad BS, Pataskar SG. Low temperature complete combustion of methane over Ag-doped LaFeO3 and LaFeo.5Coo.5O3 perovskite oxide catalysts[J]. Fuel,1999,78 (8):919-921
    [70]K.J. Stanly, I. Packia Selvam, V. Kumar. Precipitation of fine powders of PbTiO3 derived from Organo-metallic solution [J]. Materials Letters,1999,40(8): 118-123
    [71]Tsacon J M D, Tejuca L G. Desorption of carbon monoxide on the perovskite-type oxide lanthanum cobalt oxide[J]. Phys Chem,1980,8(2): 175-199
    [72]Zhang-Steenwinkel, Y.Beckers J. Bliek A. Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum-manganese oxides[J]. Appl Catal A,2002,235(1-2):79-92
    [73]Zhu J. J., Xiao D. H., Li J., et al. Effect of Ce and MgO on NO decomposition over Lal-x-Cex-Sr-Ni-O/MgO[J]. Catalysis Communications,2006.7(7): 432-435
    [74]Yokoi Y, Yasuda I., Uchida H., et al. Catalytic performance of SrTiO3-based catalysts for NO direct decomposition, Studies in Surface Science and Catalysis, 2000,130:1319-1324
    [75]宿新泰,燕青芝,葛昌纯.低温燃烧合成超细陶瓷微粉的最新研究[J].化学进展,2005,3:95~97
    [76]赵辉.复合物La_ (2/3) (Ca_(0.65) Ba_(0.35))_(1/3)MnO_3对电输运和磁电阻效应影响:[博士学位论文].吉林,吉林大学,2007
    [77]董义.A位掺杂钙钛矿结构锰氧化物的电输运和磁电阻效应:[博士学位论文].吉林,吉林大学,2007
    [78]Tanake H., Misono M. Advances in designing perovskite catalysis [J]. Current opinion in solid state and Material science,2001,5(5):381-387
    [79]常振勇,崔连起.钙钛矿金属氧化物催化剂的研究与应用综述[J].精细石油化工,2002,5(3):49~53.
    [80]魏丽,陈诵英,王琴.中温固体氧化物燃料电池电解质材料的研究进展[J].稀有金属,2003,2:57~59
    [81]Dan X.,Lessing P. A..Mixed-cation oxide powders via polymeric precursors[J]. Ceramic Bulletin,1989,68(5):1002-1007
    [82]Sun W. A., Yukiya H.,Kunio A..Continuous production of LaCaSrMnO by hydrothermal synthesis[J].Ind.Eng.Chem.Res.,2005,44(4):840-846
    [83]黄守国,夏长荣,张学斌Gd0.8Sr0.2CoO3阴极的甘氨酸-硝酸盐法制备及性能研究[J].稀有金属材料与工程,2005,34(10):1650~1652
    [84]宋崇林,沈美庆,王军.稀士钙钛矿型催化剂LaBO3对NO、催化性能及反应机理的研究(1)--催化剂的合成工艺及催化性能[J].燃烧科学与技术,1999,42(5):1
    [85]徐鲁文,赵宏生,李德兴La0.7Sr0.3MnO3+2钙钛矿催化剂的涂覆工艺及性能研究[J].自然科学进展,2002,12(12):54~56
    [86]Shu J, Kaliaguine S. Well-dispersed pervoskite-type oxidation catalysts. Applied Catalysts B:Environmental 1998,16:303-308
    [87]方道来,朱伟长,晋传贵.铁酸锌纳米晶体材料的制备[J].化学研究与应用,1999,11(2):138~1411
    [88]Xiao F S, Qiu S L, Pang W Q. et al. New developments in microporous materials [J]. Advanced Material,1999,11:1091-1098.
    [89]Li R. F, Xu W Y, Wang J Z. Nonaqueous synthesis:iron alu-minosilicates with the ZSM 48 structure [J]. Zeolites,1992,12:16-19.
