用户名: 密码: 验证码:
应用卫星测高技术确定南极海域重力场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受南极地理位置、自然环境和观测手段的限制,长期以来对南极的认识不足,而南极与全球气候和生态环境等一系列重大问题密切相关,因此增强对南极的认识和了解十分重要。
     海洋重力异常是南极海域的基础数据,高精度高分辨率的南极海域海洋重力异常有助于提高对该海域地球内部构造和海洋资源勘探等方面的认识,也是确定大地水准面的基础数据,而卫星测高是获取大范围高分辨率海洋重力异常的唯一手段。
     海面高是卫星测高应用的基本物理量,卫星测高在开阔海域的回波信号符合Brown模型,其测距和海面高精度较高,直接采用GDR数据反演的海洋重力异常精度较高。而受多种因素的影响,非开阔海域(尤其是南极海域)的海面高精度偏低,限制了测高在这些区域的应用,也导致南极海域测高海洋重力异常精度偏低。
     为获得高精度高分辨率南极海域海洋重力异常,必须得到南极海域高精度的垂线偏差,通常采用的手段包括波形重定、改正量选取、对海面高和垂线偏差的数据处理等。本文从波形理论出发,系统提出了波形分类的概念,总结了不同类型反射面的波形重定算法并提出了子波形阈值法,探讨了不同反射面波形重定算法的选取,详细讨论了不同数据处理阶段海面高的数据处理方法,给出了垂线偏差数据处理方法,反演得到了南极海域高分辨率的测高海洋重力异常,与船测重力比较,结果表明南极海域整体统计结果的精度约7mGal;与国际最新的测高模型比较,表明本文得到的模型整体精度接近、部分区域超过了国际最新模型精度。以高精度的船测重力为控制点,与测高海洋重力异常进行数据融合,得到了高精度高分辨率南极海域海洋重力异常。
     本文具体研究成果及贡献包括以下几方面:
     1.子波形阈值法与最佳波形重定算法的确定
     研究出了子波形阈值法,以提取卫星测高回波波形中精度较高的有效子波形,进而提高测高的测距精度。南极海域存在不同的反射面,而不同反射面需采用不同波形重定算法,为确定不同反射面的最佳波形重定算法和反演得到高精度南极海域海洋重力异常,提出了与垂线偏差精度密切相关的参数选取最佳波形重定算法。在南极海域实验区,对子波形阈值法、β-5和阈值法进行了比较,结果表明子波形阈值法的结果优于其他两算法。子波形阈值法对Geosat/GM漫射波形、ERS-1/GM漫射波形和镜面波形的改善率分别达到38%、78.8%和90%。
     2.测高海面高的数据处理
     深入研究了测高海面高的数据处理问题,为了提高海面高精度,将移去恢复过程应用于其数据处理阶段,分析不同数据处理阶段海面高残差的特点,提出了高斯滤波、海面高均值平移法和调整的样条多项式进行数据处理,获得了2Hz高精度的海面高。研究发现沿轨迹海面高有时存在着海面高平移现象,分析指出该现象主要由测高数据、测高改正量或回波信号质量太差由波形重定引起。
     3.最佳反演组合的确定
     深入探讨了不同垂线偏差输入、参考重力场和反演算法等不同反演组合对测高海洋重力异常精度的影响,研究发现,相对于360阶EGM08,以2160阶EGM08作为参考重力场的统计结果精度改善率达30%;逆Verning-Meinsz算法和最小二乘配置法反演结果精度相当,但前者计算时间仅为后者的40%;以所有测高卫星垂线偏差反演的重力异常精度更高。
     4.南极海域测高海洋重力异常反演与精度评估
     反演和评估了南极海域的测高海洋重力异常精度,以最佳反演组合,分区域反演了2′×2′南极海域测高海洋重力异常模型,将该模型和国际最新模型Sandwell and Smith与DNSC08,采用船测重力对南极海域海洋重力异常精度进行评估,结果表明测高重力与船测重力的重力异常余差的统计结果精度约3.2~11.2mGal;本文模型精度总体达到、部分海域甚至超过了国际最新模型,如areal区域,本文模型精度优于Sandwell and Smith模型约2.2 mGal,优于DNSC08模型约1.1 mGal。
     5.船测重力与测高重力的数据融合
     以高精度的船测重力为控制点,详细讨论了船测重力与测高重力的数据融合,为消除船测重力采样率的影响,对船测重力重采样,对最小二乘配置法和Draping算法进行比较,结果表明Draping算法在结果精度和计算效率等方面优于最小二乘配置法。采用Draping算法得到了2′×2′南极海域新的海洋重力异常。
     6.回波信号波形分类及测高在海冰的应用
     系统探讨和提出了回波信号波形分类的概念、识别流程和适用性分析,并采用简单指标进行波形分类,其结果可用于特定反射面监测和不同反射面波形重定算法等研究。在波形分类的基础上,详细探讨了卫星测高用于监测海冰密集度和海冰空间分布,并给出了测高测高获取海冰厚度的原理。利用遥感资料验证和检核,研究发现利用卫星测高可获取不同时间段的海冰密集度,其结果高于遥感结果。测高用于海冰空间分布不仅有效,且能分辨漂浮的海冰。
Due to the limitations of poor geographical conditions and a lack of in-situ observations, knowledge about Antarctic Oceans (AOs) has not been explored well for a long time. However, these ocean areas are closely connected to global climate and ecological environment. Thus, it is important to improve our knowledge over these areas.
     Gravity anomaly (GA) is one of the basic physical quantities over the oceans. Highly accurate GA can help to improve the knowledge of internal structure and marine resources exploration, and satellite altimeter is the currently best approach to obtain the data over the oceans.
