用户名: 密码: 验证码:
南京地区临床分离大肠杆菌耐药性基因多样性及相关特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌感染曾严重威胁着人类的生命和健康。自Fleiming发现青霉素后60余年来,人们不断地从微生物次级代谢产物中提取出众多的抗生素,并开发出半合成抗生素。近年来,抗生素药物的广泛和不合理应用所形成的强选择压力使细菌耐药性逐年上升,特别是多重耐药菌株的出现和耐药性的快速传播已经成为临床感染性疾病治疗的难题。
     细菌的耐药性可由染色体或质粒上相关耐药性基因介导,耐药性质粒可通过接合方式在不同菌种之间传递,使受体细菌成为耐药性菌株,这是细菌获得耐药性的主要方式。本实验将从接合基因水平转移角度研究南京临床大肠杆菌耐药性产生机制及相关基因的多样性。
     选取2008年3月到8月南京军区总院临床分离培养的200株大肠杆菌,采用平板涂布方法测定对8种不同抗生素耐药情况,结果显示94%的分离菌株具有超过4种抗生素耐药性,未得到不耐受或仅耐受1种抗生素菌株。其中超过90%的菌株对Amp, Nal耐药,Chi, Spe耐药率相对较低,但也分别超过了30%和50%。
     接合实验来研究耐药基因的水平情况,筛选其中KmS或StrS的菌株75株,通过与SM10λpir (KmR)或Bw20676 (StrR)接合实验发现,大部分菌株耐药基因可通过接合方式发生水平转移,其中Amp, Tet, Nal, Str耐药基因发生水平转移概率较Chl, Spe,Gm高,分别占可接合菌株的91.69%,54.70%,53.08%,33.77%。并且多种不同的耐药基因可转移至同一受体菌中。
     对可发生水平转移菌株,其耐药基因水平转移方式通过电击转化实验来确定,得到的接合子提质粒后电击转化实验发现,90%以上Amp耐药基因通过质粒方式转移,其它的Tc, Str耐药基因也部分通过质粒方式转移,其比率为可发生水平转移菌株的20.62%和5.52%。对可同时转移多种耐药基因至同一受体菌的转化子进一步实验发现,其多种耐药基因可同时携带于同一质粒,或多个不同质粒分别携带不同的耐药性。并在实验中发现一株同时携带有Amp, Tet, Chl, Str多种耐药性质粒菌株。
     由于大部分的Amp耐药基因可通过质粒方式转移,实验设计通过PCR的方法检测菌株TEM型,SHV型及CTX-M型β-内酰胺酶基因分型及耐药基因携带情况。结果显示我们研究的南京地区大部分大肠杆菌对氨苄青霉素耐药的机制主要是由TEM和CTX-M型β-内酰胺酶的产生,对200株大肠杆菌PCR发现,其中TEM, CTX-M检出率分别为36.5%和35.5%。SHV型PCR扩增未发现阳性标本。对耐受Amp抗生素程度不同的菌株序列比对发现,其基因型相同,推测其耐药程度与β-内酰胺酶表达量有关。
Bacterial infections were serious threat to human life and health. Since the discovery of penicillin by Fleiming ore than 60 years, people extracted a large number of antibiotics from microbial secondary metabolites and developed semi-synthetic antibiotics. In recent years, inadequate selection and abuse of antimicrobials may lead to resistance in various bacteria and make the treatment of bacterial infections more difficult. In particular the emergence of multidrug resistant strains and the rapid spread of antimicrobial resistance has become a problem of clinical infectious disease.
     Antibiotic-resistant gene transfer in bacteria is mediated through chromosome or plasmid. Much of the genomic information that affects antimicrobial resistances is acquired by plasmid, and conjugation is generally considered to play a major role in this process. In this study, we will investigate diversity of antibiotics resistant genes in clinical isolated E.coli in Nanjing.
