用户名: 密码: 验证码:
由星载GPS数据进行CHAMP卫星定轨和地球重力场模型解算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星定轨是卫星任务顺利执行的关键,而地球重力场是低轨卫星受力的主要来源,对卫星的跟踪观测提供了更多的地球重力场信息,地球重力场模型精度的改善也提高了卫星定轨的精度。因此,卫星定轨和地球重丈场模型研究是相辅相成的。CHAMP是用于地球科学和大气研究及其应用的德国小卫星,其任务之一就是高精度地确定全球静态地球重力场长波长特征和重力场的时间变化规律。为此,需要由星载GPS数据进行CHAMP卫星的精密定轨。围绕着这些国际地学研究热点,本文的工作和创新点主要有:
     1.回顾了重力测量和卫星重力探测技术的发展和应用,阐述了描述低轨卫星状态的直角坐标、Kepler根数、Hill根数和Equinoctial根数之间的相互关系,认为Hill根数和Equinoctial根数能够避免由卫星轨道奇异带来的计算问题,分析了低轨卫星的受摄运动,给出了摄动模型。
     2.根据卫星运动微分方程和卫星跟踪观测量,探讨了卫星定轨问题,分析了卫星轨道积分的分析法和数值法,推导了多步CowellⅡ轨道数值积分公式。
     3.探讨了星载GPS相位数据钟差改正的多项式拟合法,提出利用宽巷/窄巷法和连续求差法进行模糊度解算以及周跳探测和修复,分析了卫星姿态确定方法、GPS观测量的跟踪点改正模型、GPS天线相位中心改正和偏移改正模型;对CHAMP星载GPS数据和IGS跟踪站实际观测数据进行了处理,认为钟差可达ms级、星载GPS相位观测数据比IGS跟踪站的GPS数据周跳明显增多以及模糊度解算难度增大、GPS相位中心改正和偏移改正可达cm级(甚至更大)。
     4.利用IGS跟踪站的GPS数据和星载GPS数据,给出了星载GPS相位观测量、星间相位单差观测量、星地相位双差观测量、星地相位三差观测量,用于卫星精密定轨和地球重力场模型解算。
     5.分析了低轨卫星定轨和地球重力场模型解算的参数估计问题,推导了分块Bayes最小二乘参数估计公式,给出了观测方程、变分方程和GPS观测量的导数。
     6.根据卫星动力学原理,由星载GPS数据和GS跟踪站的GPS数据构造星地相位双差观测量,对CHAMP卫星进行实际定轨,与德国GFZ的PSO相比,本文定轨径向精度为0.2857m;经过重叠轨道比较和分析,本文重叠轨道径向精度为0.0958m;进行了轨道端点比较,端点轨道径向精度达到0.0666m。
     7.根据动力学原理,利用1个月的CHAMP几何定轨结果,采用两步法,解算了一个完全到70阶次的地球重力场模型GGM01S。与EGM96(完全到70阶次)相比,GGM01S的大地水准面起伏精度不超过0.2186m,重力异常精度不超过1.2735mgal。与EIGEN1S(完全到70阶次)相比,GGM01S的大地水准面起伏的精度不超过0.9804m,重力异常精度不超过8.0429mgal。
     8.利用1年的CHAMP卫星几何定轨结果,由动力学方法,解算了低阶地球引力位系数时间序列,给出了J_2、J_3,和地心运动的时间变化规律。J_2的变率为
    
    山东科技大学博士学位论文
    摘要
    jZ二一0.783、10一,’/m onth,J、的年变率为j,=一0.5、10一,,/month,jZ为负说明
     地球动力学形状变得越来越圆,人为负说明地球的梨形增强。地心运动的结果为:
     X方向为8.4mm,变率为X二2.smm/month;Y方向为4.omm,变率为
     夕=一l.gmm/month;z方向为5.omm,变率为才=一o.smm/month。
The satellite orbit determination is the key to the executive of satellite mission. The earth gravity field is the main force source for the satellite's motion in its orbit so that the satellite tracking observations can provide more information of the earth gravity filed. Refinement of earth gravity model can improve t ic accuracy of orbit determination of satellite. Therefore, the satellite orbit determir ation and the earth gravity model supplement each other.
    CHAMP is a German mini-satellite mission used to study on the earth science, atmosphere and their application, one of which is to precisely determine the global static long-wave-length characteristics of earth gravity and its temporal variations. So the precise orbit determination of CHAMP must be made from onboard GPS phase data. Centering on these hot spots of international geo-science studies, the main works and contributions in the dissertation include as follows.
    1. Development and applications of gravimetry and satellite-borne gravimetry are reviewed. Relations among the rectangle coordinates, Keplerian elements, Hillian elements and Equinoctial elements to describe the motion of low earth orbit satellite are given. The Hillian elements and the Equinoctial elements can solve the calculation problems because of the orbit singular. The perturbed motion of low earth orbit satellite is analyzed and the perturbed models a~e given in the dissertation.
    2. Based on the differential equations of satellite motion, the satellite orbit determination is discussed from the satellite tracking obseivations. The analytic method and the numerical integration method in the satellite crbit integration are analyzed. Then the multi-step Cowell II numerical integration formulae of satellite orbit integration are concluded.
    3. The preprocessing of onboard GPS phase data is studied. The polynomial fitting method to correct the clock error of onboard GPS phase data is discussed. The wide-lane and narrow-lane method and the successive difference method are used to solve the ambiguity and to detect and remove the cycle slip. In the meantime, the satellite attitude determination method, the tracking point correction model of GPS observation, the phase center correction and tre phase center offset correction of GPS antenna are analyzed. Soon afterwards, GPS phase data of CHAMP and IGS tracking stations are processed. The clock error is up :o ms level. The cycle slips of onboard GPS phase data of CHAMP are more than these of IGS tracking stations and it is more difficult to solve the ambiguity of onboard GPS phase data than these of IGS tracking stations. The phase center correction and the phase center offset are up to cm level, extremely to dm level.
    4. To determine the precise orbit of satellite and refine the earth gravity model, onboard
    
    
    
