用户名: 密码: 验证码:
25D3和1,25D3介导胸腺基质淋巴细胞生成素在人支气管上皮细胞中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     支气管哮喘是一种气道慢性炎症性疾病,它和气道的炎性细胞和结构细胞以及细胞因子等有关。1990年,我国儿科哮喘协作组对27个省市0-14岁儿童进行调查,显示我国儿童哮喘的患病率为0.09%-2.60%,平均0.91%。2000年再次调查结果为0.12%~3.34%,平均1.54%,较10年前平均上升了64.84%。哮喘使很多患者日常生活受到不同程度的影响,据WHO估计,全球由于哮喘导致的调整伤残生命年数量估计达到1500万,约占全球总医疗负担的1%。由哮喘所带来的经济负担无论从住院和药品使用等直接医疗费用还是误工及非正常死亡等造成的间接非医疗费用都相当大。尽管多种新的治疗措施和方法已经在临床证实了确切的疗效,但是还有很多的问题需要解决。一方面很多的治疗并没有触及哮喘的根本,不能起到逆转治疗的效果。另一方面一些治疗手段还有不同的副作用,有的还需要不断地进行药物监测,给患者造成了极大的不便。因此,不断探索研究出更新的更有效的治疗手段是当前迫切的方向,其中从支气管哮喘病因这个源头去发现和探讨疾病的治疗方法或许是一个不错的选择。
     新的证据显示,维生素D不足可以引起包括哮喘在内的多种肺部疾病,这有可能是与肺功能受损而导致了感染和炎症的发生率增加有关。这种现象的内部机制尚不清楚,但是维生素D会影响炎症和结构细胞的功能,包括淋巴细胞、树突状细胞、单核细胞和上皮细胞。羟化酶负责终止和限制25羟基维生素D3(25-hydroxyvitamin D3,25D3)以循环和储存的形式活化合成1,25二羟基维生素D3(l,25-hydroxyvitamin D3,1,25D3)。2008年,Hansdottir等报道了呼吸道上皮细胞表达1α-羟化酶,后者可以将维生素D活化,而维生素D本身会影响其驱使基因的表达水平,并在机体内发挥着重要的防御作用。1a-羟化酶在呼吸道上皮细胞中的表达表明维生素D在呼吸系统疾病中起着很普遍的影响。
     呼吸道上皮细胞不仅是物理屏障,也可以分泌细胞因子,例如发挥免疫应答作用的胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin, TSLP)。TSLP是一种白介素-7(interleukin-7,IL-7)类似的新型细胞因子,TSLP作为肺内的一种多效性的细胞因子,在变应性炎症和哮喘中起着重要的作用。最近的研究已经着眼于TSLP产生机制,这有助于我们阐明TSLP如何支气管哮喘发生和发展中起作用的。现已证实,哮喘中存在TSLP基因在呼吸道上皮细胞中的过表达,TSLP在过敏反应免疫应答的发生和发展中起着重要的作用。在SCC25(human oral squamous carcinoma cell, SCC25,人上皮肿瘤细胞,由鳞状细胞癌衍生而来)中,TSLP的表达是由1,25D3诱导的。另有证据显示,局部应用1,25D3可以诱导小鼠表皮角质形成细胞中TSLP的表达使其增加。然而,维生素D是否会影响TSLP在人支气管上皮细胞(human bronchial epithelial, HBE)这一特定的细胞中表达尚不清楚。
     维生素D3上调蛋白(vitamin D3upregulated protein1,VDUP1)是硫氧还原蛋白的内源性抑制剂,它和维生素D发挥作用密切相关。VDUP1最初被认为是经由1,25D。处理过的白血病细胞(human promyelocytic leukemia cells, HL-60cells)的差异表达基因。该蛋白定位于胞质,在多种细胞反应中发挥着多种作用。最近的研究证实,VDUP1可以介导血管内皮生长因子(VEGF)和白细胞介素1β信号转导通路。然而,VDUP1在支气管上皮细胞中的表达及其在这个细胞中的活化参与也鲜有人知。
     本研究旨在利用16-HBE细胞证实维生素D是否增强了TSLP在该细胞中的表达,以及在此过程中是否有VDUP1的参与,为探明支气管哮喘发生机制和治疗提供参考。
     材料和方法
     细胞培养和处理、转染
     16-HBE支气管上皮细胞在MEM培养基中培养,辅以10%胎牛血清,5%C02,37℃恒温潮湿培养箱培养。细胞培养至少两天(70%-80%融合),在刺激前分别用与不用25D3和1,25D3预处理6h后,给予1000nM伊曲康唑刺激2h。
     VDUP1靶向小干扰RNA (SiRNA)序列如下SiRNA1:上游5'-GUCAGAGGCAAUCAUAUUATT-3',下游5'-UAAUAUGAUUGCCUCUGACT G-3'; SiRNA2:上游5'-CUGUGAAGGUGA UGAUAUUTT-31,下游5'-AAU CUCAUCACCUUCACAGTT-3';SiRNA3:上游5'-GAAACAAAUAUGAGUACAATT-3’,下游5'-UUGUACUCAUAUUUGUUU CCA-3'; Negative control (NO:上游5'-UUCUCCGAACGUGUCACGUTT-3',下游5'-ACGUGACACGUUCGGAGA ATT-3'=16-HBE细胞置于12孔培养板中培养两天,调整细胞浓度至每孔1.2×105个。待细胞融合40%-60%时,用5nM VDUP1特异性SiRNA和HiPerFect转染试剂对照SiRNA进行转染。以MTT法测定细胞活力。经转染的细胞另培养48h,用500nM的25D3和50nM的1,25D3分别刺激6h。
     使用1,25D3的酶联免疫测定试剂盒进行1,25D3定量
     RNA的分离提纯和RT-PCR以RT-PCR技术分析基因的表达和Mx3005p实时定量PCR (qPCR)系统进行分析。提取总RNA后,用RNA iso PLUS试剂盒。用Prime ScriptTM的RT试剂盒将RNA合成为500ng cDNA。该定量RT-PCR反映混合物中含有1*SYBR与ExTaq预混物、200nM正向和反向引物,并在25μL终体积中加入2μL的cDNA。使用的引物分别为:人TSLP(上游:5'-GCCCAGGCTATTCGGA AAC-3',下游:5'-GAAGCGACG CCACAATCC-3'), VDUP1(上游:5'-ACTCGTGTCAAAGCCGTTAGGA-3',下游5'-AGCTCAAAGCCGAACT TGTACTCA-31),β-actin(上游:5'-GTGGACATCCGCAAAGAC-3',下游:5'-GAAAGGGTGTAACGC AACT-3')。通过CT(循环阈值:每个反应管内的荧光信号达到所设定的阈值时,所经历的反应循环数)值来计算mRNA的相对表达水平。以β-actin为内参来进行RNA定量。
     Western Blot分析细胞用PBS洗涤三次,在O℃裂解液中裂解。用Bradford蛋白测定法测蛋白质浓度。以10%SDS聚丙酰胺凝胶(每泳道40mg蛋白)电泳,转膜至PVDF膜。以5%脱脂奶的TBST液室温封闭1h,兔抗人VDUP1多克隆抗体4℃孵育过夜。TBST洗膜(3×15min),1:5000辣根过氧化物酶孵育,室温抗兔IgG二抗孵育1h。Super ECL系统经由X线检测蛋白质信号。
     TSLP的酶联免疫吸附试验(ELISA)上清液中通过ELISA法检测(Bradford总蛋白标准化定量)测定TSLP。最低检测检测水平为31.25pg/mL
     统计方法数据采用(平均值±标准差)表示。组间差异用单因素方差分析法;以Bonferroni法进行多重比较。用单侧或双侧t检验单独比较两组间差异。P<0.05示有统计学差异。
     结果
     1、25D3诱导16-HBE细胞TSLP的表达
     不同浓度的25D3(50-1000nM)处理后,16-HBE细胞的细胞活力没有受到任何影响。根据剂量-效应曲线,TSLP的mRNA水平在25D3的100nM浓度时显著增加。并且随着25D3的浓度增力P,TSLP的nRNA水平不断增加,在500nM处达到峰值。因此,500nM浓度被选做后续实验。时间-反应结果表明(刺激条件:500nM25D3,持续2-24h)TSLP的mRNA表达和蛋白质的水平显著上调。
     2、25D3诱导16-HBE细胞VDUP1的表达
     25D3刺激0.5-24h后,细胞内VDUP1的mRNA和蛋白质的表达水平。结果表明,与对照组相比,500nM25D3刺激2-24h后,细胞内VDUP1的mRNA表达和蛋白质表达水平显著上调。
     3、下调VDUP1的蛋白表达
     针对VDUP1合成了三种siRNA (siRNA1和siRNA2, siRNA3)(详见材料与方法)。从转染的siRNA2或siRNA3的细胞裂解液中发现VDUP1水平降低。这种现象在siRNA3中更加明显,与对照组相比,VDUP1的表达减少了35%,VDUP1siRNA3被选做后续实验。
     4、VDUP1的沉默降低了在16-HBE细胞中25D3介导的TSLP的合成
     采用VDUP1siRNA来抑制16-HBE细胞中VDUP1的表达。用siRNA转染的细胞存活率大于90%。在同样浓度D3(500nM)刺激下,经siRNA处理后的VDUP1沉默的细胞,其TSLP的mRNA和蛋白表达水平都有显著降低。
     5、la-羟化酶抑制后限制了16-HBE细胞中25D3活化为1,25D3,并且减弱了TSLP的表达
     25D3存在时,16-HBE细胞可以不经任何刺激的情况下,将25D3活化为1,25D3。经1000nM伊曲康唑预处理的16-HBE细胞,25D3活化为1,25D3的能力显著降低。在1000nM伊曲康唑预处理后,由25D3介导的TSLP的mRNA和蛋白水平显著降低。
     6、VDUP1的沉默降低了16-HBE细胞中1,25D3介导的TSLP的表达水平
     不同浓度的1,25D3(0.1-100nM)中,16-HBE细胞活力没有变化。根据剂量-效应曲线,1,25D3在0.1nM处,TSLP的nRNA和蛋白水平显著增加,并在50nM处达到峰值。而当同样在50nM浓度的1,25D3时,TSLP的mRNA和蛋白质的表达水平在2h时显著增加,并在12h处达到峰值。50nM浓度的1,25D3刺激6h后,测得、/DUP1的mRNA的表达水平。结果表明,在16-HBE细胞中,与对照组相比,在50nM终浓度的1,25D3刺激6h后,VDUP1的mRNA的表达显著上调。与对照组siRNA处理过的细胞相比,经由50nM浓度的1,25D3处理后的细胞,当VDUP1基因沉默表达时,其TSLP的mRNA和蛋白水平显著降低。以上结果显示,在16-HBE细胞中,1,25D3是经由VDUP1通路介导TSLP的表达。
     7、1a-羟化酶的抑制对在16-HBE细胞中1,25D3诱导的TSLP表达水平没有明显的影响
     1000nM的伊曲康唑预处理16-HBE细胞,仍然会有1,25D3介导生成TSLP。这进一步支持了16-HBE细胞在维生素D活化并介导TSLP表达通路中,1α-羟化酶并未发挥作用。
     结论
     1、非活化的25D3和活化的1,25D3都可以介导16-HBE细胞中TSLP的表达;
     2、1α-羟化酶经伊曲康唑抑制后,部分抑制了25D3(而不是1,25D3)的TSLP在16-HBE细胞中的表达;
     3、与25D3相比,极低浓度的1,25D3更能显著增加TSLP在气道上皮细胞中的表达;
     4、维生素D对TSLP基因表达的影响是间接的。
Introduction
     Bronchial asthma is a chronic inflammatory disease in airways, which are related to airway inflammatory cells, cell structure and cytokines. In1990, the collaborative group of pediatric asthma investigated children aged0to14from27provinces, showing a prevalence of asthma in children of0.09%-2.60%, with an average0.91percent. In2000, the prevalence was surveyed again and found it was increased to0.12%-3.34%, with an average of1.54%, comparing with the result10years ago, the average increase rate was64.84%. Many patients are suffered from asthma in different ways in their daily life. According to WHO, in the world the number of disability years is estimated to reach15million due to the asthma, which accounting for about1%of the total global health burden. Economic burden brought about by the asthma hospitalization and drug use in terms of direct medical costs, such as lost income and non-normal or death caused by indirect non-medical costs are quite large. Although the number of new treatments and methods have been confirmed in clinical treatments, but there are many problems need to be solved. On the one hand, a lot of treatment did not manage the root of asthma, some showed various reversal effects. On the other hand there are a number of different side effects of treatment, and some also need to continue to monitor the drug concentration of patients, which caused great inconvenience. Therefore, explore more effective means to treat is still urgent, discover and explore the way asthma occurred may be a nice choice.