     Sea surface height (SSH) is the basic parameter derived from satellite altimeter. Normally, in the open ocean, it is relatively precise as the altimeter radar return follow ocean model of Brown, making it possible to derive precise gravity anomalies. However, the accuracy of SSH is often degraded due to a variety of factors, and may lead to false results in the resulting GAs. In order to improve the determination of GAs, SSH needs to be ameliorated by waveform retracking, updated altimeter corrections and data processing.
     This thesis introduces the ocean waveform model of Brown with a detailed waveform classification. It develops a new algorithm, called sub-waveform threshold, and presents an optimal waveform retracker. Next this thesis discusses data processing of SSH at different stages and deflection of the vertical (DOV), and derives 2'×2' gridded GAs over AOs. The quality of the derived gravity anomalies is evaluated by comparison with ship gravity data, resulting in a RMS agreement of about 7 mGal over AOs. This result is close to or even better than those of the DNSC08 and Sandwell and Smith gravity models. Finally this thesis discusses data fusing using altimeter-only and ship gravity value, and derives a new GA model around AOs.
     The major findings of thesis are summarized below:
     1. Sub-waveform threshold and the optimal waveform retracker selection This thesis presents a sub-waveform threshold retracker to determine sub-waveform with good sample waveforms, and improve the accuracy of gravity anomalies. A criteria parameter, which is correlated with quality of DOV, is present to determine the optimal retracker for the gravity anomaly derivation. The performances of P-5, threshold and sub-waveform threshold are assessed over waters around AOs. The sub-waveform threshold outperforms the other two. Use of the sub-waveform threshold leads to the improvement percentage of about 38%,78.8% and 90%, for Geosat/GM, diffuse and specular waveforms of ERS-1/GM over AOs, respectively.
     2. Data processing of altimeter SSH
     In order to improve the accuracy of high-frequency SSH, the standard remove-restore procedure is firstly used at the stage of SSH processing. Different data processing methods, such as Guassian filter, average-moving of SSH and a modified spline polynomial function of Maus' (Maus et al,1998), are used at the corresponding stages, and a re-sampling 2-Hz SSHs are derived. Along some tracks, there exists large SSH jumps caused by the errors in altimeter data, incorrect corrections or bad waveforms.