     200 multi-resistant E.coli clinical isolates were collected in the Military hospital of Nanjing from March to August in 2008. Antimicrobial resistance for the isolates were determined by spreading strains to antimicrobial plates. the research showed that 94% of isolates were resistant to more than 4 antimicrobials tested, no one was resistant to less than 1 of the 8 antimicrobials tested. The resistance to 8 antimicrobial agents for 200 clinical isolates. more than 90% of which resistant to ampicillin and nalidixic acid. The rate resistant chloramphenicol and spectinomycin are relatively lower, but more than 30% and 50% were found.
     To determine whether resistance was transferable, conjugations were performed. Multidrug-resistant E.coli isolates recovered from patients in the military hospital of Nanjing as donor strains and Kanamycin-resistant E. coli SM10λpir or streptomycin resistant E. coli Bw20676 were used as recipient strains.The antimicrobial resistance of different resistant strains was transferred to E.coli. Antimicrobial resistance, such as ampicillin (91.69%), tetracycline (54.70%), nalidixic acid (53.08%) and streptomycin (33.77%), could be transferred from a donor to a recipient cell via conjugation with high ratio. Chloramphenicol, spectinomycin and gentamicin resistance was transferred from donor strains rare.
     If the resistant genes is due to acquisition of plasmids which was assayed in transformation experiments. We found that more than 90% ampicillin resistance mediated by plasmid, and parts of tetracycline and streptomycin resistance by acquiring gene on plasmid with ratio of 20.62% and 5.52%. Antimicrobial susceptibility in E.coli transconjugants found that different gene can transfer to the same recipient strains,
     Therefore, we supposed that plasmids and other mobilizable molecules may account for the resistant via conjugation, and clinical human E.coli isolates which could transfer their different mobilizable molecules to recipient together or one mobilizable molecule with multidrug resistance. Plasmid encoded resistance to ampicillin, chloramphenicol, tetracycline and streptomycin discoveried in the study.
     As most of the ampicillin resistance gene transfer via plasmids, TEM, SHV and CTX-M gene conferring P-lactamase were detected by polymerase chain reaction (PCR) The results showed that TEM and CTX-Mβ-lactamase is the principal mechanism of ampicillin antiobiotic of Escherichia coli isolates from Nanjing. PCR found that most of strains all contained TEM(36.5%) and CTX-M(35.5%). No SHV was detected in these isolates. Different strains with differernt ability to resistant ampicillin have the same genotype, Therefore, we supposed that discrepancy of this resistance related withβ-lactamase expression.
引文
1. Normark B,Normark S. Evolution and spread of antibiotic resistance.J Int Med,2002,252:91-106
    2. Mazel D, Davies J. Antibiotic resistance in microbes.Cell Mol Life Sci,1999,56:742-754
    3. Francia M V, Varsaki A, Garcillan-Barcia M P,et al. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev,2004,28:79-100
    4. Grohmann E, Muth G, Espinosa M.Conjugative plasmid transfer in gram-positive bacteria.Microbiol Mol Biol Rev,2003,67:277-301
    5. Preston K E,Radomski C C,Venezia R A. The cassettes and 3' conserved segment of an integron from Klebsiella oxytoca plasmid pACM1.Plasmid,1999,42:104-114
    6. BatchelorR A,Pearson BM,FriisLM,et al. Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species.Microbiology,2004,150:3507-3517