     Emerging evidence indicates that vitamin D insufficiency is associated with several lung diseases, including asthma and chronic obstructive pulmonary disease (COPD), which may be associated with impaired pulmonary function, and the increased incidence of inflammation and infection. The exact underlying mechanisms are unknown; however, vitamin D appears to affect the function of inflammatory and structural cells, including lymphocytes, dendritic cells, monocytes and epithelial cells, la-hydroxylase is responsible for the final and rate-limiting step in the synthesis of active1,25-dihydroxyvitamin D3(1,25D3) from the circulating or storage form,25-hydroxyvitamin D3(25D3).In2008, Hansdottir et al reported that airway epithelial cells express la-hydroxylase and are able to convert vitamin D from an inactive form into an active one, and that vitamin D affects the expression of vitamin D-driven genes that play a major role in host defense. The expression of la-hydroxylase in airway epithelial cells suggests a broader role of vitamin D in respiratory diseases.
     Airway epithelial cells are not only physical barriers to invaders, but also produce cytokines, such as thymic stromal lymphopoietin (TSLP) in response to allergens. Thymic stromal lymphopoietin (TSLP) is a novel interleukin-7(IL-7) similar cytokines, which plays important roles in allergic inflammation and asthma as a pleiotropic cytokine in lungs. Recent research has focused on TSLP production mechanism, which helps us to clarify how TSLP bronchial asthma and development works. The overexpression of the TSLP gene in airway epithelial cells has been shown to lead to asthma and TSLP has been suggested to play an important role in the initiation and maintenance of the allergic immune response. TSLP expression has been shown tobe induced by1,25D3in SCC25human epithelial tumor cells (derived from a tongue squamous cell carcinoma). It has also been demonstrated that the topical application of1,25D3leads to the induction of TSLP expression in mouse epidermal keratinocytes. However, whether vitamin D affects the expression of TSLP in human bronchial epithelial (HBE) cells remains unresolved.
     Vitamin D3upregulated protein1(VDUP1) is an endogenous inhibitor of thioredoxin. VDUP1was originally identifi ed as a differentially expressed gene in1,25D3-treated HL-60leukemia cells. It is cytoplasmically located and has been shown to play a multifunctional role in a variety of cellular responses. Recently, VDUP1has been shown to play a role in vascular endothelial growth factor (VEGF)-and interleukin-1β-mediated signal transduction pathways. However, little is known about the expression of VDUP1in bronchial epithelial cells and its involvement in the activation of these cells.
     In this study, to determine whether vitamin D enhances the expression of TSLP in airway epithelial cells and whether VDUP1is involved in this process,16-HBE cells were used. This SV40large T antigen-transformed bronchial epithelial cell line is widely used for the investigation of the functional properties of bronchial epithelial cells. The results from this study demonstrate that TSLP expression can be manipulated by both inactive and active vitamin D via the VDUP1pathway, therefore suggesting a novel mechanism by which vitamin D regulates immune function in the lungs.
     Materials and methods
     Cell culture, treatment and transfection.16-HBE bronchial epithelial cells were cultured in MEM growth medium supplemented with10%fetal calf serum and maintained at37℃in a humidifi ed incubator in the presence of5%CO2. Cells were cultured for at least2days prior to stimulation with25D3and1,25D3for6h with or without pre-treatment with1,000nM itraconazole for2h.
     The sequence of the VDUP1-targeting small interfering RNA (siRNA) was as follows:siRNA1sense,5'-GUCAGAGG CAAUCAUAUUATT-3'and antisense,5'-UAAUAUGAUUG CCUCUGACTG-31; siRNA2sense,5'-CUGUGAAGGUGA UGAUAUUTT-3'and antisense,5'-AAUCUCAUCACCUUC ACAGTT-3'; siRNA3sense,5'-GAAACAAAUAUGAGUACAATT-3'andantisense,5'-UUGUACUCAUAUUUGUUU CCA-3';and negative control (NO)sense, 5'-UUCUCCGAAC GUGUCACGUTT-3'and antisense,5'-ACGUGACACGUU CGGAGAATT-3'. The16-HBE cells were seeded at a density of1.2x105cells/well in12-well culture plates and cultured for2days. Cells that were40-60%confluent, were transfected with5nM VDUP1-specific siRNA or control siRNA using the HiPerFect transfection reagent. The viability of the cells was determined by MTT assay. The transfected cells were cultured for an additional48h and then stimulated with500nM25D3and50nM1,25D3for6h.
     Quantitative determination of1,25D3.1,25D3was quantifi ed using an enzyme immunoassay kit for1,25D3.
     RNA isolation and real-time polymerase chain reaction (PCR). Gene expression was analyzed by real-time RT-PCR using SYBR(?) Premix Ex TaqTM and the Mx3005p real-time qPCR system. Total RNA was extracted with RNAisoPLUS following the manufacturer's instructions and cDNA was synthesized from500ng of RNA using the PrimeScriptTM RT kit. The qRT-PCR reaction mixture contained1X SYBR Premix Ex Taq,200nM forward and reverse primers and2μl cDNA in a fi nal volume of25μ1. The primers used were:human TSLP (forward,5'-GCCC AGGCTATTCGGAAAC-31and reverse,5'-GAAGCGACG CCACAATCC-31) VDUP1(forward,5'-ACTCGTGTCAAAG CCGTTAGGA-3'and reverse,5'-AGCTCAAAGCCGAACTT GTACTCA-31) and β-actin (forward,5'-GTGGACATCCGC AAAGAC-3'and reverse,5'-GAAAGGGTGTAACGC AACT-3'). The cycle threshold (Ct) values were used to calculate the relative expression levels of the messenger RNA (mRNA). The expression levels of all genes were normalized to the expression of a reference gene (β-actin)
     Western blot analysis. The cells were washed3times with phosphate-buffered saline (PBS) and disrupted in ice-cold lysis buffer (20mM Tris,20mM P-glycerophosphate,150mM NaCl,3mM EDTA,3mM EGTA,1mM Na3VO4,0.5%Nonidet P-40and1mM dithiothreitol). The protein concentration of the lysates was determined using the Bradford protein assay was separated on a10%SDS-polyacrylamide gel and transferred onto a PVDF membrane. The membrane was blocked with5%skim milk in Tris-buffered saline with Tween-20(TBST)(50mM Tris-HCl, pH7.5,150mM NaCl and0.05%Tween-20) for1h at room temperature and then incubated overnight with rabbit anti-human VDUP1polyclonal antibody1:600at4℃. The membrane was washed with TBST (3x15-min washes) and incubated in anti-rabbit IgG secondary antibody conjugated with horseradish peroxidase1:5,000for1h at room temperature. Protein signal was detected using the SuperECL system and detected by radiography. The immunoreactive bands were visualized using a Kodak2000M camera. An anti-GAPDH goat polyclonal antibody was used to confirm equal loading.
     TSLP enzyme-linked immunosorbent assay (ELISA). TSLP in culture supernatants were detected by ELISA and the data were normalized to the total protein amounts in the samples, as determined by Bradford assay. The minimal detectable level of TSLP was31.25pg/ml.
     Statistical analysis. Data are presented as the means±SEM. Differences among multiple groups were assessed for statistical signifi cance by one-way analysis of variance; Bonferroni's method was used for multiple comparisons. When2groups were being compared we used a one-or two-tailed Student's t-test depending on the hypothesis in question. A P-value<0.05was considered to indicate a statistically significant difference.
     Results
     1.25D3induces TSLP expression in16-HBE cells.
     To determine whether inactive25D3affects TSLP expression in airway epithelial cells, we first investigated the effects of25D3on the viability of16-HBE cells. We found no loss in cell viability when the16-HBE cells were stimulated with various concentrations of25D3(50-1,000nM). Based on our concentration-response curve, TSLP mRNA levels significantly increased at concentrations of100nM and peaked at concentrations500nM25D3. Therefore, we used the concentration of500nM in the subsequent experiments. The time-response results revealed that TSLP mRNA and protein levels were significantly upregulated in the cells stimulated with500nM25D3for2to24h.
     2.25D3induces VDUP1expression in16-HBE cells. The mRNA and protein expression of VDUP1following treatment with25D3from0.5to24h were determined. The results indicated that VDUP1mRNA and protein expression was significantly upregulated in the16-HBE cells treated with500nM25D3for2to24h when compared with the untreated cells.
     3.VDUP1silencing by RNAi.
     To determine the biological function of VDUP1, its expression was silenced by RNA interference. Three RNA duplexes (siRNA1, siRNA2and siRNA3) directed against VDUP1were synthesized (see Materials and methods). Extracts prepared from the cells transfected with either the siRNA2or siRNA3duplex showed reduced VDUP1levels. This effect was more pronounced with the use of siRNA3, wherein VDUP1expression was<35%of the control. siRNAl and siRNA2reduced VDUP1expression to40-80%of the control. Therefore, we selected VDUP1siRNA3in the subsequent experiments.
     4. Silencing of VDUP1decreases25D3-induced TSLP production in16-HBE cells.
     To elucidate the mechanism behind the25D3-induced TSLP production, we investigated whether VDUP1is involved in this process. We used VDUP1siRNA3to suppress VDUP1expression in the16-HBE cells. The viability of the cells was>90%in the siRNA-transfected cells. We observed a significantly lower level of TSLP mRNA and protein expression in the VDUP1-silenced cells when compared with the control siRNA-treated cells following treatment with500nM25D3.