    [90]梁亮,梁逸曾.微波辐射技术在有机合成中的应用[J].化学通报,1996,3: 289~293
    [91]黄昆,刘华.微波辐射在有机液相反应中的应用[J].辐射研究与辐射工艺学报,1994,12(2):65~70
    [92]Tu Yeur-Luen, Maria L Clalzada, Nicolas J Phillips, et al. Synthesis and electrical characterization of thin films of PT and PZT made from a diol-based sol-gel route [J]. J Am Ceram Soc,1996,79{2}:441-448
    [93]送方平,朱启安,王树峰.反向微乳液法合成纳米钛酸钡球形颗粒[J].无机化学学报,2006,22(2):355~358
    [94]杜仕国,施冬梅,韩其文.纳米颗粒的液相合成技术[J].粉末冶金技术,2001,18(1):46~50
    [95]翁端,丁红梅,徐鲁华.锶和铈对LaMnO3+λ稀土纳米钙钛矿材料性能的影响[J].中国稀土学报,2001,19(4):338
    [96]李汶军.纳米晶粒水热制备过程中的粒度与形态调控:[博士学位论文].上海:中国科学院上海硅酸盐研究所,2001.
    [97]Crawford, J. H. Chen, Y. Defect Properties and Processing of High Technology Nonmetallic Materials[M]. New York:North-Holland,1984:287
    [98]Yoshimura M. Somiya S. Hydrothermal synthesis of crystallized nano2particles of rare earth-doped zirconia and hafria [J]. Mat. Chem. and Physics,1999 (61): 1-11.
    [99]Eiji T, Masaltiro Y, Shigeyuki S. Gormation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions [J]. J. Am. Ceram. Soc.1982,66(1):11-141
    [100]丁常胜.水热法制备锑掺杂Sn02纳米粉体:[博士学位论文].咸阳:西北轻工业学院,2002
    [101]古映莹,邱小勇,杜作娟.不同晶型纳米TiO2的水热合成及光催化性能[J].化工新型材料,2004,32(3):14~16.
    [102]J. Sun, X. Meng, Y. Shi, R. Wang. Hydrothermal synthesis of advanced complex oxides and fluorides [C]. Proc 2nd int. conf. on solvothermal reactions. Takamatsu:Org. Comm. Solvothermal Teac. Res,1996:101-105.
    [103]戴劲草.水热合成与晶体工程的研究:[博士学位论文].福建:中国科学院福建物质结构研究所,2002
    [104]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.124~130
    [105]丁士文,马广成,高树堂.Ba1-xSrxTiO3(0≤x≤1)固溶体的合成及性能研究[J].河北大学学报,1994,14(2):26~29
    [106]Selvam I P, Kumar V. Synthesis of nanopowders of (Ba1-xSrx)Ti03[J]. Materials Letters,2002.56:1089-1092
    [107]Zhou Y, Wang W, Jia D, et al. Synthesis of SrBi2Ta2O9 nanocrystalline powder by a modified sol-gel process using bismuth subnitrate as bismuth source[J]. Materials Chemistry and Physics,2002,77:60-64
    [108]Isupova L. A., Alikina G. M., Snegurenko O. L., et al. Monolith honeycomb mixed oxide catalysts for methane oxidation[J]. Appl Catal B,1999,21: 171-181
    [109]Jia Lishan, Gao Jing, Fang Weiping, Li Qingbiao. Influence of copper content on structural features and performance of pre-reduced LaMn1-xCux03 (0≤x<1) catalysts for methanol synthesis from CO2/H2[J]. Journal of Rare Earths,2010, 5:34-38
    [110]Montero X., Fischer W., Tietz F., et al. Development and characterization of a quasi-ternary diagram based on La0.8Sr0.2(Co, Cu, Fe)O3 oxides in view of application as a cathode contact material for solid oxide fuel cells[J]. Solid State Ionics,2009,180:731-737
    [111]张明福,赫晓东,韩杰才.自燃烧法合成BaNd2Ti5O14的凝胶化及热处理研究[J].无机材料学报2000,5:37-38