     3. The optimal strategy determination for gravity
     Several factors, such as reference gravity field and the methods of gravity determination and deflection of the vertical, may affect the quality of satellite-only gravity anomalies. Altimeter-only gravity anomalies on a 2'×2'grid are derived based on several strategies. The altimeter-derived gravity anomalies are compared with ship gravity to determine the optimal strategy for gravity. The standard deviation of the differences between altimeter-derived gravity and ship gravity improves 30% as the 2160 degree of EGM08 the reference gravity field, compared to that of 360 degree. The accuracy of inverse Verning-Meinsz is close to that of least-square collocation, while the computation time of the former is just 40% of that of the latter.
     4. Marine gravity anomaly derivation over AO
     Following optimal strategy for gravity, gravity anomalies over sub-regions of Antarctic Oceans are derived from altimeter data on a 2'×2' grid. The gravity anomaly grids from this thesis (current model), DNSC08 model and Sandwell and Smith, are compared with ship gravity. The standard deviation of the differences between altimeter-derived gravity and ship gravity are about 3.2~11.2 mGal over AOs. The accuracy of current model is close to those of the other two, and better over several oceans. Over AOs, the current model improves by 2.2 mGal and 1.1 mGal compared to Sandwell and Smith model and DNSC08 model, respectively.
     5. Data fusing of ship and altimeter-only gravity
     Taken high-accuracy ship gravity as the control points, two methods of combining ship and altimeter-only gravity have been experimented over coastal waters around Taiwan. One is least square collocation and the other is Draping. Draping outperforms the LSC in the accuracy and efficiency and is used to get the marine gravity anomalies over AOs on a 2'×2' grid, which improves over the altimeter-only gravity and ship-only gravity anomaly grids.
     6. Waveform classification and altimeter application in sea ice
     Returned waveforms of altimeter depend largely on the property of the reflecting surface. This thesis presents methods of waveform identification and classification. An altimeter application on sea ice concentration (SIC) and sea ice distribution (SIS) is investigated, with an introduction to the principle of sea ice depth determination. The altimeter-derived SIC is compared with that of remote sensing, and the former shows a higher concentration of sea ice in the studied area. Altimeter data can not only be used to derive SIC and SIS, but also identify floating sea ice.
引文
[1]Anderson O.B., Woodworth P.L. and Flather R.A., Intercomparison of recent ocean tide models [J]. Journal of Geophysical Research,1995,100:25261-25282
    [2]Anderson O.B., Knudsen P. and Trimmer R. Improved High Resolution Altimetric Gravity Field Mapping (KMS2002 Global Marine Gravity Field) [C]. IAG symposium,2005:138326-331
    [3]Anderson O.B., Knudsen P. and Berry A.M., The DNSC08GRA global marine gravity field from double retracked satellite altimetry [J]. Journal of Geodesy,2010,84:191-199
    [4]Anzenhofer M., Shum C.K. and Renstch M., Coastal Altimetry and Applications [R]. the Ohio State University,1999, Report No.464. Geodetic and GeoInformation Science, Department of Civil and Environmental Engineering and Geodetic Science
    [5]Bamber J.L., Ice sheet altimeter processing scheme [J]. International Journal of Remote Sensing,1994,15(4):925-938