     5. Inhibition of la-hydroxylase blocks the conversion of25D3to1,25D3andattenuates the upregulation of TSLP expression in16-HBE cells.
     To determine the effect of1,25D3, the16-HBE cells were first treated with increasing concentrations of25D3, and the levels of1,25D3in the supernatants were measured after24h. Consistent with a previous study, our results indicated that the16-HBE cells converted25D3to1,25D3when exposed to25D3without other stimuli. To further link the enzymatic machinery expressed by16-HBE cells to the1, 25D3generation and induction of TSLP expression, we used a chemical inhibitor of la-hydroxylase, itraconazole. Pre-treatment of the16-HBE cells with itraconazole (1,000nM) significantly reduced their ability to convert25D3to1,25D3. We then examined the effects of itraconazole on the induction of TSLP by25D3. The results revealed that in the presence of itraconazole (1,000nM), there was a signifi cantly lower production of TSLP mRNA and protein by25D3. These results indicate that in the presence of itraconazole, less25D3is being converted to1,25D3, resulting in a reduced production of TSLP.
     6. VDUP1silencing decreases1,25D3-induced TSLP expression in16-HBE cells.
     To further investigate the effect of active vitamin D on TSLP expression in airway epithelial cells, we directly used1,25D3as the stimulator. We found no loss in cellviability when the16-HBE cells were stimulated with various concentrations of1,25D3(0.1to100nM). Based on the concentration-response curve, TSLP mRNA and protein levels significantly increased at0.1nM, and peaked at concentrations of50nM1,25D3. The levels of TSLP mRNA and protein expression significantly increased at2h and peaked at12h in the cells exposed to50nM1,25D3. To determine the role of VDUP1in this process, we examined the mRNA expression level of VDUP1at the same time following treatment with50nM1,25D3for6h and VDUP1was also manipulated via the siRNA-mediated silencing of VDUP1. The results revealed that VDUP1mRNA expression was significantly upregulated in the16-HBE cells treated with50nM1,25D3for6h when compared with the untreated cells. In comparison with the control siRNA-treated cells, following treatment with50nM1,25D3, we observed a significantly lower level of TSLP mRNA and protein in the cells in which VDUP1was silenced. These results suggest that the VDUP1pathway is involved in the1,25D3-induced TSLP expression in16-HBE cells.
     7. Inhibition of1α-hydroxylase exerts no effects on1,25D3-induced TSLP expression in16-HBE cells.
     To confirm the specificity of the TSLP production induced by1,25D3, we treated the cells with itraconazole, as well as1,25D3. We found that in the presence of itraconazole (1,000nM), a similar induction of TSLP by1,25D3was obsevered. This further supports our primary hypothesis that1αhydroxylase converts inactive vitamin D to active vitamin D and induces TSLP expression in16-HBE cells.
     Conclusion
     1. Both inactive25D3and active1,25D3induce TSLP expression in16-HBE cells;
     2. The inhibition of1α-hydroxylase by itraconazole partially suppresses the25D3-but not the1,25D3-induced TSLP expression in16-HBE cells.
     3.0.1nM1,25D3significantly increased the expression of TSLP in airway epithelial cells, not25D3;
     4. The effect of vitamin D on TSLP gene expression may be an indirect effect.
引文
[1]支气管哮喘防治指南(支气管哮喘的定义、诊断、治疗和管理方案)[J].中华哮喘杂志(电子版),2008(01):3-13.
    [2]Baiz N, Annesi-Maesano I. Is the asthma epidemic still ascending?[J]. Clin Chest Med,2012,33(3):419-429.
    [3]Follenweider L M, Lambertino A. Epidemiology of asthma in the United States[J]. Nurs Clin North Am,2013,48(1):1-10.
    [4]Yangzong Y, Shi Z, Nafstad P, et al. The prevalence of childhood asthma in China:a systematic review[J]. BMC Public Health,2012,12:860.
    [5]Akinbami L. The state of childhood asthma, United States,1980-2005[J]. Adv Data,2006(381):1-24.
    [6]张建华.支气管哮喘的流行病学及高危因素[J].实用儿科临床杂志,2008(04):241-243.
    [7]Boulet L P, Fitzgerald J M, Levy M L, et al. A guide to the translation of the Global Initiative for Asthma (GINA) strategy into improved care[J]. Eur Respir J,2012,39(5):1220-1229.
    [8]Jorres R A. Modelling the production of nitric oxide within the human airways[J]. Eur Respir J,2000,16(3):555-560.
    [9]Geigel E J, Hyde R W, Perillo I B, et al. Rate of nitric oxide production by lower alveolar airways of human lungs[J]. J Appl Physiol (1985),1999,86(1):211-221.
    [10]Kazani S, Planaguma A, Ono E, et al. Exhaled breath condensate eicosanoid levels associate with asthma and its severity[J]. J Allergy Clin Immunol,2013,132(3):547-553.
    [11]Carraro S, Giordano G, Piacentini G, et al. Asymmetric dimethylarginine in exhaled breath condensate and serum of children with asthma[J]. Chest,2013,144(2):405-410.
    [12]Greenwald R, Johnson B A, Hoskins A, et al. Exhaled breath condensate formate after inhaled allergen provocation in atopic asthmatics in vivo[J]. J Asthma,2013,50(6):619-622.
    [13]Hasan R A, O'Brien E, Mancuso P. Lipoxin A(4) and 8-isoprostane in the exhaled breath condensate of children hospitalized for status asthmaticus[J]. Pediatr CritCare Med,2012,13(2):141-145.
    [14]Karakoc G B, Yukselen A, Yilmaz M, et al. Exhaled breath condensate MMP-9 level and its relationship with asthma severity and interleukin-4/10 levels in children[J]. Ann Allergy Asthma Immunol,2012,108(5):300-304.
    [15]Mincewicz G, Ruminski J, Krzykowski G. Application of adjusted subpixel method (ASM) in HRCT measurements of the bronchi in bronchial asthma patients and healthy individuals[J]. Eur J Radiol,2012,81(2):379-383.
    [16]Hoshino M, Matsuoka S, Handa H, et al. Correlation between airflow limitation and airway dimensions assessed by multidetector CT in asthma[J]. Respir Med,2010,104(6):794-800.
    [17]Lee R, Cousins D J, Ortiz-Zapater E, et al. Gene expression profiling of endobronchial ultrasound (EBUS)-derived cytological fine needle aspirates from hilar and mediastinal lymph nodes in non-small cell lung cancer[J]. Cytopathology,2013,24(6):351-355.
    [18]Soja J, Grzanka P, Sladek K, et al. The use of endobronchial ultrasonography in assessment of bronchial wall remodeling in patients with asthma[J]. Chest,2009,136(3):797-804.
    [19]Depner M, Fuchs O, Genuneit J, et al. Clinical and epidemiologic phenotypes of childhood asthma[J]. Am J Respir Crit Care Med,2014,189(2):129-138.
    [20]Weinmayr G, Keller F, Kleiner A, et al. Asthma phenotypes identified by latent class analysis in the ISAAC phase II Spain study [J]. Clin Exp Allergy,2013,43(2):223-232.
    [21]Garden F L, Simpson J M, Marks G B. Atopy phenotypes in the Childhood Asthma Prevention Study (CAPS) cohort and the relationship with allergic disease: clinical mechanisms in allergic disease[J]. Clin Exp Allergy,2013,43(6):633-641.
    [22]Boudier A, Curjuric I, Basagana X, et al. Ten-year follow-up of cluster-based asthma phenotypes in adults. A pooled analysis of three cohorts[J]. Am J Respir Crit Care Med,2013,188(5):550-560.
    [23]时国朝,王林林.支气管哮喘诊断和治疗新进展[J].国际结核病与肺部疾病杂志(中文版),2012,1(1):27-31.
    [24]白敏,刁晓源,张湘燕,等.支气管哮喘发病机制研究进展[J].医学综述,2009(15):2294-2297.
    [25]王群.呼吸道上皮细胞在哮喘发病中作用的研究进展[J].医学综述,2010,16(13):1939-1941.
    [26]Walter M J, Holtzman M J. A centennial history of research on asthma pathogenesis[J]. Am J Respir Cell Mol Biol,2005,32(6):483-489.
    [27]Bucchieri F, Puddicombe S M, Lordan J L, et al. Asthmatic bronchial epithelium is more susceptible to oxidant-induced apoptosis[J]. Am J Respir Cell Mol Biol,2002,27(2):179-185.
    [28]Burgel P R, Nadel J A. Epidermal growth factor receptor-mediated innate immune responses and their roles in airway diseases[J]. Eur Respir J,2008,32(4):1068-1081.
    [29]Wang J, Snider D P, Hewlett B R, et al. Transgenic expression of granulocyte-macrophage colony-stimulating factor induces the differentiation and activation of a novel dendritic cell population in the lung[J]. Blood,2000,95(7):2337-2345.
    [30]Bergeron C, Al-Ramli W, Hamid Q. Remodeling in asthma[J]. Proc Am Thorac Soc,2009,6(3):301-305.
    [31]张婉莹,姜晓峰,梁红艳.支气管哮喘的细胞因子治疗进展[J].国际免疫学杂志,2012,35(1):64-66,80.
    [32]Sims J E, Williams D E, Morrissey P J, et al. Molecular cloning and biological characterization of a novel murine lymphoid growth factor[J]. J Exp Med,2000,192(5):671-680.
    [33]Roan F, Bell B D, Stoklasek T A, et al. The multiple facets of thymic stromal lymphopoietin (TSLP) during allergic inflammation and beyond[J]. J Leukoc Biol,2012,91(6):877-886.
    [34]Takai T. TSLP expression:cellular sources, triggers, and regulatory mechanisms[J]. Allergol Int,2012,61(1):3-17.
    [35]Park L S, Martin U, Garka K, et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor:Formation of a functional heteromeric complex requires interleukin 7 receptor[J]. J Exp Med,2000,192(5):659-670.
    [36]Pandey A, Ozaki K, Baumann H, et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin[J]. Nat Immunol,2000,1(1):59-64.
    [37]Reche P A, Soumelis V, Gorman D M, et al. Human thymic stromal lymphopoietin preferentially stimulates myeloid cells[J]. J Immunol,2001,167(1):336-343.
    [38]Kim H, Kim J, Shin Y K, et al. A novel mutation in the linker domain of the signal transducer and activator of transcription 3 gene, p.Lys531Glu, in hyper-IgE syndrome[J]. Journal of Allergy and Clinical Immunology,2009,123(4):956-958.
    [39]Lee H C, Ziegler S F. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFkappaB[J]. Proc Natl Acad Sci U S A,2007,104(3):914-919.
    [40]Allakhverdi Z, Comeau M R, Jessup H K, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells[J]. Journal of Experimental Medicine,2007,204(2):253-258.
    [41]Ying S, O'Connor B, Ratoff J, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease[J]. J Immunol,2008,181(4):2790-2798.