    7. Sherburne C K, Lawley T D, Gilmour M W,et al. The complete DNA sequence and analysis of R27, a large IncHI plasmid from Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res,2000,28:2177-2186
    8. Jain R,Rivera M C,Lake J A. Horizontal gene transfer among genomes:the complexity hypothesis.Proc Natl Acad Sci USA,1999,96:3801-3806
    9. Dzidic S, Bedekovic V. Horizontal gene transfer-emerging multidrug resistance in hospital bacteria.Acta Pharmacol Sin,2003,24:519-526
    10. Roy PH. Transposons and integrons:natural genetic engineering of antibiotic resistance.Can J Infect Dis,1999,10:4C-8C
    11. Partridge S T R,Recchia QStokes H W,et al. Family of class 1 integrons related to In 4 from Tn 696.Antimicrob Agents Chemother,2001,45:3014-3020
    12. BoltnerD, Osborn AM. Structural comparison of the integrative and conjugative elements R391, pMERPH, R997, and SXT.Plasmid,2004,51:12-23
    13. Burrus V, Pavlovic G, Decaris B,et al. Conjugative transposons:the tip of the iceberg.Mol Microbiol,2002,46:601-610
    14. Rowe-Magnus D A, Mazel D.The role of integrons in antibiotic resistance gene campture.Int J Med Microbiol,2002,292:115-125
    15. Hansson K, Sundstrom L, PelletierA,et al. IntI2 integron integrase in Tn7. J Bacteriol,2002,184: 1712-1721
    16. Martinez-Freijo P, Fluit AD C, Schmitz F J,et al. Many Class I Integrons Comprise Distinct stable structures occurring in different species of Enterobacteriaceae isolated from widespread geographic regions in Europe. Antimicrob Agents Chemother,1999,43:686-689
    17. Heidlberg J F,Eisen J A,Nelson W C,et al.DNA sequence both chromosomes of the cholera pathogen Vibrio cholerae.Nature,2000,406:477-483
    18. Hacker J, Carniel E. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep,2001,2:376-381
    19. Dobrindt U, Hochhut B, Hentsche 1 U,et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn's disease. Gastroenterology,2004,2:414-424
    20. Ito T, Katayama Y, Asada K,et al. Structural comparison of three types of stamphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Stamphylococcus aureus.Antimicrob Agents Chemother,2001,45:1323-1336
    21. Holden M T, Feil E J, Lindsay J A,et al. Complete genomes of two clinical Stamphylococcus aureus strains:evidence for the rampid evolution of virulence and drug resistance.Proc Natl Acad Sci USA.2004,101:9786-9791
    22. Mongkolrattanothai K, Boyle S, Murphy T V,et al. Novel non-mecA-containing stamphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal stamphylococcal species:a possible reservoir for antibiotic resistance islands in Stamphylococcus aureus. Antimicrob Agents Chemother,2004,48:1823-1836
    23. Boyd D, PetersG A, CloeckaertA,et al. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona.J Bacteriol,2001,183: 5725-5732
    24. Luck SN, TurnerSA, RajakumarK,et al. Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes.Infect Immun,2001,69:6012-6021
    25. Nass T,Livermore D M,Nordmann P.Characterization of anLysR family potein,SemR from Serratia marcessecs S 61 its effect on expression of t he carbampenem hydrolyzing β-lactamases Sme-1 and comparison of this regulator with other β-lactamases regulators.Antimicrob Agents Chemother, 1995,39:629-637
    26. Emery CL, Weymouth LA. Detection and clinical significance of extended-spectrum beta-lactamases in a tertiary care medical center. J Clin Micro 1997; 35:2061-7.