    [6]Basic T. and Rapp R.H., Oceanwide prediction of gravity anomalies and sea surface heights using GEOS-3, Seasat and Geosat altimeter data and Etopo05 bathymetric data [R].1992, the Ohio State University, Report No.416
    [7]Berry P.A.M., Jasper A. and Bracke H., Retracking ERS-1 altimeter waveforms over land for topographic height determination:an expert system approach [C].ESA Pub.,1997, SP-414(1): 403-408
    [8]Berry P.A.M., Topography from Land Radar Altimeter Data:Possibilities and Restrictions [J]. Physics and Chemistry of the Earth,2000,25(1):81-88
    [9]Brenner A.C., Koblinsky C.J. and Zwally H.J., Postprocessing of Satellite Altimeter Return Signals for Improved Sea Surface Topography Accuracy [J]. Journal of Geophysical Research, 1993,98(C1):933-944
    [10]Brooks R.L. and Lockwood D.W., Effects of Islands in the Geosat Footprint [J]. Journal of Geophysical Research,1990,95(C3):2849-2855
    [11]Brooks R.L., Lockwood D.W. and Lee J.E., Land Effects on TOPEX Radar Altimeter Measurements on Pacific Rim Coastal Zones [J].1997
    [12]Brown G.S.,The average impulse response of a rough surface and its application [J]. IEEE Transactions on antennas and propagation,1977,25(1):67-74
    [13]Chelton D.B., Ries J.C., Haines B.J., et al. Satellite altimetry. In:Fu L.L., Cazenave A. ed. Satellite altimetry and earth sciences:A handbook of techniques and applications [A].2001:1-132
    [14]Davis C.H., A surface and volume scattering Retracking algorithm for ice sheet satellite altimetry [J]. IEEE Transactions on Geoscience and Remote Sensing,1993a,31(4):811-818
    [15]Davis C.H. and Moore R.K. A Combined Surface- and Volume-Scattering Model for Ice-Sheet Radar Altimetry [J]. Journal of Glaciology,1993b,39(133):675-686
    [16]Davis C.H., Growth of the Greenland Ice Sheet:A Performance Assessment of Altimeter Retracking Algorithms [J]. IEEE Transactions on Geoscience and Remote Sensing,1995, 33(5):1108-1116
    [17]Davis C.H. A Robust Threshold retracking Algorithm for Measuring Ice-Sheet Surface Elevation Change from Satellite Radar Altimeter [J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):974-979
    [18]Davis C.H. and Segura D.M., An Algorithm for Time Series Analysis of Ice Sheet Surface Elevations from Satellite Altimetry [J]. IEEE Transactions on Geosciences and Remote Sensing, 2001,39(1)
    [19]Davis C.H. and Ferguson A.C. Elevation Change of the Antarctic Ice Sheet,1995-2000, from ERS2 Satellite Radar Altimetry [J]. IEEE Transactions on Geosciences and Remote Sensing,2004, 42(11)
    [20]Deng X., Featherstone W.E., Hwang C. and Berry P.A.M., Estimation of Contamination of ERS-2 and POSEIDON Satellite Radar Altimetry Close to the Coasts of Australia [J]. Marine Geodesy,2002,25(4):249-271
    [21]Deng X., Improvement of Geodetic Parameter Estimation in Coastal Regions from Satellite Radar Altimetry [D]. PhD. dissertation, Curtin University of Technology, Australia,2003
    [22]Deng X. and Featherstone W.E., A Coastal Retracking System for Satellite Radar Altimeter Waveforms:Application to ERS-2 around Australia [J]. Journal of Geophysical Research,2006, 111(c6):C06012-1-C06012-16
    [23]Denker H. and Ronald M. Compilation and evaluation of a consistent marine gravity data set surrounding Europe [C]. Proc IUUG,2003, Soporo, Japan
    [24]Drinkwater M.R., Ku band airborne radar altimeter observations of marginal sea ice during the 1984 marginal ice zone equipment [J]. Journal of Geophysical Research,1991,96(C3):4555-4572