    [42]Zhang K, Shan L, Rahman M S, et al. Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells:role in chronic obstructive pulmonary disease[J]. AJP:Lung Cellular and Molecular Physiology,2007,293(2):L375-L382.
    [43]Ying S, O'Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity[J]. J Immunol,2005,174(12):8183-8190.
    [44]Ying S, O'Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity[J]. J Immunol,2005,174(12):8183-8190.
    [45]Kashyap M, Rochman Y, Spolski R, et al. Thymic Stromal Lymphopoietin Is Produced by Dendritic Cells[J]. The Journal of Immunology,2011,187(3):1207-1211.
    [46]Proctor W R, Chakraborty M, Fullerton A M, et al. Thymic Stromal Lymphopoietin and Interleukin-4 Mediate the Pathogenesis of Halothane-Induced Liver Injury in Mice[J]. Hepatology,2014:n/a-n/a.
    [47]Oyoshi M K, Larson R P, Ziegler S F, et al. Mechanical injury polarizes skin dendritic cells to elicit a TH2 response by inducing cutaneous thymic stromal lymphopoietin expression[J]. Journal of Allergy and Clinical Immunology,2010,126(5):976-984.
    [48]Soumelis V, Reche P A, Kanzler H, et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP[J]. Nature Immunology,2002.
    [49]Moro K, Yamada T, Tanabe M, et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-l+lymphoid cells[J]. Nature,2009,463(7280):540-544.
    [50]Neill D R, Wong S H, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity[J]. Nature,2010,464(7293):1367-1370.
    [51]Price A E, Liang H E, Sullivan B M, et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity[J]. Proceedings of the National Academy of Sciences,2010,107(25):11489-11494.
    [52]Saenz S A, Siracusa M C, Perrigoue J G, et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses[J]. Nature,2010,464(7293):1362-1366.
    [53]Chang Y, Kim H Y, Albacker L A, et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity[J]. Nature Immunology,2011,12(7):631-638.
    [54]Halim T Y F, Krauβ R H, Sun A C, et al. Lung Natural Helper Cells Are a Critical Source of Th2 Cell-Type Cytokines in Protease Allergen-Induced Airway Inflammation[J]. Immunity,2012,36(3):451-463.
    [55]Wang Y H, Angkasekwinai P, Lu N, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC activated Th2 memory cells[J]. Journal of Experimental Medicine,2007,204(8):1837-1847.
    [56]Koyama K, Ozawa T, Hatsushika K, et al. A possible role for TSLP in inflammatory arthritis[J]. Biochemical and Biophysical Research Communications,2007,357(1):99-104.
    [57]De Monte L, Reni M, Tassi E, et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer [J]. Journal of Experimental Medicine,2011,208(3):469-478.
    [58]Pedroza-Gonzalez A, Xu K, Wu T C, et al. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation [J]. Journal of Experimental Medicine,2011,208(3):479-490.
    [59]Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways[J]. PLoS One,2010,5(1):e8578.
    [60]Hill D A, Siracusa M C, Abt M C, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation[J]. Nature Medicine,2012,18(4):538-546.
    [61]Holgate S T. Innate and adaptive immune responses in asthma[J]. Nature Medicine,2012,18(5):673-683.
    [62]Li Y F, Langholz B, Salam M T, et al. Maternal and grandmaternal smoking patterns are associated with early childhood asthma[J]. Chest,2005,127(4):1232-1241.
    [63]Henderson A J, Newson R B, Rose-Zerilli M, et al. Maternal Nrf2 and gluthathione-S-transferase polymorphisms do not modify associations of prenatal tobacco smoke exposure with asthma and lung function in school-aged children[J]. Thorax,2010,65(10):897-902.
    [64]Wang L, Pinkerton K E. Air pollutant effects on fetal and early postnatal development[J]. Birth Defects Research Part C:Embryo Today: Reviews,2007,81(3):144-154.
    [65]Clark N A, Demers P A, Karr C J, et al. Effect of Early Life Exposure to Air Pollution on Development of Childhood Asthma[J]. Environmental Health Perspectives,2009,118(2):284-290.
    [66]Guo P F, Du MR, Wu H X, et al. Thymic stromal lymphopoietin from trophoblasts induces dendritic cell-mediated regulatory TH2 bias in the decidua during early gestation in humans[J]. Blood,2010,116(12):2061-2069.
    [67]Schmudde I, Laumonnier Y, Kohl J. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma[J]. Seminars in Immunology,2013,25(1):2-11.
    [68]Demehri S, Morimoto M, Holtzman M J, et al. Skin-Derived TSLP Triggers Progression from Epidermal-Barrier Defects to Asthma[J]. PLoS Biology,2009,7(5):e 1000067.
    [69]Uller L, Leino M, Bedke N, et al. Double-stranded RNA induces disproportionate expression of thymic stromal lymphopoietin versus interferon-in bronchial epithelial cells from donors with asthma[J]. Thorax,2010,65(7):626-632.
    [70]Brandelius A, Yudina Y, Calven J, et al. dsRNA-induced expression of thymic stromal lymphopoietin (TSLP) in asthmatic epithelial cells is inhibited by a small airway relaxant[J]. Pulmonary Pharmacology & Therapeutics,2011,24(1):59-66.
    [71]Jackson D J, Johnston S L. The role of viruses in acute exacerbations of asthma[J]. Journal of Allergy and Clinical Immunology,2010,125(6):1178-1187.
    [72]Kool M, Willart M A M, van Nimwegen M, et al. An Unexpected Role for Uric Acid as an Inducer of T Helper 2 Cell Immunity to Inhaled Antigens and Inflammatory Mediator of Allergic Asthma[J]. Immunity,2011,34(4):527-540.
    [73]Yoo J. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin[J]. Journal of Experimental Medicine,2005,202(4):541-549.
    [74]Zhou B, Comeau M R, Smedt T D, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice[J]. Nature Immunology,2005,6(10):1047-1053.
    [75]Ito T. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand[J]. Journal of Experimental Medicine,2005,202(9):1213-1223.
    [76]Al-Shami A. A role for TSLP in the development of inflammation in an asthma model[J]. Journal of Experimental Medicine,2005,202(6):829-839.
    [77]Semlali A, Jacques E, Koussih L, et al. Thymic stromal lymphopoietin-induced human asthmatic airway epithelial cell proliferation through an IL-13-dependent pathway[J]. Journal of Allergy and Clinical Immunology,2010,125(4):844-850.
    [78]Yao W, Zhang Y, Jabeen R, et al. Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP[J]. Immunity,2013,38(2):360-372.
    [79]Rochman Y, Kashyap M, Robinson G W, et al. Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7-induced signaling[J]. Proceedings of the National Academy of Sciences,2010,107(45):19455-19460.
    [80]Lee J, Lim Y, Park M, et al. Murine thymic stromal lymphopoietin promotes the differentiation of regulatory T cells from thymic CD4+CD8-CD25-naive cells in a dendritic cell-independent manner [J]. Immunology and Cell Biology,2007,86(2):206-213.
    [81]Mazzucchelli R, Hixon J A, Spolski R, et al. Development of regulatory T cells requires IL-7R stimulation by IL-7 or TSLP[J]. Blood,2008,112(8):3283-3292.
    [82]Baru A M, Hartl A, Lahl K, et al. Selective depletion of Foxp3+Treg during sensitization phase aggravates experimental allergic airway inflammation [J]. European Journal of Immunology,2010,40(8):2259-2266.
    [83]Perrigoue J G, Saenz S A, Siracusa M C, et al. MHC class II-dependent basophil-CD4+T cell interactions promote TH2 cytokine-dependent immunity [J]. Nature Immunology,2009,10(7):697-705.
    [84]Yoshimoto T, Yasuda K, Tanaka H, et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class Ⅱ complexes to CD4+T cells[J]. Nature Immunology,2009,10(7):706-712.
    [85]Sokol C L, Chu N, Yu S, et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response [J]. Nature Immunology,2009,10(7):713-720.
    [86]Siracusa M C, Saenz S A, Hill D A, et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation[J]. Nature,2011,477(7363):229-233.
    [87]Wong C K, Hu S, Cheung P F Y, et al. Thymic Stromal Lymphopoietin Induces Chemotactic and Prosurvival Effects in Eosinophils[J]. American Journal of Respiratory Cell and Molecular Biology,2010,43(3):305-315.
    [88]Holgate S, Casale T, Wenzel S, et al. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation [J]. Journal of Allergy and Clinical Immunology,2005,115(3):459-465.
    [89]Chang T W. The pharmacological basis of anti-IgE therapy [J]. Nature biotechnology,2000,18(2):157-162.
    [90]Headley M B, Zhou B, Shih W X, et al. TSLP conditions the lung immune environment for the generation of pathogenic innate and antigen-specific adaptive immune responses 1[J]. Journal of immunology (Baltimore, Md. 1950),2009,182(3):1641-1647.
    [91]Oyoshi M K, Wang J Y T, Geha R S. Immunization with modified vaccinia virus Ankara prevents eczema vaccinatum in a murine model of atopic dermatitis[J]. Journal of Allergy and Clinical Immunology,2011,128(4):890-892.
    [92]Takai T, Chen X, Xie Y, et al. TSLP expression induced via Toll-like receptor pathways in human keratinocytes[J]. Methods Enzymol,2014,535:371-387.
    [93]Miazgowicz M M, Elliott M S, Debley J S, et al. Respiratory syncytial virus induces functional thymic stromal lymphopoietin receptor in airway epithelial cells[J]. J Inflamm Res,2013,6:53-61.
    [94]Bleck B, Tse D B, Curotto De Lafaille M A, et al. Diesel Exhaust Particle-Exposed Human Bronchial Epithelial Cells Induce Dendritic Cell Maturation and Polarization via Thymic Stromal Lymphopoietin[J]. Journal of Clinical Immunology,2008,28(2):147-156.
    [95]Bleck B, Tse D B, Gordon T, et al. Diesel Exhaust Particle-Treated Human Bronchial Epithelial Cells Upregulate Jagged-1 and OX40 Ligand in Myeloid Dendritic Cells via Thymic Stromal Lymphopoietin[J]. The Journal of Immunology,2010,185(11):6636-6645.
    [96]Shan L, Redhu N S, Saleh A, et al. Thymic Stromal Lymphopoietin Receptor-Mediated IL-6 and CC/CXC Chemokines Expression in Human Airway Smooth Muscle Cells:Role of MAPKs (ERK1/2, p38, and JNK) and STAT3 Pathways[J]. The Journal of Immunology,2010,184(12):7134-7143.
    [97]Ziegler S F, Artis D. Sensing the outside world:TSLP regulates barrier immunity[J]. Nature Immunology,2010,11(4):289-293.
    [98]Jirtle R L, Skinner M K. Environmental epigenomics and disease susceptibility[J]. Nature Reviews Genetics,2007,8(4):253-262.
    [99]Waterland R A, Jirtle R L. Transposable Elements:Targets for Early Nutritional Effects on Epigenetic Gene Regulation [J]. Molecular and Cellular Biology,2003,23(15):5293-5300.