    27. Dzidic S, Bedekovic V.Horizontal gene transfer-emerging multidrug resistance in hospital bacteria. Acta Pharmacol Sin,2003,24:519-526
    28. Wolska KI. Horizontal DNA transfer between bacteria in the environment. Acta Microbiol Pol,2003,52:233-243
    29. Mavroidi A,tzelepi E,Tsakris A,et al. An integron-associatedβ-lactamase(IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum β-lactamase IBC-1.J Antimicrob Chemother,2001, 48:627-630
    30. Bellais S,Poirel L,Naas T,et al. Genetic-biochemical analysis and diatribution of the Ambler class A β-lactamase CME-2, responsible for extended-spectrum cephalosporin resistance in Chryseobacterium (Flavobacterium) meningosepticum.Antimicrob Agents Chemother,2000, 44:1-9
    31. Coque TM,Oliver A,Perez-Diaz JC,et al.Genes encoding TEM-4,SHV-2,and CTX-M-10 extended-spectrum beta-lactamses are carried by multiple Klebsiella pneumoniae clones in a single hospital(Madrid,1989 to 2000). Antimicrob Agents Chemother,2002,46:500-510
    32. Bauernfeind A,Stemplinger I,Jungwirth R;et al. Sequences of beta-lactamses genes encoding CTX-M-1(MEN-1)and CTX-M-2 and relationship of their amino acid sequences with those of other beta-lactamses.Antimicrob Agents Chemother,1996,40:509-513
    33. Pai H.The characteristics of extended-spectrum beta-lactamases in Korean isolates of Enterobateriasese. Yonsei Med J,1998,39:514-519
    34. Yagi T,Kurokawa H,Shibata N,et al.A preliminary survey of extended-spectrum beta-lactamases (ESBLs)in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan.FEMS Microbiol Lett,2000,184:53-56
    35. Yan JJ,Ko WC,Tsai SH,et al.Dessemination of CTX-M-3 and CMY-2 beta-lactamases among clinical isolates of Escherichia coli in southern Taiwan.Clin.Microbiol,2000,38:4320-4325
    36. Wang H,Kelkar S,Wu W,et al.Clinical isolates of Enterobacteriaceae producing extended-spectrum beta-lactamases:prevalence of CTX-M-3 at a hospital in China.Antimicrob Agents Chemother, 2003,47:790-79
    37.陆坚,唐英春等.革兰阴性菌产CTX-M-3型超广谱p-内酰胺酶分子传播机制的研究.中国抗感染化疗杂志,2002,2:202-206
    38.胡丽华,周建英,吴佳丽等.超广谱p-内酰胺酶分子流行病学研究.中华检验医学杂志,2002,25:281-283
    39. Pai H.The characteristics of extended-spectrum beta-lactamases in Korean isolates of Enterobateriasese. Yonsei Med J,1998,39:514-519
    40. Mabilat C,Goussard S,Sougakkff W,et al. Direct sequencing of the amplified structural gene and promoter for the extend-broad-spectrum β-lactamases TEM-9(RHH-1)of Klebsiella pneumoniae. Plasmid,1990,23:27-34
    41. Bradford PA. Extended-spectrum β-lactamases in the 21st Century:characterization, epide-miology,
    and detection of this important resistance threat.Clin Microbiol Rev,2001,14:933-951
    42. Ma L,Ishii Y,Ishiguro M,et al.Cloning and sequencing of the gene encoding Toho-2,a class A beta-lactamase preferentially inhibited by tazobatam. Antimicrob Agents Chemother,1998,42:1181-1186
    43. Oliver A,Perez-Diaz J C,Coque T M,et al.Nucleotide sequence and characterization of a novel cefotaxime-hydrolyzong β-lactamase(CTX-M-10) isolated in Spain. Antimicrob Agents Chemother,2001,45:616-620
    44. Bonnet R J,Sampaio L M,Labia R,et al.A novel CTX-M β-lactamase(CTX-M-8) in cefotaxime-resistant Enterobacteriaceae isolated in Brazil. Antimicrob Agents Chemother,2000,44:1936-1942
    45. Tzouvelekis L S,Tzelepi E,Tassios P T,et al.CTX-M type β-lactamase:an emerging group of extended-spectrum β-lactamase enzymes.Int J Antimicrob Chemother,2000,14:137-142
    46. Tuomanen E,Lindquist S,Sande S,et al.Coordinate regulation of P-lactamase induction and peptidoglycan composition by the apm operon.Science,1991,251:201-204