    [25]Ferraro E.J. and Swift C.T. Comparision of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet [J]. Transactions on Geosciences and Remote Sensing,1995,33(3):700-707
    [26]Forsberg R., Solheim D. and Kaminskis J., Geoid of the Nordic and Baltic region from gravimetry and satellite altimetry, In:Sagawa J, Fujimoto H, Okubo S (eds) Proc Int Symp gravity, geoid and marine geodesy (GRAGEOMAR) [A]. IAG proceedings series, Springer, Berlin Heidelberg New York,1996,117:540-547
    [27]Haxby W.F., Labrecque J.L., Weissel J.K. and Karner G.D., Digital images of combined oceanic and continental data sets and their use in tectonic studies [J]. EOS Trans.,1983,64: 995-1004
    [28]Hayne G.S., Radar Altimeter Mean Return Waveform from Near-Normal-Incidence Ocean Surface Scattering [J]. IEEE Transactions on Antennas and Propagation,1980,28 (5):687-692
    [29]Hsu S., Liu C., Shyu C., Liu S., Sibue J., Lallemand S., Wang C. and Reed D., New Gravity and Magnetic Anomaly Maps in the Taiwan-Luzon Region and Their Preliminary Interpretation [C]. TAO,1998,9(3):509-532
    [30]Hwang C., High Precision Gravity Anomaly and Sea Surface Height Estimation from Geos-3/Seasat Altimeter Data [R],1989,the Ohio State University Report No.399
    [31]Hwang C. and Parsons B., Gravity Anomalies Derived from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON Altimetry and Ship Gravity:A Case Study over the Reykjanes Ridge [J]. Geophysical Journal International,1995,122:551-568
    [32]Hwang C., Analysis of some systematic errors affecting altimeter-derived sea surface gradient with application to geoid determination over Taiwan [J]. Journal of Geodesy,1997,71:113-130
    [33]Hwang C., Inverse Vening Meinesz Formula and Deflection-Geoid Formula:Applications to the Predictions of Gravity and Geoid over the South China Sea [J]. Journal of Geodesy,1998, 72:304-312
    [34]Hwang C., Kao E. and Parsons B., Global Derivation of Marine Gravity Anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON Altimeter Data [J]. Geophysical Journal International,1998,134:449-459
    [35]Hwang C., Hsu H. and Jang R., Global Mean Sea Surface and Marine Gravity Anomaly from Multi-satellite Altimetry:Applications of Deflection geoid and Inverse Vening Meinesz Formulae [J]. Journal of Geodesy,2002,76:407-418
    [36]Hwang C., Guo J., Deng X., etc., Coastal gravity anomalies from retracked Geosat/GM altimetry:improvement, limitation and the role of airborne gravity data [J]. Journal of Geodesy, 2006,80:204-216
    [37]Jensen J.R., Radar Altimeter Gate Tracking:Theory and Extension [J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):651-658
    [38]King M. and Padman L., Accuracy assessment of ocean tide models around Antarctica [J]. Geophysical Research Letters,2005,32(23)
    [39]Kirby J.F. and Forsberg R., A Comparison of Techniques for the Integration of Satellite Altimeter and Surface Gravity Data for Geoid Determination [A]. in:Geodesy on the Move, Forsberg R., Feissel M. and Dietrich R. (ed.),1997:207-212
    [40]Laxon S., Sea ice altimeter processing scheme at the EODC [J]. International Journal of Remote Sensing,1994,15:915-924
    [41]Lee H.K., Radar Altimetry Methods for Solid Earth Geodynamics Studies [D]. PhD. dissertation, Ohio State University, USA,2008.
    [42]Legresy B. and Remy F., Using the Temporal Variability of Satellite Radar Altimetric Observations to Map Surface Properties of the Antarctic Ice Sheet [J]. Journal of Glaciology,1998, 44(147):197-206