    [100]Cohen R T, Raby B A, Van Steen K, et al. In utero smoke exposure and impaired response to inhaled corticosteroids in children with asthma[J]. Journal of Allergy and Clinical Immunology,2010,126(3):491-497.
    [101]Hollingsworth J W, Maruoka S, Boon K, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice[J]. Journal of Clinical Investigation,2008.
    [102]Kool M, Willart M A, van Nimwegen M, et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma[J]. Immunity,2011,34(4):527-540.
    [103]Cohen R T, Raby B A, Van Steen K, et al. In utero smoke exposure and impaired response to inhaled corticosteroids in children with asthma[J]. J Allergy Clin Immunol,2010,126(3):491-497.
    [104]Hollingsworth J W, Maruoka S, Boon K, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice[J]. J Clin Invest,2008,118(10):3462-3469.
    [105]Gudbjartsson D F, Bjornsdottir U S, Halapi E, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction[J]. Nat Genet,2009,41 (3):342-347.
    [106]He J Q, Hallstrand T S, Knight D, et al. A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness[J]. J Allergy Clin Immunol,2009,124(2):222-229.
    [107]Yeatts K, Sly P, Shore S, et al. A brief targeted review of susceptibility factors, environmental exposures, asthma incidence, and recommendations for future asthma incidence research[J]. Environ Health Perspect,2006,114(4):634-640.
    [108]Brehm J M, Celedon J C, Soto-Quiros M E, et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica[J]. Am J Respir Crit Care Med,2009,179(9):765-771.
    [109]Brehm J M, Celedon J C, Soto-Quiros M E, et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica[J]. Am J Respir Crit Care Med,2009,179(9):765-771.
    [110]Kim S Y, Suh H W, Chung J W, et al. Diverse functions of VDUP1 in cell proliferation, differentiation, and diseases[J]. Cell Mol Immunol,2007,4(5):345-351.
    [111]Soumelis V, Reche P A, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP[J]. Nat Immunol,2002,3(7):673-680.
    [112]Zhou B, Comeau M R, De Smedt T, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice[J]. Nat Immunol,2005,6(10):1047-1053.
    [113]Wang T T, Tavera-Mendoza L E, Laperriere D, et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes[J]. Mol Endocrinol,2005,19(11):2685-2695.
    [114]Li M, Hener P, Zhang Z, et al. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis[J]. Proc Natl Acad Sci U S A,2006,103(31):11736-11741.
    [115]Chen K S, Deluca H F. Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxy vitamin D-3[J]. Biochim Biophys Acta,1994,1219(1):26-32.
    [116]Junn E, Han S H, Im J Y, et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function[J]. J Immunol,2000,164(12):6287-6295.
    [117]Perrone L, Devi T S, Hosoya K, et al. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions [J]. J Cell Physiol,2009,221(1):262-272.
    [118]Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation [J]. Nat Immunol,2010,11(2):136-140.
    [119]Kwon H J, Won Y S, Suh H W, et al. Vitamin D3 upregulated protein 1 suppresses TNF-alpha-induced NF-kappaB activation in hepatocarcinogenesis[J]. J Immunol,2010,185(7):3980-3989.
    [120]Cozens A L, Yezzi M J, Kunzelmann K, et al. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells[J]. Am J Respir Cell Mol Biol,1994,10(1):38-47.
    [121]Profita M, Bonanno A, Siena L, et al. Acetylcholine mediates the release of IL-8 in human bronchial epithelial cells by a NFkB/ERK-dependent mechanism[J]. Eur J Pharmacol,2008,582(1-3):145-153.
    [122]Holick M F. Vitamin D deficiency [J]. N Engl J Med,2007,357(3):266-281.
    [123]Gupta A, Bush A, Hawrylowicz C, et al. Vitamin D and asthma in children[J]. Paediatr Respir Rev,2012,13(4):236-243,243.
    [124]Hollams E M. Vitamin D and atopy and asthma phenotypes in children[J]. Curr Opin Allergy Clin Immunol,2012,12(3):228-234.
    [125]Tse S M, Kelly H W, Litonjua A A, et al. Corticosteroid use and bone mineral accretion in children with asthma:effect modification by vitamin D[J]. J Allergy Clin Immunol,2012,130(1):53-60.
    [126]Luong K, Nguyen L T. The role of vitamin D in asthma[J]. Pulm Pharmacol Ther,2012,25(2):137-143.
    [127]Zaragoza B J, Perez L, Bredy R. Relation between serum vitamin D level and asthma[J]. Bol Asoc Med P R,2012,104(2):12-16.
    [128]Godar D E. UV doses worldwide[J]. Photochem Photobiol,2005,81(4):736-749.
    [129]Izban M G, Nowicki B J, Nowicki S.1,25-Dihydroxyvitamin D3 promotes a sustained LPS-induced NF-kappaB-dependent expression of CD55 in human monocytic THP-1 cells[J]. PLoS One,2012,7(11):e49318.
    [130]Campos L T, Brentani H, Roela R A, et al. Differences in transcriptional effects of lalpha,25 dihydroxyvitamin D3 on fibroblasts associated to breast carcinomas and from paired normal breast tissues[J]. J Steroid Biochem Mol Biol,2013,133:12-24.
    [131]Hansdottir S, Monick M M, Hinde S L, et al. Respiratory epithelial cells convert inactive vitamin D to its active form:potential effects on host defense[J]. J Immunol,2008,181 (10):7090-7099.
    [132]Stroud M L, Stilgoe S, Stott V E, et al. Vitamin D-a review[J]. Aust Fam Physician,2008,37(12):1002-1005.
    [133]Sinha A, Cheetham T D, Pearce S H. Prevention and treatment of vitamin D deficiency [J]. Calcif Tissue Int,2013,92(2):207-215.
    [134]Gunta S S, Thadhani R I, Mak R H. The effect of vitamin D status on risk factors for cardiovascular disease[J]. Nat Rev Nephrol,2013,9(6):337-347.
    [135]Li Y C. Molecular mechanism of vitamin D in the cardiovascular system[J]. J Investig Med,2011,59(6):868-871.
    [136]Brandenburg V M, Vervloet M G, Marx N. The role of vitamin D in cardiovascular disease:from present evidence to future perspectives[J]. Atherosclerosis,2012,225(2):253-263.
    [137]Muscogiuri G, Sorice G P, Ajjan R, et al. Can vitamin D deficiency cause diabetes and cardiovascular diseases? Present evidence and future perspectives[J]. Nutr Metab Cardiovasc Dis,2012,22(2):81-87.
    [138]江巍,高凤荣.维生素D缺乏相关性疾病研究进展[J].中国骨质疏松杂志,2014(3):331-337.
    [139]Black P N, Scragg R. Relationship between serum 25-hydroxyvitamin d and pulmonary function in the third national health and nutrition examination survey[J]. Chest,2005,128(6):3792-3798.
    [140]Brehm J M, Acosta-Perez E, Klei L, et al. Vitamin D insufficiency and severe asthma exacerbations in Puerto Rican children[J]. Am J Respir Crit Care Med,2012,186(2):140-146.
    [141]Wu A C, Tantisira K, Li L, et al. Effect of vitamin D and inhaled corticosteroid treatment on lung function in children[J]. Am J Respir Crit Care Med,2012,186(6):508-513.
    [142]Romme E A, Smeenk F W, Rutten E P, et al. Osteoporosis in chronic obstructive pulmonary disease[J]. Expert Rev Respir Med,2013,7(4):397-410.
    [143]Romme E A, Rutten E P, Smeenk F W, et al. Vitamin D status is associated with bone mineral density and functional exercise capacity in patients with chronic obstructive pulmonary disease[J]. Ann Med,2013,45(1):91-96.
    [144]Kunisaki K M, Niewoehner D E, Connett J E. Vitamin D levels and risk of acute exacerbations of chronic obstructive pulmonary disease:a prospective cohort study[J]. Am J Respir Crit Care Med,2012,185(3):286-290.
    [145]Janssens W, Mathieu C, Boonen S, et al. Vitamin D deficiency and chronic obstructive pulmonary disease:a vicious circle[J]. Vitam Horm,2011,86:379-399.
    [146]Ginde A A, Mansbach J M, Camargo C J. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey[J]. Arch Intern Med,2009,169(4):384-390.
    [147]Nnoaham K E, Clarke A. Low serum vitamin D levels and tuberculosis:a systematic review and meta-analysis[J]. Int J Epidemiol,2008,37(1):113-119.
    [148]Salahuddin N, Ali F, Hasan Z, et al. Vitamin D accelerates clinical recovery from tuberculosis:results of the SUCCINCT Study [Supplementary Cholecalciferol in recovery from tuberculosis]. A randomized, placebo-controlled, clinical trial of vitamin D supplementation in patients with pulmonary tuberculosis'[J]. BMC Infect Dis,2013,13:22.
    [149]Coussens A K, Wilkinson R J, Hanifa Y, et al. Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment[J]. Proc Natl Acad Sci U S A,2012,109(38):15449-15454.
    [150]Rathored J, Sharma S K, Singh B, et al. Risk and outcome of multidrug-resistant tuberculosis:vitamin D receptor polymorphisms and serum 25(OH)D[J]. Int J Tuberc Lung Dis,2012,16(11):1522-1528.
    [151]Nursyam E W, Amin Z, Rumende C M. The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion[J]. Acta Med Indones,2006,38(1):3-5.
    [152]Back O, Blomquist H K, Hernell O, et al. Does vitamin D intake during infancy promote the development of atopic allergy?[J]. Acta Derm Venereol,2009,89(1):28-32.
    [153]Hansdottir S, Monick M M, Hinde S L, et al. Respiratory epithelial cells convert inactive vitamin D to its active form:potential effects on host defense[J]. J Immunol,2008,181 (10):7090-7099.
    [154]Rigo I, Mcmahon L, Dhawan P, et al. Induction of triggering receptor expressed on myeloid cells (TREM-1) in airway epithelial cells by 1,25(OH)(2) vitamin D(3)[J]. Innate Immun,2012,18(2):250-257.
    [155]Hiemstra P S. The role of epithelial beta-defensins and cathelicidins in host defense of the lung[J]. Exp Lung Res,2007,33(10):537-542.
    [156]van de Stolpe A, Caldenhoven E, Raaijmakers J A, et al. Glucocorticoid-mediated repression of intercellular adhesion molecule-1 expression in human monocytic and bronchial epithelial cell lines[J]. Am J Respir Cell Mol Biol,1993,8(3):340-347.
    [157]Guani-Guerra E, Negrete-Garcia M C, Montes-Vizuet R, et al. Human beta-defensin-2 induction in nasal mucosa after administration of bacterial lysates[J]. Arch Med Res,2011,42(3):189-194.
    [158]Brockman-Schneider R A, Pickles R J, Gem J E. Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication[J]. PLoS One,2014,9(1):e86755.
    [159]Hansdottir S, Monick M M, Lovan N, et al. Vitamin D decreases respiratory syncytial virus induction of NF-kappaB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state[J]. J Immunol,2010,184(2):965-974.