    [112]岳振星,周济,张洪国.柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成[J].硅酸盐学报,1999,4:68~70
    [113]韩颖超,王欣宇.自燃烧法合成纳米HAP粉末[J].硅酸盐学报,2002,3:46~52
    [114]霍地,张劲松,杨洪才.用柠檬酸溶胶凝胶法合成SrFeCo0.5Ox氧化物[J].东北大学学报(自然科学版),2003,24(1):61~63
    [115]Wang X, Zhang Z, Zhou S. Preparation of nano-crystalline SrTiO3 powder in sol-gel process[J]. Materials Science and Engineering B,2001,86:29-33
    [116]Linardos S, Zhang Q, Alcock J R. Preparation of sub-micron PZT particles with the sol-gel technique. Journal of the European Ceramic Society,2006,26:117~123
    [117]Wang S, Gu F, Lu M, et al. Preparation and characterization of sol-gel derived ZnTiO3 nanocrystals. Materials Research Bulletin,2003,38:1283-1288
    [118]刘江华,章天金,张柏顺Sol-Gel方法制备BST粉体的化学机理和晶化过程研究[J].湖北大学学报,2004,26(3):222~225
    [119]Ries A, Simoes A Z, Cilense M, et al. Barium strontium titanate powder obtained by polymeric precursor method [J]. Materials Characterization,2003, 50:217-221
    [120]金克新,汪世林La0.825Sr0.175MnO3薄膜自旋输运特性研究[J].低温物理学报,2004,2:67~71
    [121]Kaus I., Harlan U. Anderson. Electrical and thermal propertyes of La0.2Sr0.8Cu0.1Fe0.9O3 and La0.2Sr0.8Cu0.2Fe0.8O3[J]. Solid State Ionics,2000,129: 189-200
    [122]Raghuveer V., Viswanathan B. Can La2-xSrxCuO4 be used as anodes for direct methanol fuel cells[J]. Fuel,2001,81:2191-2197
    [123]Chandrachood M. R., Singh K. K., Morris D. E., et al. Phase Stability in the La-Ba-Cu-O system at 980℃ and 200 bar oxygen pressure[J]. Physics C 1995, 241:319-322
    [124]Mauvy F., Boehm E., Bassat J. M., et al.Oxygen permeation fluxes through La2Cu0.5Ni0.5O4+δ dense ceramics:Comparison with oxygen diffusion coefficients[J]. Solid State Ionics,2007,178:1200-1204
    [125]Chai Y. L., Ray D. T., Liu H. S. Characteristics of La0.8Sr0.2Co1-xCuxO3 film and its sensing properties for CO gas[J]. Materials and Science and Engineering, 2000,293:9-45
    [126]侯岩峰,范国梁,宋崇林,黄齐飞,张仲荣,等La1-xCexCoO3系钙钛矿型催化剂应用于柴油机尾气净化催化性能的研究:[博士学位论文].武汉:武汉理工大学,2000
    [127]赵震,杨向光,刘钰LnSrNiO4-λ系列复合氧化物的物化性质与对NO分解的催化性能[J].中国稀土学报,1998,16(4):57~60
    [128]刘钰,杨向光,赵震.层状La-Ba-Cu复合氧化物在CO还原NO反应中活性的研究[J].科学通报,1997,42(20):10~14
    [129]古映莹,王海利,王曼娟,李金林,冯圣生,顾向奎,等.以PEG为模板剂水热合成高比表面介孔Ce0.5Zr0.5O2固溶体[J].中国稀土学报,2009,2:64-67
    [130]张悦,张磊,邓积光.水热法制备特定形貌单晶La2-xSrxCuO4及甲烷催化氧化性能[J].催化学报,2009,30(4):347~354
    [131]陈文梅,赵修建.聚乙二醇添加量对Ti03薄膜光催化性能的影响[J].武汉理工大学学报,2001,23(4):18~21
    [132]许珂敬,许煜汾.表面活性剂在制备Zr02微粉中的作用[J].材料研究学报,1997,13(4):434~436
    [133]邹同征,涂江平,夏正志.聚乙二醇为分散剂的沉淀法制备IF-MoS2[J]无机材料学报,2005,21(8):1170~1174
    [134]张武志,陈奇,李会平,侯凤珍,等.双孔型生物活性玻璃的合成[J].玻璃与搪瓷,2008,6(3):1-4
    [135]古映莹,冯圣生,张丽娟,宋丰轩,刘爱红,等.铈锆复合氧化物的制备及表征:[博士学位论文].上海:中国科学院上海冶金研究所,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700