    GPS phase observations, single difference observation between satellites, air-ground double difference observation and air-ground triple difference observation are constructed from GPS data of IGS tracking stations and CHAMP.
    5. The problem of parameter estimation to determine the satellite orbit and solve the earth gravity model is analyzed. The partitioned Bayesian least squares parameter estimation is concluded. Then the observation equation, the variation equation and the derivatives of GPS observation are given in the dissertation.
    6. According to the satellite dynamical theory, the CHAMP orbit is determined from the air-ground double difference observations formed by GPS phase data of CHAMP and IGS tracking stations. Comparing with the PSO of GFZ in Germany, the radial accuracy of the orbit results is 0. 2857m. Comparing and analyzing the overlapping orbits, the radial accuracy is 0.0958m. Comparing the orbit ends, the radial accuracy is 0.0666m.
    7. Based on the satellite dynamical theory, an earth gravity model up to 70 degree, called as GGMOIS, is solved with the two-step method from one month of geometric orbit data of CHAMP. Comparing with EGM96 up to 70 degree, the geoid undulation accurac
引文
[1]蔡山崎.1996.卫星运动方程数值解法之分析:GPS及TOPEX/POSEIDON卫星个案研究[D].硕士学位论文.新竹:台湾交通大学.
    [2]陈俊勇.1988.地面参照系定向理论基础[M].北京:测绘出版社.
    [3]陈俊勇,魏子卿,胡建国,杨元喜,李建成,朱耀忠,许才军,孙和平,罗志才,吴斌,文汉江,查明.2000.迈入新千年的大地测量学[J].测绘学报,29(1):1-11.
    [4]党诵诗.1988.物理大地测量的数学基础[M].北京:测绘出版社.
    [5]邓必鑫,张衡,郑焕吉.1993.概率论与数理統计[M].长春:吉林大学出版社.
    [6]管泽霖,宁津生.1981.地球形状及外部重力场(上、下册)[M].北京:测绘出版社.
    [7]管泽霖,管铮,翟国君.1996.海面地形与高陧基准[M].北京:测绘出版社.
    [8]管泽霖,管铮,黄谟涛,翟国君.1997.局部重力场逼近理论和方法[M].北京:测绘出版社.
    [9]郭际明.2001.GPS与GLONASS组合测量及变形监测数据处理研究[D].博士学位论文.武汉:武汉大学.
    [10]郭俊义.1994.物理大地测量学基础[M].武汉:武汉测绘科技大学出版社.
    [11]郭俊义.2001.地球物理学基础[M].北京:测绘出版社.
    [12]胡建国.2001.中国沿海地区陆地与海平面垂直运动的研究[M].北京:气象出版社.
    [13]胡建国,常晓涛.2003.利用空间大地测量技术研究地球动力学最新进展[J].山东科技大学学报(自然科学版),22(1):1-6.
    [14]胡建国,郭金运,黄金维.2003.CHAMP星载GPS观测数据预处理研究[R].两岸重力与水准面研讨会,新竹:台湾交通大学,pp23-36.
    [15]胡明城,鲁福.1993.现代大地测量学(上、下册)[M].北京:测绘出版社.
    [16]黄立信.2002.利用低轨卫星负载之定轨资料测定高精度之轨道及地球位模式[D].博士学位论文.新竹:台湾交通大学。
    [17]季善标,朱文耀,熊永清.2000.星载GPS精密测轨研究与应用[J].天文学进展,18(1):17-28.
    [18]李建成.2002.地球重力场研究进展[R].武汉:武汉大学.
    [19]李庆海,崔春芳.1989.卫星大地测量原理[M].北京:测绘出版社.
    [20]李庆扬,王能超,易大义.数值分析[M].武汉:华中理工大学出版社,1986.
    [21]李征航,徐德宝,董挹英,刘彩璋.1998.空间大地测量理论基础[M].武汉:武汉测绘科技大学出版社.
    [22]刘基余,李征航,王跃虎,桑吉章.1993.全球定位系统原理及其应用[M].北京:测绘出版社.
    [23]陆仲连,吴晓平.1994.人造地球卫星与地球重力场[M].北京:测绘出版社.
    [24]罗志才.1996.利用卫星重力梯度数据确定地球重力场的理论和方法[D].博士学
    
    位论文.武汉:武汉测绘科技大学.
    [25]宁津生,邱卫根,陶本藻.1990.地球重力场模型理论[M].武汉:武汉测绘科技大学出版社.
    [26]宁津生,李建成,晁定波,管泽霖.1994.WDM94 360阶地球重力场模型研究[J].武汉测绘科技大学学报,19(4):283-291.
    [27]宁津生,罗志才.2000.卫星跟踪卫星技术的进展及应用前景[J].测绘科学,25(4):1-4.
    [28]彭碧波,吴斌,许厚泽.低阶地球引力场长期变化的确定[J].测绘学报,2000,29(Sup):38-42.
    [29]沈云中.2000.应用CHAMP卫星星历精化地球重力场模型的研究[D].博士学位论文.武汉:中国科学院测量与地球物理研究所.
    [30]孙付平.1994.基于空间技术的现代地壳运动研究——地球参考系、现代板快运动、全球构造[D].博士学位论文.上海:中国科学院上海天文台.
    [31]王广运,王海瑛,许国昌.1995.卫星测高原理[M].北京:科学出版社.
    [32]吴斌,彭碧波,许厚泽.1999.地心变化的测定[J].科学通报,44(10):1106-1108.
    [33]夏哲仁,林丽,石磐.1995.360阶地球重力场模型DQM94A及其精度分析[J].地球物理学报,38(6).
    [34]熊介.1988.椭球大地测量学[M].北京:解放军出版社.
    [35]许厚泽,陆仲连.1997.中国地球重力场与大地水准面[M].北京:解放军出版社.
    [36]叶淑华,黄珹、2000.天文地球动力学[M].济南:山东科学技术出版社.
    [37]张传定.2000,卫星重力测量——基础、模型化方法与数据处理算法[D].博士学位论文.郑州:中国人民解放军信息工程大学.
    [38]赵长印.1998.引力场模型引起的卫星轨道径向误差的估计结果[J].空间科学学报,18(2):190-192.
    [39]周旭华,高布锡.1998.全球水分布和气压变化对固体地球质心位置的影响[J].天文学报,39(1):61-66.
    [40]周忠谟,易杰军,周琪.1999.GPS卫星测量原理与应用[M].修订版.北京:测绘出版社.
    [41]Alber C., Ware R., Rocken C., Solheim F. 1997. GPS surveying with 1-mm precision using corrections for atmospheric slant path delay[J]. Geophysical Research Letters,24(15):1859-1862.
    [42]Ananga N., Sakurai S. 1996. The use of GPS data for improving local geoid determination[J]. Survey Review, 33(259):334-338.
    [43]Anderle R.J. 1966. Geodetic parameters set NWL-SE-6 based on Doppler satellite observations[R]. Proc. 2nd Int. Symp. Geod. Use Satellite, Athens.
    [44]Anderson A.J., Cazenave A. 1986. Space geodesy and geodynamics[M]. London, Academic Press.
    [45]Anzenhofer M., Gruber T., Rentsch M. 1996. Global high-resolution mean sea surface based on ERS-1 35- and 168-day cycles and Topex data[J]. In: Rapp R., Nerem R.S., Cazenave A. (eds). Global gravity field and temporal variations, IAG Symposium 116,
    