    [160]Penna G, Adorini L.1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation[J]. J Immunol,2000,164(5):2405-2411.
    [161]Hewison M, Freeman L, Hughes S V, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells[J]. J Immunol,2003,170(11):5382-5390.
    [162]Byrne B M, Welsh J. Altered thioredoxin subcellular localization and redox status in MCF-7 cells following 1,25-dihydroxyvitamin D3 treatment[J]. J Steroid Biochem Mol Biol,2005,97(1-2):57-64.
    [163]Junn E, Han S H, Im J Y, et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function[J]. J Immunol,2000,164(12):6287-6295.
    [164]Spindel O N, World C, Berk B C. Thioredoxin interacting protein:redox dependent and independent regulatory mechanisms[J]. Antioxid Redox Signal,2012,16(6):587-596.
    [165]Champliaud M F, Viel A, Baden H P. The expression of vitamin D-upregulated protein 1 in skin and its interaction with sciellin in cultured keratinocytes[J]. J Invest Dermatol,2003,121 (4):781-785.
    [166]Nishiyama A, Matsui M, Iwata S, et al. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression [J]. J Biol Chem,1999,274(31):21645-21650.
    [167]Han S H, Jeon J H, Ju H R, et al. VDUP1 upregulated by TGF-betal and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression[J]. Oncogene,2003,22(26):4035-4046.
    [168]Kim S Y, Suh H W, Chung J W, et al. Diverse functions of VDUP1 in cell proliferation, differentiation, and diseases[J]. Cell Mol Immunol,2007,4(5):345-351.
    [169]Filby C E, Hooper S B, Sozo F, et al. VDUP1:a potential mediator of expansion-induced lung growth and epithelial cell differentiation in the ovine fetus[J]. Am J Physiol Lung Cell Mol Physiol,2006,290(2):L250-L258.
    [170]Kim S Y, Suh H W, Chung J W, et al. Diverse functions of VDUP1 in cell proliferation, differentiation, and diseases[J]. Cell Mol Immunol,2007,4(5):345-351.
    [171]Perrone L, Devi T S, Hosoya K, et al. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions[J]. J Cell Physiol,2009,221(1):262-272.
    [172]Kim S Y, Suh H W, Chung J W, et al. Diverse functions of VDUP1 in cell proliferation, differentiation, and diseases[J]. Cell Mol Immunol,2007,4(5):345-351.
    [173]Kato A, Favoreto S J, Avila P C, et al. TLR.3-and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells[J]. J Immunol,2007,179(2):1080-1087.
    [174]宋颖芳,赖国祥,柳德灵,等.1,25-二羟维生素D_3负性调控被动致敏人气道平滑肌细胞中的NF-κB信号通路[J].中国病理生理杂志,2013(11):2044-2048.
    [175]Zhang K, Shan L, Rahman M S, et al. Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells:role in chronic obstructive pulmonary disease[J]. Am J Physiol Lung Cell Mol Physiol,2007,293(2):L375-L382.
    [176]Tang H, Cao W, Kasturi S P, et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling[J]. Nat Immunol,2010,11(7):608-617.
    [177]Geldmeyer-Hilt K, Heine G, Hartmann B, et al.1,25-dihydroxyvitamin D3 impairs NF-kappaB activation in human naive B cells[J]. Biochem Biophys Res Commun,2011,407(4):699-702.
    [1]支气管哮喘防治指南(支气管哮喘的定义、诊断、治疗和管理方案)[J].中华哮喘杂志(电子版),2008(01):3-13.
    [2]Baiz N, Annesi-Maesano I. Is the asthma epidemic still ascending?[J]. Clin Chest Med,2012,33(3):419-429.
    [3]Follenweider L M, Lambertino A. Epidemiology of asthma in the United States[J]. Nurs Clin North Am,2013,48(1):1-10.
    [4]Yangzong Y, Shi Z, Nafstad P, et al. The prevalence of childhood asthma in China:a systematic review[J]. BMC Public Health,2012,12:860.
    [5]Akinbami L. The state of childhood asthma, United States,1980-2005[J].Adv Data,2006(381):1-24.
    [6]张建华.支气管哮喘的流行病学及高危因素[J].实用儿科临床杂志,2008(04):241-243.
    [7]Boulet L P, Fitzgerald J M, Levy M L, et al. A guide to the translation of the Global Initiative for Asthma (GINA) strategy into improved care[J]. Eur Respir J,2012,39(5):1220-1229.
    [8]Jorres R A. Modelling the production of nitric oxide within the human airways[J]. Eur Respir J,2000,16(3):555-560.
    [9]Geigel E J, Hyde R W, Perillo I B, et al. Rate of nitric oxide production by lower alveolar airways of human lungs[J]. J Appl Physiol (1985),1999,86(1):211-221.
    [10]Kazani S, Planaguma A, Ono E, et al. Exhaled breath condensate eicosanoid levels associate with asthma and its severity [J]. J Allergy Clin Immunol,2013,132(3):547-553.
    [11]Carraro S, Giordano G, Piacentini G, et al. Asymmetric dimethylarginine in exhaled breath condensate and serum of children with asthma[J]. Chest,2013,144(2):405-410.
    [12]Greenwald R, Johnson B A, Hoskins A, et al. Exhaled breath condensate formate after inhaled allergen provocation in atopic asthmatics in vivo[J]. J Asthma,2013,50(6):619-622.
    [13]Hasan R A, O'Brien E, Mancuso P. Lipoxin A(4) and 8-isoprostane in the exhaled breath condensate of children hospitalized for status asthmaticus[J]. Pediatr Crit Care Med,2012,13(2):141-145.
    [14]Karakoc G B, Yukselen A, Yilmaz M, et al. Exhaled breath condensate MMP-9 level and its relationship with asthma severity and interleukin-4/10 levels in children[J]. Ann Allergy Asthma Immunol,2012,108(5):300-304.
    [15]Mincewicz G, Ruminski J, Krzykowski G. Application of adjusted subpixel method (ASM) in HRCT measurements of the bronchi in bronchial asthma patients and healthy individuals[J]. Eur J Radiol,2012,81(2):379-383.
    [16]Hoshino M, Matsuoka S, Handa H, et al. Correlation between airflow limitation and airway dimensions assessed by multidetector CT in asthma[J]. Respir Med,2010,104(6):794-800.
    [17]Lee R, Cousins D J, Ortiz-Zapater E, et al. Gene expression profiling of endobronchial ultrasound (EBUS)-derived cytological fine needle aspirates from hilar and mediastinal lymph nodes in non-small cell lung cancer[J]. Cytopathology,2013,24(6):351-355.
    [18]Soja J, Grzanka P, Sladek K, et al. The use of endobronchial ultrasonography in assessment of bronchial wall remodeling in patients with asthma[J]. Chest,2009,136(3):797-804.
    [19]Weinmayr G, Keller F, Kleiner A, et al. Asthma phenotypes identified by latent class analysis in the ISAAC phase II Spain study [J]. Clin Exp Allergy,2013,43(2):223-232.
    [20]Garden F L, Simpson J M, Marks G B. Atopy phenotypes in the Childhood Asthma Prevention Study (CAPS) cohort and the relationship with allergic disease: clinical mechanisms in allergic disease[J]. Clin Exp Allergy,2013,43(6):633-641.
    [21]Boudier A, Curjuric I, Basagana X, et al. Ten-year follow-up of cluster-based asthma phenotypes in adults. A pooled analysis of three cohorts[J]. Am J Respir Crit Care Med,2013,188(5):550-560.
    [22]Depner M, Fuchs O, Genuneit J, et al. Clinical and epidemiologic phenotypes of childhood asthma[J]. Am J Respir Crit Care Med,2014,189(2):129-138.
    [23]时国朝,王林林.支气管哮喘诊断和治疗新进展[J].国际结核病与肺部疾病杂志(中文版),2012,1(1):27-31.
    [24]白敏,刁晓源,张湘燕,等.支气管哮喘发病机制研究进展[J].医学综述,2009(15):2294-2297.
    [25]Walter M J, Holtzman M J. A centennial history of research on asthma pathogenesis[J]. Am J Respir Cell Mol Biol,2005,32(6):483-489.
    [26]Vestbo J, Hurd S S, Agusti A G, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary[J]. Am J Respir Crit Care Med,2013,187(4):347-365.
    [27]Greenberger P.7. Immunologic lung disease[J]. Journal of Allergy and Clinical Immunology,2008,121(2):S393-S397.
    [28]Secreted Proteins. J. Immunol.,1986,136:Profiles of Lymphokine Activities and T Cell Clone. I. Definition According to Pillars Article:Two Types of Murine Helper[J].
    [29]Roth M, Tamm M. Airway smooth muscle cells respond directly to inhaled environmental factors[J]. Swiss Med Wkly,2010,140:w13066.
    [30]regulated by the cyclic adenosine monophosphate-dependent Interleukin-4 gene expression in activated human T lymphocytes is[J].
    [31]Leckie M J, Ten B A, Khan J, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response[J]. Lancet,2000,356(9248):2144-2148.
    [32]Gerthoffer W T, Solway J, Camoretti-Mercado B. Emerging targets for novel therapy of asthma[J]. Current Opinion in Pharmacology,2013,13(3):324-330.
    [33]Yang I V, Schwartz D A. Epigenetic mechanisms and the development of asthma[J]. Journal of Allergy and Clinical Immunology,2012,130(6):1243-1255.
    [34]Lloyd C M, Hessel E M. Functions of T cells in asthma:more than just TH2 cells[J]. Nature Reviews Immunology,2010,10(12):838-848.
    [35]Barbato A, Turato G, Baraldo S, et al. Epithelial Damage and Angiogenesis in the Airways of Children with Asthma[J]. American Journal of Respiratory and Critical Care Medicine,2006,174(9):975-981.
    [36]Payne D N R, Rogers A V, adelroth E, et al. Early Thickening of the Reticular Basement Membrane in Children with Difficult Asthma[J]. American Journal of Respiratory and Critical Care Medicine,2003,167(1):78-82.
    [37]Jenkins H A, Cool C, Szefler S J, et al. Histopathology of Severe Childhood Asthma[J]. Chest,2003,124(1):32.
    [38]Miller L A, Gerriets J E, Tyler N K, et al. Ozone and allergen exposure during postnatal development alters the frequency and airway distribution of CD25+cells in infant rhesus monkeys[J]. Toxicology and Applied Pharmacology,2009,236(1):39-48.
    [39]Bai T R, Knight D A. Structural changes in the airways in asthma:observations and consequences[J]. Clin Sci (Lond),2005,108(6):463-477.
    [40]Plopper C G, Hyde D M. The non-human primate as a model for studying COPD and asthma[J]. Pulmonary Pharmacology & Therapeutics,2008,21(5):755-766.
    [41]Manuyakorn W. Airway remodelling in asthma:role for mechanical forces[J]. Asia Pacific Allergy,2014,4(1):19.
    [42]Halayko A J, Amrani Y. Mechanisms of inflammation-mediated airway smooth muscle plasticity and airways remodeling in asthma[J]. Respiratory Physiology & Neurobiology,2003,137(2-3):209-222.