    47. Korfmann G,Sanders CC,Moland ES.Altered phenotypes associated with ampD mutation in Enterobacter cloacae.Antimicrob Agent Chemother,1991,35:358-364
    48.张凤凯,金少鸿.β-内酰胺类抗生素的作用靶位-青霉素结合蛋白.国外医学抗生素分册,2000.21:107
    49. Honore N,Marchal G,Cole ST.Novel mutation in 16S RNA associated with streptomycin dependence in Mycobacterium tuberculosis. Antimicrob Agents Chemother,1995,39:769-770
    50. Azucena E,Mobashery S.Aminoglycoside-modifying enzymes:mechanisms of catalytic prosses and inhibition.Drug Resist Updat,2001,4:106-117
    51. Chopra I,Hawkey RM. Tetracyclines Molecular and Clinical Aspects. J Antimicrob Chemother, 1992,29:245-277
    52. ZHOU Zhanyun,WANGHongtao,WANGXiaowei,et al. Synthesis and Neuroprotective Activity of NovelC4,C7 Derivatives in Tetracycline Series. Journal of chinese pharmaceutial sciences,2004, 13:217-219
    53. Takahashi R, Ishihara H, Takahashi K,et al. Efficient and controlled gene expression in mouse pancreatic islets by arterial delivery of tetracycline-inducible adenoviral vectors. J Mol Endocrinol. 2007,38:127-136
    54. DePaola A, Roberts MC, Class D and E tetracycline resistance determinants in Gram-negative bacteria from catfish ponds. Mol. Cell. Probes,1995.9,311-313
    55. Guardabassi L, Dijkshoorn L, Collard JM, et al. Distribution and in-vitro transfer of tetracycline resistance determinants in clinical and aquatic Acinetobacter strains. J. Med. Microbiol,2000,49, 929-936
    56. Doktor SZ, Shortridge VD, Beyer JM, et al. Epidemiology of macrolide and/or lincosamide resistan Streptococcus pneumoniae clinical isolates with ribosomal mutations.Diagnostic Microbiology and Infectious Disease,2004,49:47-52
    57. Allen AG,Bolitho H,Lindsay S,et al. Generation and characterization of a defined mutant of Streptococcus suis lacking suilysin.Infect Immun,2001,69:2732-2735
    58. Adam D,Scholz H,and Helmerking M. Short-course antibiotic treatment of 4782 culture proven cases of group A streptococcal tonsillopharyngitis and incidence of poststreptococcal sequelae.J Infect Dis,2000,182:509-516
    59. Brandt CM,Honscha M,Truong ND,et al. Macrolide resistance in Streptococcus pyogenes isolates from throat infections in the region of Aachen,Germany.Microb.Drug Resist,2001,7:165-170
    60. Garau J.The clinical impact of macrolide resistance in Pneumococcal respiratory infection. Int J Antimicrob Agents,2001,18:S33-8
    61. Barkai G,Greenberg D,Givon-Lavi N,etal. Community prescribing and resistant Streptococcus pneumoniae.Emerging Infectious Diseases,2005,11:829-837
    62. Descheemaeker P,Champelle S,Lammens C,et al. Macrolide resistance and erythromycin resistance determinants among Belgian Streptococcus pyogenes and Streptococcus pneumoniae isolates. J Antimicrob Chemother,2000,45:167-173
    63. Hawkey P M. Mechanisms of quinolone action and microbial response.J antimicrob Chemother, 2003,51:29-35
    64. Akasaka T,Tanaka M,Yamaguchi A,et al. Type Ⅱ topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999:role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob Agents Chemother,2001,45: 2263-2268
    65. Karlowsky JA, Hoban DJ, Decorby MR, et al..Fluoroquinolone-resistant urinary isolates of Escherichia coli from outpatients are frequently multidrug resistant:results from the North American Urinary Tract Infection Collaborative Alliance-Quinolone Resistance study. Antimicrob. Agents Chemother,2006,50:2251-2254