    Springer, Berlin, pp210-219.
    [46]Arabelos D., Tscherning C.C. 1995. Regional recovery of the gravity field from satellite gravity gradiometer and gravity vector data using collocation[J]. Journal of Geophysical Research, 100(B11):22009-22015.
    [47]Balmino G., Barriot J.B. 1989. Numerical integration techniques revised[J]. Manuscipta Geodetica, 15:1-10.
    [48]Balmino G., Perosanz F., Rummel R., Sneeuw N., S?nkel H., Woodworth P. 1998. European views on dedicated gravity field missions: GRACE and GOCE[R]. ESA rep ESD-MAG-REP-CON-001, European Space Ager cy.
    [49]Barriot J.P., Balmino G., Vales N. 1997. Building reliable local models of the Venus gravity field from the cycles 5 and 6 of the Magellan LOS gravity data[J]. Geophysical Research Letters, 24(4):477-480.
    [50]Barriot J.P., Vales N., Balmino G. 1998. The 180th degree and order model of the Venus gravity field from Magellan line of sight "esidual Doppler data[J]. Geophysical Research Letters, 25(19):3743-3746.
    [51]Ba ic T., Rapp R. 1992. Oceanwide predictior, of gravity anomalies and sea surface heights using Geos-3, Seasat, and Geosat altimeter data and ETOPO5U bathymetric data[R]. Rep. 416, Dept. Geod. Sci. Surv., Ohio State University, Columbus.
    [52]Battin R.H. 1987. An introduction to the mathematics and methods of astrodynamics[R]. AIAA Education Series, New York.
    [53]Belikov B.M., van Gelderen M., Koop R. 1994. Determination of the gravity field from satellite gradiometry[J]. In: Sanso F. (ed). Geodetic theory today. Springer, Berlin, Heidelberg, New York, pp102-111.
    [54]Bertiger W., Wu S.-C., Wu J.T., Skrumeda L. 1989. How well can gravity be recovered using TOPEX and GPS data[R]? AAS/AIAA Astrodynamics Specialist Conf., AAS-89-360.
    [55]Bertiger W.I., et al. 1994. GPS precise tracking of TOPEX/POSEIDON: results and implications[J]. Journal of Geophysical Research, 99:24449-24464.
    [56]Bettadpur S.V., Schutz B.E., Lundberg J.B. 1992. Spherical harmonic synthesis and least squares computations in satellite gravity gradiometry[J]. Bulletin G?od?sique, 66:261-271.
    [57]Biancale R., et al. 2000. A new global earth's gravity field model from satellite orbit perturbations: GRIM5-S 1[J]. Geophysical Research Letters, 27:3611-3614.
    [58]Bocchio F. 1985. Tidal and rotational perturbations of Earth's gravity gradients[J]. Geophys. J.R. astr. Soc., 81:463-467.
    [59]Boucher C. 1989. Reference frames in astronomy and geophysics[M]. Kluwer Academic Publishers.
    [60]Brozena J.M. 1991. GPS and airborne gravimetry: recent progress and future plans[J]. Bulletin G?od?sique, 65:116-121.
    [61]Bursa M., Pec K. 1993. Gravity field and dynamics of the earth[M]. Springer-Verlag,
    
    Berlin.
    [62]Cappelari J.O., Velez C.E., Fuchs A.J. 1976. Mathematical theory of the Goddard trajectory determination system[R]. GSFC Document X-582-76o77, Greenbelt.
    [63]Chao B.F., Pavlis E.C., Hwang C., Liu C.C., Shum C.K., Tseng C.L., Yang M. 2000. COSMIC: geodetic applications in improving earth's gravity model[J]. Terr. Atm. Ocean Sci., 11:365-378.
    [64]Cheng M.K., Eanes R.J., Shum, C.K., et al. 1989. Temporal variation in low degree zonal harmonics from Starlette orbit analysis[J]. Geophysical Research Letters, (16):393-396.
    [65]Cheng M.K., Shum C.K., Tapley B.D. 1997. Determination of long-term changes in the Earth's gravity field form satellite laser ranging observations[J]. Journal of Geophysical Research, 102(B10):22377-22390.
    [66]Cheng M.K., Tapley B.D. 1999. Seasonal variations in low-degree zonal harmonics of the earth's gravity field from satellite laser ranging observations[J]. Journal of Geophysical Research, 104:2667-2681.
    [67]Colombo O.L. 1984. The global mapping of gravity with two satellites[J]. Publications on Geodesy, New Series, Netherlands Geodetic Commission, Delft, 7(3).
    [68]Colombo O.L. 1989. Advanced techniques for high-resolution mapping of the gravitational field[J]. In: Sanso F., Rummel R. (eds). Theory of satellite geodesy and gravity field determination. Lecture notes in Earth sciences 25. Springer, Berlin, Heidelberg, New York, pp335-369.
    [69]Cui Ch., Lelgemann D. 1995. Analytical dynamic orbit improvement for the evaluation of geodetic-geodynamic satellite data[J]. Journal of Geodesy, 70:83-97.
    [70]Cui Ch., Lelgemann D. 2000. On non-linear low-low SST observation equations for the determination of the geopotential based on an analytical solution[J]. Journal of Geodesy, 74:431-440.
    [71]Davis G.W. 1997. Exploring the limits of GPS-based precise orbit determination[J]. J. Inst. Navig., 44(2):181-193.
    [72]Douglas B.C., Goad C.C., Morrison F.F. 1980. Determination of the geopotential from satellite-to-satellite tracking data[J]. Journal of Geophysical Research, 85(B10):5471-5480.
    [73]Englis T. Radial orbit error reduction and sea surface topography determination using satellite altimetry[R]. Rep 377, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, USA.
    [74]Escobal P.R. 1976. Methods of orbit determination[M]. Robert E. Krieger Publishing Company, Inc., Malabar, Florida.
    [75]European Space Agency. 1998. European views on dedicated gravity field missions: GRACE and GOCE[R]. An Earth Sciences Division consultation document, ESD-MAG-REP-CON-001. European Space Agency.
    [76]Forsberg R., Tscherning C.C. 1981. The use of height data in gravity field
    