    [43]Panettieri R A. Airway smooth muscle:immunomodulatory cells that modulate airway remodeling?[J]. Respiratory Physiology & Neurobiology,2003,137(2-3):277-293.
    [44]Woodcock A, Forster L, Matthews E, et al. Control of exposure to mite allergen and allergen-impermeable bed covers for adults with asthma[J]. N Engl J Med,2003,349(3):225-236.
    [45]Turato G, Barbato A, Baraldo S, et al. Nonatopic Children with Multitrigger Wheezing Have Airway Pathology Comparable to Atopic Asthma[J]. American Journal of Respiratory and Critical Care Medicine,2008,178(5):476-482.
    [46]Pearce N, Pekkanen J, Beasley R. How much asthma is really attributable to atopy?[J]. Thorax,1999,54(3):268-272.
    [47]Ciepiela O, Zawadzka-Krajewska A, Kotuta I, et al. Sublingual Immunotherapy for Asthma:Affects T-Cells but Does not Impact Basophil Activation[J]. Pediatric Allergy, Immunology, and Pulmonology,2014,27(1):17-23.
    [48]Scadding G K, Durham S R, Mirakian R, et al. BSACI guidelines for the management of allergic and non-allergic rhinitis[J]. Clinical & Experimental Allergy,2008,38(1):19-42.
    [49]Gerthoffer W T, Solway J, Camoretti-Mercado B. Emerging targets for novel therapy of asthma[J]. Current Opinion in Pharmacology,2013,13(3):324-330.
    [50]Ahmed A H, Nicholson K G, Hammersley V S. The contribution of respiratory viruses to severe exacerbations of asthma in adults[J]. Chest,1996,109(2):588.
    [51]Avila P C. Interactions between allergic inflammation and respiratory viral infections[J]. Journal of Allergy and Clinical Immunology,2000,106(5):829-831.
    [52]Mallia P, Contoli M, Caramori G, et al. Exacerbations of asthma and chronic obstructive pulmonary disease (COPD):focus on virus induced exacerbations[J]. Curr Pharm Des,2007,13(1):73-97.
    [53]Contoli M, Caramori G, Mallia P, et al. Mechanisms of respiratory virus-induced asthma exacerbations[J]. Clinical Experimental Allergy,2005,35(2):137-145.
    [54]Abreu M T, Fukata M, Arditi M. TLR signaling in the gut in health and disease[J]. J Immunol,2005,174(8):4453-4460.
    [55]Diamond G, Legarda D, Ryan L K. The innate immune response of the respiratory epithelium[J]. Immunological reviews,2000,173(1):27-38.
    [56]Sha Q, Truong-Tran A Q, Plitt J R, et al. Activation of Airway Epithelial Cells by Toll-Like Receptor Agonists[J]. American Journal of Respiratory Cell and Molecular Biology,2004,31(3):358-364.
    [57]Tliba O, Panettieri R A. Noncontractile Functions of Airway Smooth Muscle Cells in Asthma[J]. Annual Review of Physiology,2009,71(1):509-535.
    [58]Hakonarson H, Grunstein M M. Autologously up-regulated Fc receptor expression and action in airway smooth muscle mediates its altered responsiveness in the atopic asthmatic sensitized state[J]. Proc Natl Acad Sci U S A,1998,95(9):5257-5262.
    [59]Redhu N S, Saleh A, Shan L, et al. Proinflammatory and Th2 Cytokines Regulate the High Affinity IgE Receptor (Fc ε RI) and IgE-Dependant Activation of Human Airway Smooth Muscle Cells[J]. PLoS ONE,2009,4(7):e6153.
    [60]Roth M, Tamm M. Airway smooth muscle cells respond directly to inhaled environmental factors[J]. Swiss Med Wkly,2010,140:w13066.
    [61]Sims J E, Williams D E, Morrissey P J, et al. Molecular cloning and biological characterization of a novel murine lymphoid growth factor [J]. J Exp Med,2000,192(5):671-680.
    [62]Roan F, Bell B D, Stoklasek T A, et al. The multiple facets of thymic stromal lymphopoietin (TSLP) during allergic inflammation and beyond[J]. J Leukoc Biol,2012,91(6):877-886.
    [63]Takai T. TSLP expression:cellular sources, triggers, and regulatory mechanisms[J]. Allergol Int,2012,61(1):3-17.
    [64]Park L S, Martin U, Garka K, et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor:Formation of a functional heteromeric complex requires interleukin 7 receptor[J]. J Exp Med,2000,192(5):659-670.
    [65]Pandey A, Ozaki K, Baumann H, et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin[J]. Nat Immunol,2000,1(1):59-64.
    [66]Reche P A, Soumelis V, Gorman D M, et al. Human thymic stromal lymphopoietin preferentially stimulates myeloid cells[J]. J Immunol,2001,167(1):336-343.
    [67]Kim H, Kim J, Shin Y K, et al. A novel mutation in the linker domain of the signal transducer and activator of transcription 3 gene, p.Lys531Glu, in hyper-IgE syndrome[J]. Journal of Allergy and Clinical Immunology,2009,123(4):956-958.
    [68]Lee H C, Ziegler S F. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFkappaB[J]. Proc Natl Acad Sci U S A,2007,104(3):914-919.
    [69]Allakhverdi Z, Comeau M R, Jessup H K, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells[J]. Journal of Experimental Medicine,2007,204(2):253-258.
    [70]Ying S, O'Connor B, Ratoff J, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease[J]. J Immunol,2008,181(4):2790-2798.
    [71]Zhang K, Shan L, Rahman M S, et al. Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells:role in chronic obstructive pulmonary disease[J]. AJP:Lung Cellular and Molecular Physiology,2007,293(2):L375-L382.
    [72]Ying S, O'Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity[J]. J Immunol,2005,174(12):8183-8190.
    [73]Ying S, O'Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity[J]. J Immunol,2005,174(12):8183-8190.
    [74]Kashyap M, Rochman Y, Spolski R, et al. Thymic Stromal Lymphopoietin Is Produced by Dendritic Cells[J]. The Journal of Immunology,2011,187(3):1207-1211.
    [75]Proctor W R, Chakraborty M, Fullerton A M, et al. Thymic Stromal Lymphopoietin and Interleukin-4 Mediate the Pathogenesis of Halothane-Induced Liver Injury in Mice[J]. Hepatology,2014:n/a-n/a.
    [76]Oyoshi M K, Larson R P, Ziegler S F, et al. Mechanical injury polarizes skin dendritic cells to elicit a TH2 response by inducing cutaneous thymic stromal lymphopoietin expression [J]. Journal of Allergy and Clinical Immunology,2010,126(5):976-984.
    [77]Soumelis V, Reche P A, Kanzler H, et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP[J]. Nature Immunology,2002.
    [78]Moro K, Yamada T, Tanabe M, et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+lymphoid cells[J]. Nature,2009,463(7280):540-544.
    [79]Neill D R, Wong S H, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity[J]. Nature,2010,464(7293):1367-1370.
    [80]Price A E, Liang H E, Sullivan B M, et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity[J]. Proceedings of the National Academy of Sciences,2010,107(25):11489-11494.
    [81]Saenz S A, Siracusa M C, Perrigoue J G, et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses[J]. Nature,2010,464(7293):1362-1366.
    [82]Chang Y, Kim H Y, Albacker L A, et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity[J]. Nature Immunology,2011,12(7):631-638.
    [83]Halim T Y F, KrauB R H, Sun A C, et al. Lung Natural Helper Cells Are a Critical Source of Th2 Cell-Type Cytokines in Protease Allergen-Induced Airway Inflammation[J]. Immunity,2012,36(3):451-463.
    [84]Wang Y H, Angkasekwinai P, Lu N, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC activated Th2 memory cells[J]. Journal of Experimental Medicine,2007,204(8):1837-1847.
    [85]Koyama K, Ozawa T, Hatsushika K, et al. A possible role for TSLP in inflammatory arthritis[J]. Biochemical and Biophysical Research Communications,2007,357(1):99-104.
    [86]De Monte L, Reni M, Tassi E, et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer [J]. Journal of Experimental Medicine,2011,208(3):469-478.
    [87]Pedroza-Gonzalez A, Xu K, Wu T C, et al. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation[J]. Journal of Experimental Medicine,2011,208(3):479-490.
    [88]Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways[J]. PLoS One,2010,5(1):e8578.
    [89]Hill D A, Siracusa M C, Abt M C, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation [J]. Nature Medicine,2012,18(4):538-546.
    [90]Holgate S T. Innate and adaptive immune responses in asthma[J]. Nature Medicine,2012,18(5):673-683.
    [91]Li Y F, Langholz B, Salam M T, et al. Maternal and grandmaternal smoking patterns are associated with early childhood asthma[J]. Chest,2005,127(4):1232-1241.
    [92]Henderson A J, Newson R B, Rose-Zerilli M, et al. Maternal Nrf2 and gluthathione-S-transferase polymorphisms do not modify associations of prenatal tobacco smoke exposure with asthma and lung function in school-aged children[J]. Thorax,2010,65(10):897-902.
    [93]Wang L, Pinkerton K E. Air pollutant effects on fetal and early postnatal development[J]. Birth Defects Research Part C:Embryo Today: Reviews,2007,81(3):144-154.
    [94]Clark N A, Demers P A, Karr C J, et al. Effect of Early Life Exposure to Air Pollution on Development of Childhood Asthma[J]. Environmental Health Perspectives,2009,118(2):284-290.
    [95]Guo P F, Du MR, Wu H X, et al. Thymic stromal lymphopoietin from trophoblasts induces dendritic cell-mediated regulatory TH2 bias in the decidua during early gestation in humans[J]. Blood,2010,116(12):2061-2069.
    [96]Schmudde I, Laumonnier Y, Kohl J. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma[J]. Seminars in Immunology,2013,25(1):2-11.
    [97]Demehri S, Morimoto M, Holtzman M J, et al. Skin-Derived TSLP Triggers Progression from Epidermal-Barrier Defects to Asthma[J]. PLoS Biology,2009,7(5):e1000067.
    [98]Uller L, Leino M, Bedke N, et al. Double-stranded RNA induces disproportionate expression of thymic stromal lymphopoietin versus interferon-in bronchial epithelial cells from donors with asthma[J]. Thorax,2010,65(7):626-632.
    [99]Brandelius A, Yudina Y, Calven J, et al. dsRNA-induced expression of thymic stromal lymphopoietin (TSLP) in asthmatic epithelial cells is inhibited by a small airway relaxant[J]. Pulmonary Pharmacology & Therapeutics,2011,24(1):59-66.
    [100]Jackson D J, Johnston S L. The role of viruses in acute exacerbations of asthma[J]. Journal of Allergy and Clinical Immunology,2010,125(6):1178-1187.
    [101]Kool M, Willart M A M, van Nimwegen M, et al. An Unexpected Role for Uric Acid as an Inducer of T Helper 2 Cell Immunity to Inhaled Antigens and Inflammatory Mediator of Allergic Asthma[J]. Immunity,2011,34(4):527-540.