    [43]Lemoine F.G., et al. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96,1998, NASA/TP-1998-206861,575
    [44]Levitus S., Monterey G.I. and Boyer T., Seasonal Variability of Dynamic Height and Its Fourier Analysis,1997, NOAA NESDIS Atlas 15
    [45]Lipa B.J. and Barrick D.E. Ocean Surface Height-Slope Probability Density Function from SEASAT Altimeter Echo [J]. Journal of Geophysical Research,1981,86(C11):10921-10930
    [46]Mantripp D., Radar altimetry, in:The Determination of Geophysical Parameters from Space [A]. Fancey N. E., Gardiner I.D. and Gardiner R.A. (ed.),1996:119-171
    [47]Martin T.V., Zwally H.J., Brenner A.C. and Bindschadler R.A. Analysis and Retracking of Continental Ice Sheet Radar Altimeter Waveforms [J]. Journal of Geophysical Research,1983, 88(C3):1608-1616
    [48]Matsumoto K., Takanezawa T. and Ooe M., Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model:A Global Model and a Regional Model around Japan [J]. Journal of Oceanography,2000:56,567-581
    [49]Maus S., Green C.M., Fairhead J.D. Improved ocean-geoid resolution from retracked ERS-1 satellite altimeter waveforms [J]. Geophysical Journal International,1998,134,243-253
    [50]McAdoo D.C., Gravity Field of the Southeast Central Pacific from Geosat Exact Repeat Mission Data [J]. Journal of Geophysical Research,1990,97(B3):3274-3260
    [51]Molodensky M.S., Eremeev V.F. and Yrukina M.J., Methods for study of the external gravitational field and figure of the earth works of Central Research Institue of Geodesy Aerial Photography and Cartography [M]. Moscow:Geodetic Litereture Press,131,1960
    [52]Moritz H. Advanced Physical Geodesy [M]. New York:Abacus Press,1980
    [53]Nerem R.S., Measuring Global Mean Sea Level Variations Using TOPEX/POSEIDON Altimeter Data [J]. Journal of Geophysical Research,1995,100(C12):25135-25151
    [54]Nerem R.S., Leuliette E., Cazenace A., Present-day sea-level change:A review [J]. C.R. Geoscience,2006,338:1077-1083
    [55]NRSC, Altimeter Waveform Product ALT.WAP Compact User Guide, PFUG-NRL-AL-0001, The United Kingdom Processing and Archiving Facility, UK,32,1995
    [56]Olgiati A., Balmino G., Sarrailh M. and Green C.M., Gravity Anomalies from Satellite Altimetry:Comparison between Computation via Geoid Heights and via Deflections of the Vertical [J]. Bulletin Geodesique,1995,69(4):252-260
    [57]Partington K.C., Ridley J.K. and Rapley C.G. Observations of Surface Properties of the Ice Sheets by Satellite Radar Altimetry [J]. Journal of Glaciology,1989,35(120):267-275
    [58]Partington K.C., Cudlip W. and Rapley C.G., An Assessment of the Capability of the Satellite Radar Altimeter for Measuring Ice Sheet Topographic Change [J]. International Journal of Remote Sensing,1991,12(3):585-609
    [59]Peacock N.R. and Laxon S., Sea surface height determination in the Arctic Ocean from ERS altimetry [J]. Journal of Geophysical Research,2004,109(C07):1-14
    [60]Priester R.W. and Miller L.S., Estimation of Significant Wave Height and Wave Height Density Function Using Satellite Altimeter Data [J]. Journal of Geophysical Research,1979, 84(B8):4021-4026
    [61]Rapp R.H., Detailed gravity anomalies and sea surface height derived from Geos3/Seasat altimeter data [J]. Journal of Geophysical Research,1983,88(C3):1552-1562
    [62]Rapp R.H., The Determination of geoid undulation and gravity anomalies from Seasat altimeter data [R]. the Ohio State University,1985, Report No.365