    approximation by collocation[J]. Journal of Geopnysical Research, 86(B6):7843-7854.
    [77]Forsberg R. 1987. A new covariance model, for inertial gravimetry and gradiometry[J]. Journal of Geophysical Research, 92(B2): 1305-1310.
    [78]Grejner-Brzezinska D.A., Wang J. 1998. Gravity modeling for high-accuracy GPS/INS integration[J]. Navigation, 45:209-220.
    [79]Gruber Th., Bode A., Reigber Ch., Schwintzer P., Balmino G., Biancale R., Lemoine J.M. 2000. GRIM5-C1: Combination solution of the global gravity field to degree and order 120[J], Geophysical Research Letters, 27:4005-4008.
    [80]Guo J., Jin F., Zheng Z. 2002. Check on antenna phase center three-dimensional bias of GPS receiver[J]. AVN, (6):218-221.
    [81]Haagmans R.R.N., de Min E., van Gelderen M. 1993. Fast evaluation of convolution integrals on the sphere using 1D-FFT, and a comparison with existing methods for Stokes's integral[J]. Manuscripta Geodaetica, 18:227-241.
    [82]Haardeng-Pedersen G., Keller K., Tscherning C.C., Gundestrup N. 1998. Modeling the signature of a transponder in altimeter return data and determination of the reflection surface of the ice cap near the GRIP camp, Greenland[J]. Journal of Glaciology, 44(148):625-633.
    [83]Harwood N.M., Swinerd G.G., King-Hele D.G. 1994. Tesseral harmonic coefficients of order 30 from 14 resonant satellite orbit analyses[J]. Bulletin G?od?sique, 68:151-161.
    [84]Heiskanen W.A., Moritz H. 1967. Physical geocesy[M]. W H Freeman and Company.
    [85]Hess D., Keller W. 1999. Gradiometrie mit GRACE Teil Ⅱ Simulationsstudie[J]. ZfV,(7):205-211.
    [86]Hipkin R.G. 1988. Bouguer anomalies and the geoid: A reassessment of Stokes' method[J]. Geophysical Journal, 92:53-66.
    [87]Huang J., Vanicek P., Novak P. 2000. An alternative algorithm to FFT for the numerical evaluation of Stokes's integral[J]. Stud. Geophys. Geod., 44:374-380.
    [88]Hwang C., Parsons B. 1996. An optimal procedure for deriving marine gravity from multi-satellite altimetry[J]. Geophys. J. Int., 125 705-718.
    [89]Hwang C., Lin M.-J. 1998. Fast integration of low orbiter trajectory perturbed by the earth's non-sphericity[J]. Journal of Geodesy, 72:578-585.
    [90]Hwang C. 2001. Gravity recovery using COSMIC GPS data: application of orbital perturbation theory[J]. Journal of Geodesy, 75:117-136.
    [91]Ill K.H., Rummel R., Thalhammer M. 1995. Refined method for the regional recovery from GPS/SST and SGG[R]. In: Study of the gravity field determination using gradiometry and GPS (Phase 2). CIGAR Ⅲ/2 final report, ESA Contract no. 10713/93/F/FL.
    [92]Iz B.H. 1993. A preliminary error analysis of the gravity field recovery from a lunar satellite-to-satellite mission[J]. Bulletin G?od?sique, 67:173-177.
    [93]Jekeli C. 1991. The statistics of the Earth's gravity field revisited[J]. Manuscripta
    