    [102]Yoo J. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin[J]. Journal of Experimental Medicine,2005,202(4):541-549.
    [103]Zhou B, Comeau M R, Smedt T D, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice[J]. Nature Immunology,2005,6(10):1047-1053.
    [104]Ito T. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand[J]. Journal of Experimental Medicine,2005,202(9):1213-1223.
    [105]Al-Shami A. A role for TSLP in the development of inflammation in an asthma model[J]. Journal of Experimental Medicine,2005,202(6):829-839.
    [106]Semlali A, Jacques E, Koussih L, et al. Thymic stromal lymphopoietin-induced human asthmatic airway epithelial cell proliferation through an IL-13-dependent pathway[J]. Journal of Allergy and Clinical Immunology,2010,125(4):844-850.
    [107]Yao W, Zhang Y, Jabeen R, et al. Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP[J]. Immunity,2013,38(2):360-372.
    [108]Rochman Y, Kashyap M, Robinson G W, et al. Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7-induced signaling[J]. Proceedings of the National Academy of Sciences,2010,107(45):19455-19460.
    [109]Lee J, Lim Y, Park M, et al. Murine thymic stromal lymphopoietin promotes the differentiation of regulatory T cells from thymic CD4+CD8-CD25-naive cells in a dendritic cell-independent manner[J]. Immunology and Cell Biology,2007,86(2):206-213.
    [110]Mazzucchelli R, Hixon J A, Spolski R, et al. Development of regulatory T cells requires IL-7R stimulation by IL-7 or TSLP[J]. Blood,2008,112(8):3283-3292.
    [111]Baru A M, Hartl A, Lahl K, et al. Selective depletion of Foxp3+Treg during sensitization phase aggravates experimental allergic airway inflammation[J]. European Journal of Immunology,2010,40(8):2259-2266.
    [112]Perrigoue J G, Saenz S A, Siracusa M C, et al. MHC class II-dependent basophil-CD4+T cell interactions promote TH2 cytokine-dependent immunity [J]. Nature Immunology,2009,10(7):697-705.
    [113]Yoshimoto T, Yasuda K, Tanaka H, et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+T cells[J]. Nature Immunology,2009,10(7):706-712.
    [114]Sokol C L, Chu N, Yu S, et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response[J]. Nature Immunology,2009,10(7):713-720.
    [115]Siracusa M C, Saenz S A, Hill D A, et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation[J]. Nature,2011,477(7363):229-233.
    [116]Wong C K, Hu S, Cheung P F Y, et al. Thymic Stromal Lymphopoietin Induces Chemotactic and Prosurvival Effects in Eosinophils[J]. American Journal of Respiratory Cell and Molecular Biology,2010,43(3):305-315.
    [117]Holgate S, Casale T, Wenzel S, et al. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation[J]. Journal of Allergy and Clinical Immunology,2005,115(3):459-465.
    [118]Chang T W. The pharmacological basis of anti-IgE therapy[J]. Nature biotechnology,2000,18(2):157-162.
    [119]Headley M B, Zhou B, Shih W X, et al. TSLP conditions the lung immune environment for the generation of pathogenic innate and antigen-specific adaptive immune responses 1[J]. Journal of immunology (Baltimore, Md. 1950),2009,182(3):1641-1647.
    [120]Oyoshi M K, Wang J Y T, Geha R S. Immunization with modified vaccinia virus Ankara prevents eczema vaccinatum in a murine model of atopic dermatitis[J]. Journal of Allergy and Clinical Immunology,2011,128(4):890-892.
    [121]Takai T, Chen X, Xie Y, et al. TSLP expression induced via Toll-like receptor pathways in human keratinocytes[J]. Methods Enzymol,2014,535:371-387.
    [122]Miazgowicz M M, Elliott M S, Debley J S, et al. Respiratory syncytial virus induces functional thymic stromal lymphopoietin receptor in airway epithelial cells[J]. J Inflamm Res,2013,6:53-61.
    [123]Bleck B, Tse D B, Curotto De Lafaille M A, et al. Diesel Exhaust Particle-Exposed Human Bronchial Epithelial Cells Induce Dendritic Cell Maturation and Polarization via Thymic Stromal Lymphopoietin[J]. Journal of Clinical Immunology,2008,28(2):147-156.
    [124]Bleck B, Tse D B, Gordon T, et al. Diesel Exhaust Particle-Treated Human Bronchial Epithelial Cells Upregulate Jagged-1 and OX40 Ligand in Myeloid Dendritic Cells via Thymic Stromal Lymphopoietin[J]. The Journal of Immunology,2010,185(11):6636-6645.
    [125]Shan L, Redhu N S, Saleh A, et al. Thymic Stromal Lymphopoietin Receptor-Mediated IL-6 and CC/CXC Chemokines Expression in Human Airway Smooth Muscle Cells:Role of MAPKs (ERK1/2, p38, and JNK) and STAT3 Pathways[J]. The Journal of Immunology,2010,184(12):7134-7143.
    [126]Ziegler S F, Artis D. Sensing the outside world:TSLP regulates barrier immunity[J]. Nature Immunology,2010,11(4):289-293.
    [127]Jirtle R L, Skinner M K. Environmental epigenomics and disease susceptibility[J]. Nature Reviews Genetics,2007,8(4):253-262.
    [128]Waterland R A, Jirtle R L. Transposable Elements:Targets for Early Nutritional Effects on Epigenetic Gene Regulation[J]. Molecular and Cellular Biology,2003,23(15):5293-5300.
    [129]Cohen R T, Raby B A, Van Steen K, et al. In utero smoke exposure and impaired response to inhaled corticosteroids in children with asthma[J]. Journal of Allergy and Clinical Immunology,2010,126(3):491-497.
    [130]Hollingsworth J W, Maruoka S, Boon K, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice[J]. Journal of Clinical Investigation,2008.
    [131]Gudbjartsson D F, Bjornsdottir U S, Halapi E, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction[J]. Nature Genetics,2009,41 (3):342-347.
    [132]Harada M, Hirota T, Jodo A I, et al. Functional Analysis of the Thymic Stromal Lymphopoietin Variants in Human Bronchial Epithelial Cells[J]. American Journal of Respiratory Cell and Molecular Biology,2009,40(3):368-374.
    [133]He J, Hallstrand T S, Knight D, et al. A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness[J]. Journal of Allergy and Clinical Immunology,2009,124(2):222-229.
    [134]Hunninghake G M, Lasky-Su J, Soto-Quiros M E, et al. Sex-stratified Linkage Analysis Identifies a Female-specific Locus for IgE to Cockroach in Costa Ricans[J]. American Journal of Respiratory and Critical Care Medicine,2008,177(8):830-836.
    [135]Hansbro N G, Horvat J C, Wark P A, et al. Understanding the mechanisms of viral induced asthma:New therapeutic directions[J]. Pharmacology & Therapeutics,2008,117(3):313-353.
    [136]Hansbro P M, Beagley K W, Horvat J C, et al. Role of atypical bacterial infection of the lung in predisposition/protection of asthma[J]. Pharmacology & Therapeutics,2004,101 (3):193-210.
    [137]Hsu A C Y, See H V, Hansbro P M, et al. Innate immunity to influenza in chronic airways diseases[J]. Respirology,2012,17(8):1166-1175.
    [138]Beckett E L, Phipps S, Starkey M R, et al. TLR2, but Not TLR4, Is Required for Effective Host Defence against Chlamydia Respiratory Tract Infection in Early Life[J]. PLoS ONE,2012,7(6):e39460.
    [139]Essilfie A T, Simpson J L, Dunkley M L, et al. Combined Haemophilus influenzae respiratory infection and allergic airways disease drives chronic infection and features of neutrophilic asthma[J]. Thorax,2012,67(7):588-599.
    [140]Horvat J C, Starkey M R, Kim R Y, et al. Chlamydial Respiratory Infection during Allergen Sensitization Drives Neutrophilic Allergic Airways Disease[J]. The Journal of Immunology,2010,184(8):4159-4169.
    [141]Horvat J C, Starkey M R, Kim R Y, et al. Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology[J]. Journal of Allergy and Clinical Immunology,2010,125(3):617-625.
    [142]Horvat J C, Starkey M R, Kim R Y, et al. Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology[J]. Journal of Allergy and Clinical Immunology,2010,125(3):617-625.
    [143]Rusznak C, Sapsford R J, Devalia J L, et al. Interaction of cigarette smoke and house dust mite allergens on inflammatory mediator release from primary cultures of human bronchial epithelial cells[J]. Clin Exp Allergy,2001,31(2):226-238.
    [144]Sajjan U, Wang Q, Zhao Y, et al. Rhinovirus Disrupts the Barrier Function of Polarized Airway Epithelial Cells[J]. American Journal of Respiratory and Critical Care Medicine,2008,178(12):1271-1281.
    [145]Loxham M, Davies D E, Blume C. Epithelial Function and Dysfunction in Asthma[J]. Clinical & Experimental Allergy,2014:n/a-n/a.
    [146]Wan H, Winton H L, Soeller C, et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions[J]. J Clin Invest,1999,104(l):123-133.
    [147]Rochman Y, Leonard W. Thymic stromal lymphopoietin:a new cytokine in asthma[J]. Current Opinion in Pharmacology,2008,8(3):249-254.
    [148]Liu Y. Thymic stromal lymphopoietin and OX40 ligand pathway in the initiation of dendritic cell-mediated allergic inflammation [J]. Journal of Allergy and Clinical Immunology,2007,120(2):238-244.
    [149]Vu A T, Chen X, Xie Y, et al. Extracellular Double-Stranded RNA Induces TSLP via an Endosomal Acidification-and NF-κB-Dependent Pathway in Human Keratinocytes[J]. Journal of Investigative Dermatology,2011,131(11):2205-2212.
    [150]Futamura K, Orihara K, Hashimoto N, et al. β2-Adrenoceptor Agonists Enhance Cytokine-Induced Release of Thymic Stromal Lymphopoietin by Lung Tissue Cells[J]. International Archives of Allergy and Immunology,2010,152(4):353-361.
    [151]Hambly N, Nair P. Monoclonal antibodies for the treatment of refractory asthma[J]. Current Opinion in Pulmonary Medicine,2014,20(1):87-94.
    [152]Fridman J S, Scherle P A, Collins R, et al. Preclinical Evaluation of Local JAK1 and JAK2 Inhibition in Cutaneous Inflammation [J]. Journal of Investigative Dermatology,2011,131 (9):1838-1844.
    [153]Kim H, Kim J, Shin Y K, et al. A novel mutation in the linker domain of the signal transducer and activator of transcription 3 gene, p.Lys531Glu, in hyper-IgE syndrome[J]. Journal of Allergy and Clinical Immunology,2009,123(4):956-958.
    [154]Wong C K, Hu S, Cheung P F Y, et al. Thymic Stromal Lymphopoietin Induces Chemotactic and Prosurvival Effects in Eosinophils[J]. American Journal of Respiratory Cell and Molecular Biology,2010,43(3):305-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700