    [63]Rapp R.H. and Yi Y. Role of Ocean Variability and Dynamic Ocean Topography in the Recovery of the Mean Sea Surface and Gravity Anomalies from Satellite Altimeter Data [J]. Journal of Geodesy,1997,71:617-629
    [64]Remy F. and Minster J.F., Precise Altimetric Topography in Ice-sheet Flow Studies [J]. Annals of Glaciology,1993,17,195-200
    [65]Remy F., Mazzega P., Houry S., Brossier C. and Minster J.F., Mapping of the Topography of Continental Ice by Inversion of Satellite-altimeter Data [J]. Journal of Glaciology,1989, 35(119):98-107
    [66]Ridley J.K. and Partington K.C. A Model of Satellite Radar Altimeter Return from Ice Sheets [J]. International Journal of Remote Sensing,1988,9(4):601-624
    [67]Rodriguez E., Altimeter for Non-Gaussian Oceans:Height biases and Estimation of Parameters [J]. Journal of Geophysical Research,1988,93(C11):14107-14120
    [68]Rodriguez E. and Chapman B., Extracting Ocean Surface Information from Altimeter Returns: The Deconvolution Method [J]. Journal of Geophysical Research,1989,94(C7):9761-9778
    [69]Rodriguez E. and Martin M. Assessment of the TOPEX Altimeter Performance Using Waveform Retracking [J]. Journal of Geophysical Research,1994,99(C12):24,957-24,969
    [70]Saldern C., Haas C. and Dierking W., Parameterisation of Arctic sea ice surface roughness for application in ice type classification [J]. Annals of glaciology,2006,44:224-230
    [71]Sandwell D.T. and Smith W.H.F. Global seafloor topography from satellite altimetry and ship depth soundings [J]. Science,1997,277:1957-1962
    [72]Sandwell D.T., and Smith W.H.F., Retracking ERS-1 altimeter waveforms for optimal gravity field recovery [J]. Geophysical Journal International,2005,163(1):79-89
    [73]Sandwell D.T. and Smith W.H.F., Global marine gravity from retracked Geosat and ERS-1 altimetry:Ridge Segmentation versus spreading rate [J]. Journal of Geophysical Research,2009, 114(B1)
    [74]Scharroo R., A decade of ERS satellite orbit and altimetry [D]. PhD. dissertation, Technische Universiteit of Delft,2002
    [75]Scott R.F., Baker S.G., Birkett C.M., etc., A Comparison of The Performance of the Ice And Ocean Tracking Modes of the ERS-1 Radar Altimeter over Non-Ocean Surface [J]. Geophysical Research Letters,1994,21(7):553-556
    [76]Shum C.K., Woodworth P., Andersen O., etc., Accuracy assessment of recent ocean tide models [J]. Journal of Geophysical Research,1997,102(C11):25173-25194
    [77]Srokosz M.A., On the Joint Distribution of Surface Elevation and Slopes for A Nonlinear Random Sea, with An Application to Radar Altimetry [J]. Journal of Geophysical Research,1986, 91(C1):995-1006
    [78]Tapley B.D. and Kim M.C., Applications to Geodesy [A]. in:Satellite Altimetry and Earth Sciences, Fu L.L. and Cazenave A. (ed.),2001:371-406
    [79]Tapley B.D., et al. GGM02 an improved earth gravity field model from GRACE [J]. Journal of Geodesy,2005,79:467-478
    [80]Tokmakian R.T., Challenor P.G., Guymer T.H. and Srokosz M.A., The U.K. EODC ERS-1 Altimeter Oceans Processing Scheme [J]. International Journal of Remote Sensing,1994, 15(4):939-962
    [81]Torge W., Gravimetry [M]. Berlin, New York,1989
    [82]Tscherning C.C. and Rapp R.H., Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models [R]. the Ohio State University, Report No.208,1974
    [83]Ulander M.H.U., Interpretation of Seasat radar-altimeter data over sea ice using near-simultaneous SAR imagery [J]. International Journal of Remote Sensing,1987,8(11):1679-1686