    
    [94]Jekeli C. 1992. Vector gravimetry using GPS in free-fall and in an earth-fixed frame[J]. Bulletin G?od?sique, 66:54-61.
    [95]Jekeli C., Garcia R. 1996. Direct determination of vehicle acceleration using GPS phase observables[R]. ION 52 Annual Meeting, Cambridge, MA, June, pp19-21.
    [96]Jekeli C., Garcia R. 1997. GPS phase accelerations for moving-base vector gravimetry[J]. Journal of Geodesy, 72:630-639.
    [97]Jekeli C. 1998. An analysis of vertical deflections derived from high-degree spherical harmonic models[J]. Journal of Geodesy, 73:10-22.
    [98]Jekeli C. 1999. The determination of gravitational potential differences from satellite-to-satellite tracking[R]. Revision submitted to Celestial Mechanics and Dynamical Astronomy.
    [99]Jolly G.W., Moore P. 1996. Analysis of global ERS-1 altimetry by optimal Fourier transform interpolation[J]. Marine Geodesy, 19:331-357.
    [100]Jones G.M. 1982. A technique for computing geoid height anomalies over two-dimensional earth models[J]. Geophys. J.R. astr. Sot., 69:329-337.
    [101]Jordan S.K. 1972. Self-consistent statistical models for the gravity anomaly, vertical deflections, and undulation of the geoid[J]. Journal of Geophysical Research, 77(2):3660-3670.
    [102]Kaula W.M. 1966. Theory of satellite geodesy[M]. Blaisdell Publishing Company, Walthamn Massachusetts.
    [103]Kaula W.M. 1966. Test and combinations of satellite determination of the gravity field with gravimetry[J]. Journal of Geophysical Research, 71:5303-5314.
    [104]Kaula W.M. 1983. Inference of variations in the gravity field from satellite-to-satellite range rate[J]. Journal of Geophysical Research, 88(B10):8345-8349.
    [105]Khan S.A., Tscherning C.C. 2001. Determination of semi-diurnal ocean tide loading constituents[J]. Geophysical Research Letters, 28(11):2249-2252.
    [106]King-Hele D.G,, Winterbottom A.N. 1994. Comparison of geopotential harmonics in comprehensive models with those from satellite resonances[J]. Planet Space Sci., 42(5):359-365.
    [107]Klees R., Koop R. 1998. A gravity mission for Earth science[R]. Paper presented at "Views on the dynamic Earth", Symposium 20. Nov., Utrecht, the Netherlands.
    [108]Klees R., Koop R., Visser P., van den Ijssel J. 2000. Efficient gravity field recovery from GOCE gravity gradient observations[J]. Journal of Geodesy, 74:561-571.
    [109]Klees R., Koop R., van den Ijssel J., Visser P., Rummel R. 2000. Data analysis for the GOCE mission[J]. In: Schwarz K.-P. (ed). Geodesy beyond 2000. IAG Symp 121. Springer, Berlin Heidelberg New York, pp68-74.
    [110]Knudsen P. 1987. Estimation and modeling of the local empirical covariance function using gravity and satellite altimeter data[J]. Bulletin G?od?sique, 61:145-160.
    [111]K6nig R., Zhu S.Y., Reigber Ch., Neumayer K,-H., Meixner H., Galas R., Baustert G.
    
    
    [111]K6nig R., Zhu S.Y., Reigber Ch., Neumayer K.-H., Meixner H., Galas R., Baustert G. 2002. CHAMP rapid orbit determination for GPS atmospheric limb sounding[J]. Adv. Space Res., 30(2):289-293.
    [112]Koop R., Stelpstra D. 1991. Potential coeffcient recovery from the CSR set of simulated satellite gradiometry observations[J]. Geophysical Research Letters, 18(10):1897-1900.
    [113]Koop R. 1993. Global gravity field modeling Ising satellite gravity gradiometry[J]. Publ. Geodesy, New Weries, 38. Netherlands Geodetic commission, Delft.
    [114]Kozai Y. 1959. The earth's gravitational potential derived from the motion of satellite[R]. SAO Sp. Rep, No.22.
    [115]Kozai Y. 1964. New determination of zonal harmonic coefficients in the earth's gravitational potential[J]. Publ. Astron. Soc. Jpn.(16).
    [116]Kry?ski J. 1979. Improvement of the geoid in local areas by satellite-to-satellite tracking[J]. Bulletin G?od?sique, 53:19-36.
    [117]Kusche J. 2001. Implementation of multigrid solves for satellite gravity anomaly recovery[J]. Journal of Geodesy, 74:773-782.
    [118]Kusche J., Rudolph S. 2000. The multigrid method for satellite gravity field recovery[J]. In: Schwarz K.-P. (ed). Geodesy beyond year 2000, Proc IAG Gen Ass Birmingham. Springer, Berlin, Heidelberg, New York.
    [119]Kwon J.H., Jekeli C. 2001. A new approach for airborne vector gravimetry using GPS/INS[J]. Journal of Geodesy, 74:690-700.
    [120]Lahmeyer B. 1988. Gravity field continuatior of irregularly spaced data using least squares collocation[J]. Geophysical Journal, 95:123-134.
    [121]Lambeck K., Coleman R. 1983. The Earth's shape and gravity field: A report of progress from 1958 to 1982[J]. Geophys. J. Royal Astr. Soc., 74:25-54.
    [122]Lambeck K.1995.地球物理大地测量学—地球的慢形变[M].黄立人,沈建华,张中付,肖建业译.北京:测绘出版社.
    [123]Leick A. 1994. GPS satellite surveying[M]. 2nd edition. Wiley-Insterscience, Maine.
    [124]Lemoine F.G., Kenyon S.C., Factor J.K., Tr mmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H., Olson T.R. 1998. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96[R]. NASA Technical Paper NASA/TP-1998-206861, GSFC, Greenbelt.
    [125]Lerch F.J., Klosko S.M., Laubscher R.E., Wagner C.A. 1979. Gravity model improvement using GEOS-3 (GEM-9 and 10)[J]. Journal of Geophysical Research, 84:3897-3915.
    [126]Lerch F.J., Klosko S.M., Patel G.B. 1982. Gravity model development from Lageos[J]. Geophysical Research Letters, 9:1263-1266.
    [127]Lerch F.J., Marsh J.G., Klosko S.M., Pavlis E.C., Patel G.B., Chinn D.S., Wagner C.A. 1991. An improved error assessment for the GEM-T1 gravitational model[J].
    