    66. Poole K.Efflux-mediated resistance to fluoroquinolones in Gram-negtive bacteria.Antimicrob Agents Chemother,2000,44:2233-2241
    67. Ho PL, Wong RC, Yip KS,et al.Antimicrobial resistance in Escherichia coli outpatient urinary isolates from women:emerging multidrug resistance phenotypes. Diagn Microbiol Infect Dis, 2007,59:439-445
    68.初晓玲,许锐,王莉.2005年门诊抗生素不合理使用分析.东南国防医药,2007,9:62-72
    69. Kawalec M, Gniadkowski M, Hryniewicz W. Outbreak of vancomycin-resistant enterococci in a hospital in Gdask, Poland, due to horizontal transfer of different Tn1546-like transposon variants and clonal spread of several strains.J Clin Microbiol,2000,38:3317-3322
    70. Bean DC, Krahe D, Wareham DW. Antimicrobial resistance in community and nosocomial Escherichia coli urinary tract isolates, London 2005-2006, Ann Clin Microbiol Antimicrob,2008, 7:13
    71. Zhanel GG, DeCorby M, Laing N, et al. Antimicrobial-resistant pathogens in intensive care units in Canada:results of the Canadian National Intensive Care Unit (CAN-ICU) study, 2005-2006,Antimicrob Agents Chemother,2008,52:1430-1437
    72. Schjorring S, Struve C, Krogfelt KA. Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine, J Antimicrob Chemother,2008, 62:1086-1093
    73. Tomita H, Pierson C, Lim SK, et al. Possible connection between a widely disseminated conjugative gentamicin resistance (pMGl-like) plasmid and the emergence of vancomycin resistance in Enterococcus faecium. J Clin Microbiol,2002,40:3326-3333
    74. Hsu SC, Chiu TH, Pang JC, et al. Characterisation of antimicrobial resistance patterns and class 1 integrons among Escherichia coli and Salmonella enterica serovar Choleraesuis strains isolated from humans and swine in Taiwan, Int J Antimicrob Agents,2006,27:383-391
    75. Hoffmann A, Thimm T, Droge M, et al.Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola), Appl Environ Microbiol,1998,64:2652-2659
    76. Senthilkumar B, Prabakaran G. Multidrug resistant Salmonella typhi in asymptomatic typhoid carriers among food handlers in Namakkal district, Tamil Nadu, Indian J Med Microbiol,2005, 23:92-94
    77. Lau SK, Wong GK, Li MW, et al. Distribution and molecular characterization of tetracycline resistance in Laribacter hongkongensis, J Antimicrob Chemother,2008,61:488-497
    78.尹秀玲,牛发良.大肠杆菌耐药机制的研究进.河北北方学院学报,2007,23:49-53
    79.毛文祥,毛海斌,毛文忠,等.产超广谱β-内酰胺酶49株大肠埃希菌耐药基因调查.中国卫生检验杂志,2009,19:401-403
    80.金法祥,俞建洪,糜祖煌.大肠埃希菌老年患者分离株p-内酰胺酶基因与毒力基因研究.中华医学感染学杂志,2009,4:374-376
    81. Chia JH, Chu C, Su LH, et al. Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M beta-lactamases of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae in Taiwan. J Clin Microbiol,2005,43: 4486-4491
    82.季淑娟,顾恰明,谭文涛,等.中国部分地区大肠埃希菌和肺炎克雷伯菌超广谱p-内酞胺酶基因型研究.中华检验医学,2004,27:590-593
    83.孙景勇,倪语星.大肠埃希菌和肺炎克雷伯菌超广谱β-内酞胺酶的基因分型.中国抗感染化疗杂志,2002,2:211-214
    84. Cheng Y, Chen M. Extended-spectrum beta-lactamases in clinical isolates of Enterobacter gergoviae and Escherichia coli in China. Antimicrob Agents Chemother,1994,38:2838-2842
    85. Yu Y, Zhou W, Chen Y. Epidemiological and antibiotic resistant study on extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Zhejiang Province. Chin Med J,2002,115:1479-82
    86.孙景勇,倪语星.CTX-M-3超广谱2和TEM-1广谱β-内酰胺酶基因同时存在于大肠埃希菌.中华微生物学和免疫学杂志,2001,21:75-77
    87.徐灵彬,刘原,王香玲.西安地区肠杆菌科细菌的超广谱p-内酰胺酶基因型的研究.西安交通大学学报(医学版),2008,29:443-445
    88.肖庆忠,苏丹虹,江洁华,等.广州地区3500株革兰阴性杆菌TEM和SHV型超广谱p-内酰胺酶基因分型研究.中华检验医学杂志,2005,28:1010-1014
    89.毛文祥,毛海斌,毛文忠,等.产超广谱p-内酰胺酶49株大肠埃希菌耐药基因调查.中国卫生检验杂志,2009,19:401-403

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700