    [84]Wessel P. and Smith W.H.F., A Global, Self-Consistent, Hierarchical, High-Resolution Shoreline Database [J]. Journal of Geophysical Researc,1996h,101(B4):8741-8743
    [85]Wessel P., GMT-the generic mapping tools, http://gmt.soest.hawaii.edu/,2000
    [86]Wessel P. and Watts A.B., On the accuracy of marine gravity measurements. [J]. Journal of Geophysical Research,1988,93:393-413
    [87]Wingham D.J., Rapley C.G. and Griffiths H., New techniques in satellite altimeter tracking systems [C], Proc IGARSS'86 Symp, Zurich,1986,1339-1344
    [88]Wingham D.J., Rapley C.G. and Morley J.G., Improved Resolution Ice Sheet Mapping with Satellite Altimeters [J]. Eos,1993,74(10):113-116
    [89]Wingham D.J., The Limiting Resolution of Ice-sheet Elevations Derived from Pulse-limited Satellite Altimetry [J]. Journal of Glaciology,1995,41(138):413-422
    [90]Wingham D.J., A Method for Determining the Average Height of A Large Topographic Ice Sheet from Observations of the Echo Received by a Satellite Altimeter [J]. Journal of Glaciology, 1995,41(137):125-141
    [91]Wingham D.J., Ridout A.J., Scharroo R., Arthern R. and Shum C.K., Antarctic Elevation Change from 1992 to 1996 [J]. Science,1998,282(5388):369-580
    [92]Zwally H.J., GSFC Retracking Algorithms, http://icesat4.gsfc.nasa.gov/,1996
    [93]Zwally H.J. and Brenner A.C., Ice Sheet Dynamics and Mass Balance[A]. in:Satellite Altimetry and Earth Sciences:A Handbook of Techniques and Applications, Fu L.L. and Cazenave A. (ed.),2001:351-370
    [94]Zwally H.J., et al., ICESat's laser measurements of polar ice, atmosphere, ocean, and land, Journal of Geodynamics [J].34:405-445,2002
    [95]鲍李峰.《卫星测高波形重构及测高数据应用研究》[D].武汉,中国科学院博士论文,2005
    [96]常晓涛.《测高波形重定恢复重力异常及其地球动力学应用》[D].武汉,武汉大学博士论文,2006
    [97]曹梅盛,晋锐.遥感技术监测海冰密集度[J].遥感技术与应用,2006,21(3):259-264
    [98]陈春明,李建成.利用地球重力场模型确定南极大地水准面[J].极地研究,2000, 12(1):10-17[99]褚永海.《卫星测高波形处理理论与技术》[D].武汉,武汉大学硕士论文,2004
    [100]褚永海,李建成,张燕,徐新禹,范春波,邹贤才.ENVISAT测高数据波形重跟踪分析研究[J].大地测量学与地球动力学,2005,25(1):76-80
    [101]褚永海.《卫星测高波形处理理论研究及应用》[D].武汉,武汉大学博士论文,2007
    [102]鄂栋臣,徐莹,张小红.星载激光测高及其在极地的应用研究分析[J].极地研究,2006,18(2):148-155
    [103]鄂栋臣,杨元德.卫星测高波形重跟踪算法在南极应用的比较[J].大地测量与地球动力学,2007,27(1):45-49
    [104]鄂栋臣,张胜凯,周春霞.中国极地大地测量学十年回顾:1996-2006年[J]..地球科学进展,2007,22(8):784-790
    [105]鄂栋臣,徐莹,张小红.ICESat卫星及其在南极Dome A地区的应用[J].武汉大学信息学报,2007,32(12):1139-1142
    [106]黄谟涛等.《海洋重力场测定及其应用》[M].北京,测绘出版社,2005
    [107]姜卫平.《卫星测高技术在大地测量学中的应用》[D].武汉,武汉大学博士论文,2001
    [108]姜卫平,李建成,王正涛.联合多种测高数据确定全球平均海面WHU2000[J].科学通报,2002,47(15):1187-1191
    [109]李建成,宁津生,陈俊勇,晁定波.联合TOPEX/Poseidon,ERS2和Geosat卫星测高资料确定中国近海重力异常[D].测绘学报,2001,30(3):197-202
    [110]李建成,姜卫平,章磊.联合多种测高数据建立高分辨率中国海平均海面高模型[J].武汉大学信息科学版,2001,26(1):40-45
    [111]李建成,宁津生,陈俊勇,晁定波.中国海域大地水准面和重力异常的确定[J].测绘学报,2003,32(2):114-119
    [112]李建成,陈俊勇,宁津生,晁定波.《地球重力场逼近理论与中国2000似大地水准面的确定》[M].武汉,武汉大学出版社,2003
    [113]莫里兹.《高等物理大地测量学》(宁津生,管泽霖等译)[M].北京,测绘出版社,1984
    [114]徐欣莹.《利用多卫星测高资料改善全球海洋重力异常模型及浅海区重力异常》[D].台湾交通大学博士论文,2007
    [115]杨元德.《卫星测高波形重跟踪法在南极中的应用》[D].武汉,武汉大学硕士论文,2006
    [116]杨元德,鄂栋臣,黄金维,汪海洪.Geosat/GM波形重跟踪反演沿海区域重力异常[J].武汉大学信息学报,2008,33(12):1288-1291
    [117]於宗俦.《测量平差原理》[M].武汉,武汉测绘科技大学出版社,1989
    [118]翟国君,黄漠涛,谢锡君,欧阳永忠.《卫星测高数据处理的理论与方法》[M].测绘出版社,2000
    [119]张胜凯.《基于空间大地测量技术的东南极冰川动力学研究》[D].武汉,武汉大学博士论文,2006
    [120]张胜凯,鄂栋臣,周春霞,沈强.南极数字高程模型研究进展[J].极地研究,2006,18(4):301-309
    [121]王广运.《卫星测高原理》[M].北京,科学出版社,1995
    [122]王海瑛.《中国近海卫星测高数据处理与应用研究》[D].武汉,中国科学院博士论文,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700