    
    [128]Lerch F.J., et al. 1994. Geopotential models from satellite tracking, altimeter, and surface gravity data: GEM-T3 and GEM-T3S[J]. Journal of Geophysical Research, 99:2815-2839.
    [129]Liu H-P., Kosloff D. D. 1981. Numerical evaluation of the Hilbert transform by the Fast Fourier Transform (FFT) technique[J]. Geophys. J.R. astr. Soc., 67:791-799.
    [130]Mackenzie R., Moore P. 1997. A geopotential error analysis for a non planar satellite to satellite tracking mission[J]. Journal of Geodesy, 71:262-272.
    [131]Marks K.M. 1996. Resolution of the Scripps/NOAA marine gravity field from satellite altimetry[J]. Geophysical Research Letters, 23(16):2069-2072.
    [132]Marsh J.G., et al. 1981. The gravity field in the central Pacific from satellite to satellite tracking[J]. Journal of Geophysical Research, 86: 3979-3997.
    [133]Marsh J.G., et al. 1988. A new gravitational model for the earth from satellite tracking data: GEM-T1[J]. Journal of Geophysical Research, 93:6169-6215.
    [134]Martin T. 2002. MicroCosm Preprocessing Software Systems Description[R]. van Martin Systems, Inc., Rockville, USA.
    [135]Martinec Z., Vanicek P. 1994. The indirect effect of topography in the Stokes-Helmert technique for a spherical approximation of the geoid[J]. Manuscripta Geodaetica, 19:213-219.
    [136]Martinec Z., Vanicek P. 1994. Direct topographical effect of Helmert's condensation for a spherical geoid[J]. Manuscripta Geodaetica, 19:257-268.
    [137]McCarthy D.D. 1996. IERS conventions[R]. IERS Technical Note 21, Central Bureau of IERS, Observatoire de Paris.
    [138]McCarthy J.J., et al. 1993. GEODYN Ⅱ system description (Volume Ⅰ)[R].NASA,USA.
    [139]Montenbruck O., Gill E. 2000. Satellite orbits models, methods and applications[M]. Springer-Verlag, Berlin.
    [140]Moore P., Ehlers S. 1998. Comparison of gravity field modeling for ERS-Ⅰ using dual crossover constraint equations[J]. J. Geodynamics, 25(1):47-60.
    [141]Moreaux G. 2000. Harmonic spherical splines with locally supported kernels[J]. In: Schwarz K.-P. (ed). Geodesy beyond year 2000, Proc IAG Gen Ass Birmingham. Springer, Berlin Heidelberg New York.
    [142]Moreaux G., Tscherning C.C., Sanso, F. 1999. Approximation of harmonic covariance functions on the sphere by non-harmonic locally supported functions[J]. Journal of Geodesy, 73:555-567.
    [143]Moritz H. 1990. The figure of the earth: theoretical geodesy and the earth's interior physics[M]. Karsruhe: Wichmann.
    [144]Nabighian M.N. 1984. Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations[J]. Geophysics, 49(6):780-786.
    [145]Nahavandchi H., Sjoberg L.E. 2001. Precise geoid determination over Sweden using
    
    
    [145]Nahavandchi H., Sjoberg L.E. 2001. Precise geoid determination over Sweden using the Stokes-Helmert method and improved topographic corrections[J]. Journal of Geodesy, 75:74-88.
    [146]Nerem R.S., et al. 1994. Gravity model development for TOPEX/POSEIDEN: Joint gravity models 1 and 2[J]. Journal of Geophysical Research, 99(C12):24421-24447.
    [147]Nerem R.S., Jekeli C., Kaula W.M. 1995. Gravity field determination and characteristics: Retrospective and prospective[J]. Journal of Geophysical Research, 100(B8):15053-15074.
    [148]Nerem R.S., Eanes R.J., Thompson P.F., Chen J.L. 2000. Observations of annual variations of the earth's gravitational field using satellite laser ranging and geophysical models[J]. Geophysical Research Letters, 24(12):1783-1786.
    [149]Nou IF., et al. 1994. Precise centre national d'Etudes spatiales orbits for TOPEX/POSEIDON: Is reaching 2cm still a challenge[J]? Journal of Geophysical Research, 99(C12):24405-24419.
    [150]Nov?k P., vanlcek P., V?ronneau M., Holmes S., Featherstone W. 2001. On the accuracy of modified Stokes's integration in high-frequency gravimetric geoid determination[J]. Journal of Geodesy, 74:644-654.
    [151]Perosanz F., Marty J.C., Balmino G. 1997. Dynamic orbit determination and gravity field model improvement from GPS, DCRIS and laser measurements on TOPEX/POSEIDON satellite[J]. Journal of Geodesy, 71 (3): 160-170.
    [152]Rabble W., Zschau J. 1985. Static deformation and gravity changes at the earth's surface due to atmospheric loading[J]. Journal of Geophysics, 56:81-99.
    [153]Rapp R.H. 1989. Combination of satellite, alimetrc and terrestrial gravity data[J]. In: Sanso F., Rummel R. (eds). Theory of satellite geodesy and gravity field determination. Lecture Notes in Earth Sciences, Springer, Berlin Heidelberg New York, 25:261-284.
    [154]Rapp R.H., Wang Y., Pavlis N. 1991. The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models[R]. Rep 410, Department of Geodetic Science and Surveying, The Ohio State University, Columbus.
    [155]Rapp R.H., Basic T. 1992. Oceanwide gravity anomalies from GEOS-3, SEASAT and GEOSAT altimeter data[J]. Geophysical Researcn Letters, 19(19):1979-1982.
    [156]Rapp R.H., Yi Y. 1997. Role of ocean variability and dynamic ocean topography in the recovery of the mean sea surface and gravity anomalies from satellite altimeter data[J]. Journal of Geodesy, 71:617-629.
    [157]Ray J. (ed.). 1999. IERS analysis campaign to investigate motions of the geocenter[M]. IERS Technical Note 25, Central Bureau of IERS, April.
    [158]Reigber Ch. 1981. Representation of orbital elements variations and force function with respect to various reference systems[J]. Bulletin G?od?sique, 55(2):111-131.
    [159]Reigber Ch., Muller H., Bosch W., Balmino G., Moynot B. 1984. GRIM gravity model improvement using LAGEOS[J]. Journal of Geophysical Research.
    
    Rummel R. (eds). Theory of satellite geodesy and gravity field determination. Lecture Notes in Earth Sciences, Springer-Verlag, Berlin. 25:197-234.
    [161]Reigber Ch., et al. 1996. CHAMP-phase B, executive summary[R]. Scientific Technical Report STR 96/13 GFZ, Potsdam.
    [162]Reigber Ch., Schwintzer P., L?hr H. 1999. The CHAMP geopotential mission[J]. Boll. Geof. Teor. Appl., 40:285-289.
    [163]Reigber Ch., et al. 2002. A high-quality global field model from CHAMP GPS tracking data and accelerometry (EIGEN-IS)[J]. Geophysical Research Letters, 29(14):37-1~37-4.
    [164]Rim H.J., Davis G.W., Schutz B.E. 1996. Dynamic orbit determination for the EOS laser satellite (EOS ALT/GLAS) using GPS measurements[J]. J. Astron. Sci., 44:409-424.
    [165]Rosborough G.W., Tapley B.D. 1987. Radial, transverse and normal satellite position perturbations due to the geopotential[J]. Celest. Mech., 40:409-421.
    [166]Robert C.K. 1964. Optimal estimation, identification and control[M]. Cambridge, Massachusetts.
    [167]Rowlands D., Marshell J.A., McCarthy J., Moore D., Pavlis D., Rowton S., Luthcke S., Tsaoussi L. 1995. GEODYN Ⅱ system description[R]. Contractor Report, Hughes STX Corp, Greenbelt, MD.
    [168]Rubincam D.P., Mallama A. 1995. Terrestrial atmospheric effects on satellite eclipses with application to the acceleration of LAGEOS[J]. Journal of Geophysical Research, 100(B 10):20285-20290.
    [169]Rummel R., Colombo O.L. 1985. Gravity field determination from satellite gradiometry[J]. Bulletin G?od?sique, 59:233-246.
    [170]Sandwell D.T. 1997. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry[J]. Journal of Geophysical Research, 102(B5):10039-10054.
    [171]Scharroo R., Visser P.N.A.M. 1998. Precise orbit determination and gravity field improvement for the ERS satellites[J]. Journal of Geophysical Research, 103(C4):8113-8127.
    [172]Schrama E.J.O. 1990. Gravity field error analysis: application of GPS receivers and gradiometers on low orbiting platforms[R]. Tech. rep., NASA Technical Memorandum 100769, Washington.
    [173]Schrama E.J.O. 1991. Gravity field error analysis: applications of GPS receivers and gradiometers on low orbiting platforms[J]. Journal of Geophysical Research, 96(B 12):20041-20051.
    [174]Schuh W.-D., S?nkel H., Hausleitner W., H?ck E. 1996. Refinement of iterative procedures for the reduction of spaceborn gravimetry data[J]. In: Study of advanced reduction methods for spaceborn gravimetry data, and of data combination with geophysical parameters. CIGAR Ⅳ final report, ESA study ESTEC/JP/95-4-137/MS/nr.
    [175]Schwarz K.P., Sideris M.G., Forsberg R. 1990. The use of FFT techniques in physical
    
    
    [175]Schwarz K.P., Sideris M.G., Forsberg R. 1990 The use of FFT techniques in physical geodesy[J]. Geophys. J. Int., 100:485-514.
    [176]Schwintzer P., Kang Z., Reigber Ch., Zhu S.Y. 1995. GPS satellite-to-satellite tracking for TOPEX/POSEIDON precise orbit determination and gravity field model improvement[J]. Journal of Geodynamics, 20(2):155-166.
    [177]Seeber G. 1993. Satellite geodesy[M]. Walter de Gruyter & Co., Berlin.
    [178]Shum C.K., Tapley B.D., Yuan D.N., Ries ..C., Schutz B.E. 1990. An improved model for the earth gravity field[R]. Proceedings of International Association of Geodesy Symposium 103, Gravity, Gradiometry and Gravimetry, Springer-Verlag, New York, pp97-108.
    [179]Sun W., Sj berg L.E. 2001. Permanent components of the crust, geoid and ocean depth tides[J]. Journal of Geodynamics, 31:323-339.
    [180]Svehla D., Rothacher M. 2003. Kinemat c, reduced-kinematic, dynamic and reduced-dynamic precise orbit determination in the LEO orbit[R]. Second CHAMP Meeting, Potsdam.
    [181]Svehla D., Rothacher M. 2003. Kinematic precise orbit determination for gravity field determination[R]. IUGG General Assembly 2003, Sapporo, Japan.
    [182]Tapley B.D. 1989. Fundamentals of orbit dete mination[J]. In: Sanso F., Rummel R. (eds). Theory of satellite geodesy and gravity field determination. Lecture Notes in Earth Sciences, Springer-Verlag, Berlin, 25:235-250.
    [183]Tapley B.D., Shum C.K., Yuan D.N., Ries J.C., Eanes R.J., Watkins M.M., Schutz B.E. 1991. The University of Texas earth gravity field model[R]. IUGG XX General Assembly, lAG Symp. G3, Gravity Field Determination from Space and Airborne Measurements, Vienna, Austria, Aug., pp12-24.
    [184]Tapley B.D., Ries J.C., Davis G.W., Eanes R.J., Schutz B.E., Shum C.K., Watkins M.M., Marshall J.A., Nerem R.S., Putney B.H., Klosko S.M., Lutcke S.B., Pavlis D., Williamson R.G., Zelensky N.P. 1994. Precise orbit determination for TOPEX/POSEIDON[J]. Journal of Geophysical Research, 99(C12):24383-24404.
    [185]Tapley B.D., Watkins M.M., Ries J.C., Davis G.W., Eanes R.J., Poole S.R., Rim M.J., Schutz B.E., Shum C.K., Nerem R.S., Lerch F.J., Marshall J.A., Klosko S.M., Pavilis N.K., Williamson R.G. 1996. The joint gravity model 3[J]. Journal of Geophysical Research, 101 (B 12):28029-28049.
    [186]Torge W. 1989. Gravimetry[M]. Walter de Grt yter & Co., Berlin.
    [187]Tscherning C.C. 1993. Computation of covariances of derivatives of the anomalous gravity potential in a rotated reference frame[J]. Manuscripta Geodaetica, 18(3):115-123.
    [188]Tscherning C.C. 2001. Computation of spherical harmonic coefficients and their error estimates using least-squares collocation[J]Journal of Geodesy, 75:12-18.
    [189]Tscherning C.C. 2001. Geoid determination after the first satellite gravity missions[R]. Festschrift Univ. Prof. em. Dr.-Ing. Wolfgang Torge zum 70. Geburtstag, Wiss. Arb.
    
    
    [190]Tziavos I.N. 1996. Comparisons of spectral techniques for geoid computations over large regions[J]. Journal of Geodesy, 70:357-373.
    [191]van Gelderen M., Koop R. 1997. The use of degree variances in satellite gradiometry[J]. Journal of Geodesy, 71:337-343.
    [192]Vanicek P., Sjoberg L.E. 1991. Reformulation of Stokes's theory for higher than second-degree reference field and a modification of integration kernels[J]. Journal of Geophysical research, 96:6529-6539.
    [193]Vanicek P., Martinec Z. 1994. The Stokes-Helmert scheme for the evaluation of a precise geoid[J]. Manuscripta Geodaetica, 19:119-128.
    [194]Vanicek P., Nov?k P., Martinec Z. 2001. Geoid, topography, and the Bouguer plate or shell[J]. Journal of Geodesy, 75:210-215.
    [195]Vasco D.W. 1989. Resolution and variance operators of gravity and gravity gradiometry[J]. Geophysics, 54(7):889-899.
    [196]Vermeer M. 1991. Geoid recovery at 0.5 degree resolution from global satellite gradiometry data sets[J]. In: Rapp R.H., Sanso F. (eds). Determination of the geoid, present and future, IAG Symp 106. Springer, Berlin Heidelberg Now York.
    [197]Visser P.N.A.M., Wakker K.F., Ambrosius B.A.C. 1994. Global gravity field recovery from the ARISTOTELES satellite mission[J]. Journal of Geophysical Research, 99(B2):2841-2851.
    [198]Visser P.N.A.M. 1995. Gravity field model adjustment from ERS-1 and TOPEX altimetry and SLR tracking using an analytical orbit perturbation theory[J]. Adv. Space Res., 16(12):143-147.
    [199]Visser P.N.A.M., van den ljssel J. 2000. GPS-based precise orbit determination of the very low Earth-orbiting gravity mission GOCE[J]. Journal of Geodesy, 74:590-602.
    [200]Visser P.N.A.M., van den ljssel J., Koop R., Klees R. 2001. Exploring gravity field determination from orbit perturbations of the European Gravity Mission GOCE[J]. Journal of Geodesy, 75:89-98.
    [201]Wagner C.A. 1983. Direct determination of gravitational harmonics from low-low G RAVSAT data[J]. Journal of Geophysical Research, 88(B12):10309-10321.
    [202]Wahr J., Molenaar M., Bryan F. 1998. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible[J]. Journal of Geophysical Research, 103(B12):30205-30229.
    [203]Welker J.E. 1995. Gravity analysis over the Aral, Black, and Caspian Seas form a combined GEOS 3/Seasat/Geosat altimeter data set[J]. Journal of Geophysical Research, 100(B9):18103-18115.
    [204]Wenzel H.-G. 1985. Hochaufl?sende Kugelfunktionsmodelle f?r das Gravitationspotential der Erde[R]. Wiss. Arb. Univ. Hannover, Nr. 137.
    [205]Wessel P., Smith W.H.F. 1995. The generic mapping tools (GMT) technical reference and cookbook[M]. Version 3. Honolulu, HI and Silver Spring, MD.
    [206]Wolff M. 1969. Direct measurements of the Earth's gravity potential using a satellite
    
    
    [206]Wolff M. 1969. Direct measurements of the Earth's gravity potential using a satellite pair[J]. Journal of Geophysical Research, 14:5295-5300.
    [207]Xu P. 1992. Determination of surface gravity anomalies using gradiometric observables[J]. Geophys. J. Int., 110:321-332.
    [208]Xu P. 1992. The value of minimum norm estimation of geopotential fields[J]. Geophys. J. Int., 111:170-178.
    [209]Xu P., Rummel R. 1994. A simulation study of smoothes methods in recovery of regional gravity fields[J]. Geophys. J. Int., 117:422-486.
    [210]Yoder C.F., Williams J.G., Dickey J.O., et al. 1983. Variation of earth's gravitational harmonic J_2 coefficient from Lageos and non-idal acceleration of earth rotation[J]. Nature, (303):757-762.
    [211]Zhang C., Sideris M.G. 1996. Oceanic gravity by analytical inversion of Hotine's formula[J]. Marine Geodesy, 19:115-136.
    [212]Zhu S.Y., Reigber Ch., Massmann F.-H. 1991. Some Improvements of the solid Earth tide model[J]. Manuscripta Geodaetica, 16:215-220.
    [213]Zhu S.Y., Reigber Ch., Massmann F.-H. 1996. The German PAF for ERS: ERS standards used at D-PAF[R]. GFZ DLR, Sep.
    [214]Zhu S.Y., Shi C. 2003. Satellite gravimetry and precise orbit determination[R]. Geodesy and Remote Sensing, GFZ.
    [215]AGU Home Page. http://www.agu.org/.
    [216]CDDIS Home Page. ftp://cddisa.gsfc.nasa.gov/.
    [217]CHAMP-ISDC. http://isdc.gfz-potsdam.de/champ/.
    [218]CSR Home Page. http://www.csr.utexas.edu/.
    [219]ESA Home Page. http://www.esa.int/.
    [220]GARNER Home Page. ftp://garner.ucsd.edu/.
    [221]GFZ Home Page. http://op.gfz-potsdam.de/.
    [222]GEODESY Home Page. ftp://geodesy.gsfc.nasa.gov/.
    [223]IGS Home Page. http://igscb.jp1.nasa.gov/.
    [224]JPL Home Page. ftp://navigator.jpl.nasa.gov/pub/ephem/export/asscii/.
    [225]LAREG Home Page. http://lareg.ensg.ign.fr/.
    [226]Magus Home Page. http://magus.stx.com/geocyn/.
    [227]NGS Home Page. http://ngs.noaa.gov/antical/.
    [228]SOPAC Home Page. http://sopac.ucsd.edu/.
    [229]SSD Home Page. http://ssd.jpl.nasa.gov/.
    [230]vmsi-Microcosm Home Page. ftp://www.vmsi-microcosm.com/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700